246 research outputs found

    Probabilistic Skyline Queries over Uncertain Moving Objects

    Get PDF
    Data uncertainty inherently exists in a large number of applications due to factors such as limitations of measuring equipments, update delay, and network bandwidth. Recently, modeling and querying uncertain data have attracted considerable attention from the database community. However, how to perform advanced analysis on uncertain data remains an interesting question. In this paper, we focus on the execution of skyline computation over uncertain moving objects. We propose a novel probabilistic skyline model where an uncertain object may take a probability to be in the skyline at a certain time point, therefore a p-t-skyline contains those moving objects whose skyline probabilities are at least p at time point t. Computing probabilistic skyline over a large number of uncertain moving objects is a daunting task in practice. In order to efficiently compute the probabilistic skyline query, we propose a discrete-and-conquer strategy, which follows the sampling-bounding-pruning-refining procedure. To further reduce the skyline computation cost, we propose an enhanced framework that is based on a multi-dimensional indexing structure combined with the discrete-and-conquer strategy. Through extensive experiments with synthetic datasets, we show that the framework can efficiently support skyline queries over uncertain moving object and is scalable on large data sets

    Finding Top-k Dominance on Incomplete Big Data Using Map-Reduce Framework

    Full text link
    Incomplete data is one major kind of multi-dimensional dataset that has random-distributed missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when it becomes huge. Finding top-k dominant values in this type of dataset is a challenging procedure. Some algorithms are present to enhance this process but are mostly efficient only when dealing with a small-size incomplete data. One of the algorithms that make the application of TKD query possible is the Bitmap Index Guided (BIG) algorithm. This algorithm strongly improves the performance for incomplete data, but it is not originally capable of finding top-k dominant values in incomplete big data, nor is it designed to do so. Several other algorithms have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms, but their performance is also questionable. Algorithms developed previously were among the first attempts to apply TKD query on incomplete data; however, all these had weak performances or were not compatible with the incomplete data. This thesis proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying top-k dominance queries on huge incomplete datasets. The proposed approach uses the MapReduce parallel computing approach using multiple computing nodes. The framework separates the tasks between several computing nodes that independently and simultaneously work to find the result. This method has achieved up to two times faster processing time in finding the TKD query result in comparison to previously presented algorithms

    Distributed Indexing Schemes for k-Dominant Skyline Analytics on Uncertain Edge-IoT Data

    Full text link
    Skyline queries typically search a Pareto-optimal set from a given data set to solve the corresponding multiobjective optimization problem. As the number of criteria increases, the skyline presumes excessive data items, which yield a meaningless result. To address this curse of dimensionality, we proposed a k-dominant skyline in which the number of skyline members was reduced by relaxing the restriction on the number of dimensions, considering the uncertainty of data. Specifically, each data item was associated with a probability of appearance, which represented the probability of becoming a member of the k-dominant skyline. As data items appear continuously in data streams, the corresponding k-dominant skyline may vary with time. Therefore, an effective and rapid mechanism of updating the k-dominant skyline becomes crucial. Herein, we proposed two time-efficient schemes, Middle Indexing (MI) and All Indexing (AI), for k-dominant skyline in distributed edge-computing environments, where irrelevant data items can be effectively excluded from the compute to reduce the processing duration. Furthermore, the proposed schemes were validated with extensive experimental simulations. The experimental results demonstrated that the proposed MI and AI schemes reduced the computation time by approximately 13% and 56%, respectively, compared with the existing method.Comment: 13 pages, 8 figures, 12 tables, to appear in IEEE Transactions on Emerging Topics in Computin

    Parallel and progressive approaches for skyline query over probabilistic incomplete database

    Full text link
    The advanced productivity of the modern society has created a wide range of similar commodities. However, the descriptions of commodities are always incomplete. Therefore, it is difficult for consumers to make choices. In the face of this problem, skyline query is a useful tool. However, the existing algorithms are unable to address incomplete probabilistic databases. In addition, it is necessary to wait for query completion to obtain even partial results. Furthermore, traditional skyline algorithms are usually serial. Thus, they cannot utilize multi-core processors effectively. Therefore, a parallel progressive skyline query algorithm for incomplete databases is imperative, which provides answers gradually and much faster. To address these problems, we design a new algorithm that uses multi-level grouping, pruning strategies, and pruning tuple transferring, which significantly decreases the computational costs. Experimental results demonstrate that the skyline results can be obtained in a short time. The parallel efficiency for an Octa-core processor reaches 90% on high-dimensional, large databases.<br /

    An Energy-Efficient Skyline Query for Massively Multidimensional Sensing Data

    Get PDF
    Cyber physical systems (CPS) sense the environment based on wireless sensor networks. The sensing data of such systems present the characteristics of massiveness and multi-dimensionality. As one of the major monitoring methods used in in safe production monitoring and disaster early-warning applications, skyline query algorithms are extensively adopted for multiple-objective decision analysis of these sensing data. With the expansion of network sizes, the amount of sensing data increases sharply. Then, how to improve the query efficiency of skyline query algorithms and reduce the transmission energy consumption become pressing and difficult to accomplish issues. Therefore, this paper proposes a new energy-efficient skyline query method for massively multidimensional sensing data. First, the method uses a node cut strategy to dynamically generate filtering tuples with little computational overhead when collecting query results instead of issuing queries with filters. It can judge the domination relationship among different nodes, remove the detected data sets of dominated nodes that are irrelevant to the query, modify the query path dynamically, and reduce the data comparison and computational overhead. The efficient dynamic filter generated by this strategy uses little non-skyline data transmission in the network, and the transmission distance is very short. Second, our method also employs the tuple-cutting strategy inside the node and generates the local cutting tuples by the sub-tree with the node itself as the root node, which will be used to cut the detected data within the nodes of the sub-tree. Therefore, it can further control the non-skyline data uploading. A large number of experimental results show that our method can quickly return an overview of the monitored area and reduce the communication overhead. Additionally, it can shorten the response time and improve the efficiency of the query
    • …
    corecore