1,053 research outputs found

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    5G-PPP Software Network Working Group:Network Applications: Opening up 5G and beyond networks 5G-PPP projects analysis

    Get PDF
    As part of the 5G-PPP Initiative, the Software Network Working Group prepared this white paper to demystify the concept of the Network Applications. In fact, the Network Application ecosystem is more than the introduction of new vertical applications that have interaction capabilities. It refers to the need for a separate middleware layer to simplify the implementation and deployment of vertical systems on a large scale. Specifically, third parties or network operators can contribute to Network Applications, depending on the level of interaction and trust. Different implementations have been conducted by the different projects considering different API types and different level of trust between the verticals and the owner of 5G platforms. In this paper, the different approaches considered by the projects are summarized. By analysing them, it appears three options of interaction between the verticals and the 5G platform owner: - aaS Model: it is the model where the vertical application consumes the Network Applications as a service. The vertical application deployed in the vertical service provider domain. It connects with the 3GPP network systems (EPS, 5GS) in one or more PLMN operator domain. - Hybrid: it is the model where the vertical instantiates a part of its Vertical App in the operator domain like the EDGE. The other part remains in the vertical domain. A similar approach has been followed in TS 23.286 related to the deployment of V2X server. - Coupled/Delegated: it is the model where the vertical delegates its app to the operator. The Network Applications will be composed and managed by the operator. This approach is the one followed in the platforms like 5G-EVE. In addition, the paper brings an analysis of the different API type deployed. It appears that the abstraction from network APIs to service APIs is necessary to hide the telco complexity making APIs easy to consume for verticals with no telco expertise and to adress data privacy requirements

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    A Unified Monitoring Framework for Energy Consumption and Network Traffic

    Get PDF
    International audienceProviding experimenters with deep insight about the effects of theirexperiments is a central feature of testbeds. In this paper, wedescribe Kwapi, a framework designed in the context of the Grid'5000testbed, that unifies measurements for both energy consumption andnetwork traffic. Because all measurements are taken at theinfrastructure level (using sensors in power and network equipment),using this framework has no dependencies on the experiments themselves.Initially designed for OpenStack infrastructures, the Kwapi framework allowsmonitoring and reporting of energy consumption of distributed platforms. Inthis article, we present the extension of Kwapi to network monitoring, andoutline how we overcame several challenges: scaling to a testbed the size ofGrid'5000 while still providing high-frequency measurements; providing long-termloss-less storage of measurements; handling operational issues when deployingsuch a tool on a real infrastructure
    • …
    corecore