8 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Pixel-Based Artificial Neural Networks in Computer-Aided Diagnosis

    Get PDF

    Texture Enhanced Image Denoising via Gradient Histogram Preservation

    Full text link

    Classification of lung diseases using deep learning models

    Get PDF
    Although deep learning-based models show high performance in the medical field, they required large volumes of data which is problematic due to the protection of patient privacy and lack of publically available medical databases. In this thesis, we address the problem of medical data scarcity by considering the task of pulmonary disease detection in chest X-Ray images using small volume datasets (<1000 samples). We implement three deep convolution neural networks pre-trained on the ImageNet dataset (VGG16, ResNet-50, and InveptionV3) and asses them in the lung disease classification tasks transfer learning approach. We created a pipeline that applied segmentation on Chest X-Ray images before classifying them and we compared the performance of our framework with the existing one. We demonstrated that pre-trained models and simple classifiers such as shallow neural networks can compete with the complex systems. We also implemented activation maps for our system. The analysis of class activation maps shows that not only does the segmentation improve results in terms of accuracy but also focuses models on medically relevant areas of lungs. We validated our techniques on the publicly available Shenzhen and Montgomery datasets and compared them to the currently available solutions. Our method was able to reach the same level of accuracy as the best performing models trained on the Montgomery dataset however, the advantage of our approach is a smaller number of trainable parameters. What is more, our InceptionV3 based model almost tied with the best performing solution on the Shenzhen dataset but as previously, it is computationally less expensive

    Efficient approximation of neural filters for removing quantum noise from images

    No full text

    Efficient approximation of neural filters for removing quantum noise from images

    No full text
    corecore