
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

6-2014

On Efficient Reverse Skyline Query Processing On Efficient Reverse Skyline Query Processing

Yunjun GAO
Zhejiang University

Qing LIU
Zhejiang University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Gang CHEN
Zhejiang University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
GAO, Yunjun; LIU, Qing; ZHENG, Baihua; and CHEN, Gang. On Efficient Reverse Skyline Query Processing.
(2014). Expert Systems with Applications. 41, (7), 3237-3249. Research Collection School Of Information
Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1953

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email library@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/19098002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

On efficient reverse skyline query processing

Yunjun Gao a,⇑, Qing Liu a, Baihua Zheng b, Gang Chen a

a College of Computer Science, Zhejiang University, Hangzhou 310027, China
b School of Information Systems, Singapore Management University, Singapore 178902, Singapore

a r t i c l e i n f o

Keywords:
Skyline
Reverse skyline
Constrained reverse skyline
Query processing
Algorithm

a b s t r a c t

Given a D-dimensional data set P and a query point q, a reverse skyline query (RSQ) returns all the data
objects in P whose dynamic skyline contains q. It is important for many real life applications such as busi-
ness planning and environmental monitoring. Currently, the state-of-the-art algorithm for answering the
RSQ is the reverse skyline using skyline approximations (RSSA) algorithm, which is based on the precom-
puted approximations of the skylines. Although RSSA has some desirable features, e.g., applicability to
arbitrary data distributions and dimensions, it needs for multiple accesses of the same nodes, incurring
redundant I/O and CPU costs. In this paper, we propose several efficient algorithms for exact RSQ
processing over multidimensional datasets. Our methods utilize a conventional data-partitioning index
(e.g., R-tree) on the dataset P, and employ precomputation, reuse, and pruning techniques to boost the
query performance. In addition, we extend our techniques to tackle a natural variant of the RSQ, i.e., con-
strained reverse skyline query (CRSQ), which retrieves the reverse skyline inside a specified constrained
region. Extensive experimental evaluation using both real and synthetic datasets demonstrates that our
proposed algorithms outperform RSSA by several orders of magnitude under all experimental settings.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The skyline query is a research hot topic in database commu-
nity. For a specified dataset P, a skyline query returns the ob-
jects/points in P that are not dominated by others. In particular,
for a given D-dimensional dataset P, if a point p1 e P dominates an-
other point p2 e P, it must hold that (1) i e [1,D], p1[i] 6 p2[i], and
(2) $j e [1,D], p1[j] < p2[j]. Here, p[i] is the ith dimensional value
of the point p, and we assume the smaller the better. For example,
we have a set P = {a,b, . . .,h, i} of hotels, as depicted in Fig. 1(a), with
x-axis corresponding to the room price of every hotel, and y-axis
representing its distance to the beach. Note that, the price of hotel
a is cheaper than that of hotel b, and it is closer to the beach com-
pared with b. Hence, a dominates b. All the hotels a, g, h, and i not
dominated by any other hotel constitute the skyline of P. The sky-
line query is very useful in many multi-criteria decision making
and user preference queries. For instance, in the above hotel exam-
ple, it can return, for the tourists, a small set of interesting hotels
from a big pool, to save the tourists’ time, when they need to find
a cheap hotel yet close to the beach to stay.

The traditional skyline query is static as it takes into account the
static attribute values of data points in a dataset P. In other words,

the skyline of P is fixed. However, if we specify a query point q and
consider points’ dominance relationships w.r.t. q, the skyline of P
(w.r.t. q) is not fixed, and thus, it is referred to as the dynamic skyline
query. Specifically, for a given D-dimensional dataset P and a query
point q, if a point p1 e P dominates another point p2 e P w.r.t. q, it
must hold that (1) i e [1,D], |p1[i] � q[i]| 6 |p2[i] � q[i]|, and (2)
$j e [1,D], |p1[j] � q[j]| < |p2[j] � q[j]|. An example of the dynamic
skyline query is illustrated in Fig. 1(b), where every green point de-
notes the transformed point w.r.t. q (i.e., a point p is transformed to
the point p0 w.r.t. q via p0[i] = |p[i] � q[i]|), and the dynamic skyline
of the specified dataset w.r.t. q consists of hotels e, g, and h. Com-
pared with the traditional skyline query, the dynamic skyline
query offers users more flexibility in specifying the search criteria.
Back to the aforementioned hotel example again, if a certain tourist
prefers a hotel with room price around $100 and its distance to
beach around 300 m, he/she can specify his/her ideal hotel as the
query point, and then, the dynamic skyline query is ran to return
the hotels that match his/her preference best.

In general, if a specified query point q belongs to the dynamic
skyline of a given dataset P w.r.t. a certain point p e P, p is said to
be in the reverse skyline of P w.r.t. q. A reverse skyline query (RSQ)
finds all the points in P that have q as a member of their dynamic
skylines. Take Fig. 1 as an example. Suppose a dynamic skyline
query is issued at point g, and hence, its result set contains hotels
e, h, and q, as shown in Fig. 1(c). If an RSQ is issued at point q, hotels
e, f, g, h, and i are returned as the result, as depicted in Fig. 1(d).
Intuitively, the reverse skyline indicates the influence of a query

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.11.012

⇑ Corresponding author. Address: College of Computer Science, Zhejiang Univer-
sity, 38 Zheda Road, Hangzhou 310027, China. Tel.: +86 571 8765 1613; fax: +86
571 8795 1250.

E-mail addresses: gaoyj@zju.edu.cn (Y. Gao), liuqing1988@zju.edu.cn (Q. Liu),
bhzheng@smu.edu.sg (B. Zheng), cg@zju.edu.cn (G. Chen).

Expert Systems with Applications 41 (2014) 3237–3249

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.11.012&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.11.012
mailto:gaoyj@zju.edu.cn
mailto:liuqing1988@zju.edu.cn
mailto:bhzheng@smu.edu.sg
mailto:cg@zju.edu.cn
http://dx.doi.org/10.1016/j.eswa.2013.11.012
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

point on a dataset, i.e., how many objects in the dataset may be
interested in the query point. Consequently, RSQ can be applied
to the applications from the companies’ perspective, and it is dif-
ferent from the skyline and dynamic skyline queries because they
are performed from the perspective of customers. As an example, a
certain real estate agent has a set of potential customers with dif-
ferent preferences. In order to locate the target customers who
might be interested in the real estate listings he/she has, the agent
can use real estate listings as the query points, and perform the re-
verse skyline query over the dataset storing the customers’ prefer-
ences. The result is just the customers in potential. Another
example is the business planning. Assume that the decision-maker
of a computer manufacturer has designed a new type of comput-
ers, and he/she would like to know how many customers may be
interested in this new/forthcoming computer. If only few people
have an interest on it, the decision-maker of the computer manu-
facturer might change quickly some parameters of the current one
or redesign a new one. In this case, he/she can take the new com-
puter as a query point q and the potential customer preferences
(e.g., CPU, main-memory, etc.) as a dataset P, and then perform
the reverse skyline query. The cardinality of the query result will
help him/her decide whether the new computer needs to be put
into production.

Currently, the branch and bound reverse skyline (BBRS) algorithm
and the reverse skyline using skyline approximations (RSSA) algo-
rithm are the state-of-the-art algorithms for answering reverse sky-
line queries. In particular, BBRS is an improved customization of
the original BBS algorithm (Papadias, Tao, Fu, & Seeger, 2005);
RRSA is based on accurate precomputed approximations of the
skylines; and as demonstrated in Dellis and Seeger (2007), RRSA
exceeds BBRS significantly in all the cases. Although RSSA has some
desirable features, e.g., applicability to arbitrary data distributions
and dimensions, it has to traverse the index R-tree (Beckmann,
Kriegel, Schneider, & Seeger, 1990) on a dataset repeatedly, incur-
ring unnecessary I/O and CPU costs. Hence, their performance has
much room for improvement. In addition, as demonstrated in
Papadopoulos and Manolopoulos (1997), the efficiency of an R-tree
is poor in high dimensions. If there exists repeated traversal of the
R-tree, the performance of the algorithms using R-trees deteriorate
dramatically, which also inspires us to boost the efficiency of cur-
rent reverse skyline algorithms. Moreover, in some business plan-
ning applications, the users require getting the query result within
a limited time, for quick decision making.

In addition to the traditional reverse skyline query, many reverse
skyline variants are also propose in the literature, such as bichromat-
ic reverse skyline (Wu, Tao, Wong, Ding, & Yu, 2009), reverse skyline
queries over uncertain data (Lian & Chen, 2010) and data stream
(Zhu, Li, & Chen, 2009), reverse skyline query with arbitrary non-
metric similarity measures (Prasad & Deepak, 2011), reverse skyline
queries in wireless sensor networks (Wang, Xin, Chen, & Liu, 2012),
reverse k-skyband (Liu, Gao, Chen, Li, & Jiang, 2012). As to be dis-
cussed in Section 2, all these variants are inherently different from

the traditional RSQ. Hence, the techniques developed for these vari-
ants are not directly applicable to tackle the RSQ. Motivated by this,
in this paper, we develop several algorithms for exact RSQ process-
ing over multidimensional datasets. Our methods utilize a conven-
tional data-partitioning index (e.g., R-tree) on the dataset, and
employ precomputation, reuse, and pruning techniques to boost the
query performance.

In some real applications, users might enforce some constraints
(e.g., spatial region, distance, etc.) on reverse skyline queries. Take
the real estate agent as an example. In order to keep the profits
and absorb as many customers as possible, the price of the house
should be neither too low nor too high. Also, the agent may want
to know the desired customers within a certain price range. Hence,
we propose a natural variant of RSQ, namely, constrained reverse
skyline query (CRSQ), which retrieves the reverse skyline inside a
specified constrained region (instead of the whole data space). In
addition, we extend our approaches to tackle it since the reverse
skyline algorithms without taking the region constraints into con-
sideration cannot efficiently handle CRSQ. In brief, the key contri-
butions of this paper can be summarized as follows:

� We utilize the reuse mechanism to achieve a single traversal of
the R-tree, which significantly reduces the I/O overhead, and
the CPU time accordingly.
� We develop an effective global skyline based pruning heuristic to

further improve the computational performance of RSQ, and
carry out a comprehensive theoretical analysis.
� We introduce CRSQ, an intuitive RSQ variant, and extend our

techniques to handle it efficiently.
� We conduct extensive experiments with both real and synthetic

datasets to show that our proposed algorithms outperform RSSA
by several orders of magnitude under all experimental settings.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 proposes efficient algorithms to process
RSQ, and analyzes their correctness. Section 4 presents efficient
algorithms for answering CRSQ, and theoretical analysis accord-
ingly. Considerable experimental results and our findings are re-
ported in Section 5. Finally, Section 6 concludes the paper with
some directions for future work.

2. Related work

In this section, we survey the previous work on skyline query
and its variations, focusing mostly on traditional skyline and re-
verse skyline queries.

2.1. Skyline queries

The skyline query is a popular paradigm for extracting interest-
ing objects from multidimensional databases. Since it was first
introduced into the database community in Borzsony, Kossmann,

2

108642

10

8

6

4

a

o
i

h

g fe
d

c
b

price

distance

q

a'

g'

e'

b'

h'

2

108642

10

8

6

4

o price

distance

a

b
c

d
e f

g

h
i

i'

q

2

108642

10

8

6

4

o price

distance

a

b
c

d
e

fg

h
i

a'
i'

q'h'
q

2

108642

10

8

6

4

o price

distance

a

b
c

d
e f

g

h
i

(a) skyline (b) dynamic skyline of q (c) dynamic skyline of g (d) reverse skyline of q

Fig. 1. Example of skyline, dynamic skyline, and reverse skyline.

3238 Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249

and Stocker (2001), many algorithms for computing the skyline
have been proposed in the literature. They can be classified into
two categories: (1) non-index based approaches, and (2) index based
methods. The first one involves solutions that do not assume any
index on the underlying dataset, but they retrieve the skyline by
scanning the dataset. The existing algorithms belonging to this
category include Block Nested Loop (BNL) (Borzsony et al., 2001),
Divide-and-Conquer (D&C) (Borzsony et al., 2001), Sort-Filter-Skyline
(SFS) (Chomicki, Godfrey, Gryz, & Liang, 2003), Linear Elimination
Sort for Skyline (LESS) (Godfrey, Shipley, & Gryz, 2005), Sort and Limit
Skyline algorithm (SaLSa) (Bartolini, Ciaccia, & Patella, 2008), and
Object-based Space Partitioning (OSP) (Zhang, Mamoulis, & Cheung,
2009). In particular, the most efficient skyline computation algo-
rithm for non-indexed data is OSP, which recursively divides the
D-dimensional space into 2D separate partitions w.r.t. a reference
skyline object, and facilitates progressive skyline retrieval on high
dimensional datasets. Methods of the other category exploit an
appropriate index structure, e.g., an R-tree (Beckmann et al.,
1990), to accelerate skyline computation. The existing algorithms
in this second category contain Bitmap (Tan, Eng, & Ooi, 2001),
Index (Tan et al., 2001), Nearest Neighbor (NN) (Kossmann, Ramsak,
& Rost, 2002), Branch and Bound (BBS) (Papadias et al., 2005),
and ZSearch (Lee, Zheng, Li, & Lee, 2007). Note that, BBS is the
state-of-the-art indexed approach for skyline retrieval using the
R-tree, and its I/O cost is proven to be optimal in Papadias et al.
(2005).

In addition to conventional skyline operator, numerous skyline
query variants have also been studied in the literature. Examples
include constrained skyline query (Chen, Cui, & Lu, 2011; Dellis,
Vlachou, Vladimirskiy, Seeger, & Theodoridis, 2006; Papadias
et al., 2005), dynamic skyline query (Papadias et al., 2005;
Sacharidis, Bouros, & Sellis, 2008), k-Skyband query (Papadias
et al., 2005), SkyCluster query (Huang, Xiang, Zhang, & Liu, 2011),
subspace skyline query (Pei et al., 2006; Tao, Xiao, & Pei, 2011), met-
ric skyline query (Chen & Lian, 2009; Fuhry, Jin, & Zhang, 2009),
probabilistic skyline query (Pei, Jiang, Lin, & Yuan, 2007; Zhang,
Lin, Zhang, Wang, & Yu, 2009), representative skyline query (Lin,
Yuan, Zhang, & Zhang, 2007; Tao, Ding, Lin, & Pei, 2009), stochastic
skyline query (Lin, Zhang, Zhang, & Cheema, 2011), parallel skyline
query (Gao, Chen, Chen, & Chen, 2006; Kohler, Yang, & Zhou, 2011;
Vlachou, Doulkeridis, & Kotidis, 2008; Wu et al., 2006), and skyline
retrieval in distributed environments (such as P2P systems and web
information systems) (Hose & Vlachou, 2012), to name but a few.

2.2. Reverse skyline queries

The reverse skyline query (RSQ), a novel variation of skyline
operator, introduced in Dellis and Seeger (2007), has received con-
siderable attention from the database research community in the
past few years, due to its importance in a wide spectrum of applica-
tions such as business planning (Dellis & Seeger, 2007; Prasad &
Deepak, 2011), environmental monitoring (Lian & Chen, 2010;
Wang et al., 2012), preference-based marketing (Dellis & Seeger,
2007), profile-based investment (Wu et al., 2009), and habitat mon-
itoring (Wang et al., 2012). The existing RSQ processing algorithms
include BBRS and RSSA. In order to reduce the search space, the two
algorithms introduce the concept of global skyline (Dellis & Seeger,
2007). Given a D-dimensional data set P and a query point q, the
global skyline of q contains the points that are not globally domi-
nated by any other point w.r.t. q. Specifically, if a point p1 e P glob-
ally dominates p2 e P w.r.t. q, it must hold that (1) 8i 2 ½1;D�;
ðp1½i� � q½i�Þðp2½i� � q½i�Þ > 0; ð2Þ8i 2 ½1;D�; jp1½i� � q½i�j 6 jp2½i� � q½i�j;
mand ð3Þ9j 2 ½1;D�; jp1½j� � q½j�j < jp2½j� � q½j�j. Fig. 2 illustrates an
example of global skyline of q, which includes points c, e, f, h, j
and k.

Specifically, BBRS is an improved customization of the original
BBS algorithm, and it works as follows. First, BBRS uses a min-heap
(sorted by the entry distances to a given query point q) to retrieve
the global skyline of q, which is the superset of the actual reverse
skyline set (proved in Dellis and Seeger (2007)). Subsequently,
BBRS performs, for every global skyline point, a window query
for refinement. For the global skyline point p, its query window
is the area that is centered at p and has the coordinate-wise dis-
tance to a given query point q as its extent. Actually, the window
query is a Boolean window query, which only needs to determine
whether there is any point located inside the window. The window
query works as follows. Initially, it initializes the heap based on the
root. It then proceeds to de-heap the top entry in the heap for eval-
uation until the heap is empty. If the entry is within the window,
there must be point in the window, and thus, the window query
terminates; if the entry intersects the window, it has to be ex-
panded, and its child entries are inserted into the heap; and other-
wise, the entry must be out of the window, and hence, it is
discarded. Take the dataset depicted in Fig. 3 as an example for
BBRS. The heap contents during the reverse skyline computation
are shown in Table 1, where the set S = {j, c, k} represents the final
reverse skyline.

On the other hand, RSSA is an enhanced version of BBRS, and it
utilizes the dynamic skyline to prune away unqualified points. Note
that, the dynamic skyline of each point is precomputed and kept on
disk. Then, similar as BBRS, RSSA retrieves the global skyline. There-
after, every global skyline point p is evaluated based on the con-
cepts of Dynamic Dominance Region (DDR: the region that
contains the points dominated by at least one skyline point) and
Dynamic Anti-Dominance Region (DADR: the region that contains
the points dominating a certain skyline point), which are deter-
mined by the precomputed dynamic skyline of p. If the query point
q is located within the DADR of some global skyline point p, p is
definitely a result point. If q is located inside the DDR of a certain
global skyline point p, p definitely is not a result point. If a global
skyline point cannot be refined by either DDR or DADR, it has to
be further verified by running the window query, just like BBRS

d
b

j k

a

i

f

N1 N2

N3

N4

N5

c

N6

g

l
h

N7

q

e

m

10864 212

2

10

8

6

4

o

12

N1

N7N6

N7

N5

N4

N3

N2

Root

N1 N2 N3 N4

a b c

d e f i j

k l

N5

g h m

N6

(a) point placement (b) the R-tree

Fig. 3. Example of BBRS.

db

j
k

a

i

f

c

g
l

h

q

e

m

10864 212

2

10

8

6

4

o

12

Fig. 2. Example of global skyline.

Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249 3239

does. For illustration, Fig. 4 depicts the DDR and DADR of data
points g and j, respectively. In Fig. 4(a), since a query point q falls
completely into DDR(g), g is not a reverse skyline point; whereas
q lies in DADR(j), as shown in Fig. 4(b), and thus, j is certainly a re-
verse skyline point. As demonstrated in Dellis and Seeger (2007),
RSSA outperforms BBRS under all instances. However, since every
window query traverses the R-tree (on a specified dataset) from
the root, it needs to traverse the R-tree multiple times, especially
for a large number of global skyline points not refined by either
DDR or DADR, which results in unnecessary I/O and CPU costs. In
this paper, we use precomputation, reuse, and pruning techniques
to achieve a single traversal of the R-tree, and boost the computa-
tional performance of the reverse skyline accordingly.

In addition, reverse skyline queries under different environ-
ments are explored as well. Wu et al. (2009) investigate bichromat-
ic reverse skyline (BRS) retrieval for traditional dataset, in which
each object is a precise point. They propose the BRS algorithm that
is designed for precise points, and seamlessly integrates several
non-trivial heuristics in order to reduce the I/O cost. The BRS retrie-
val is different from RSQ since it takes two datasets into consider-
ation while RSQ only considers one dataset. Hence, BRS algorithm
cannot be applied to RSQ directly. Lian and Chen (2010) study

monochromatic and bichromatic reverse skyline queries over uncer-
tain data, where every object is modeled as a probability distribu-
tion function. They develop spatial and probabilistic pruning
methods to reduce the search space of the reverse skyline query,
and employ precomputation technique to further improve the
query performance. Zhu et al. (2009) present a Divide and Conquer
Reverse Skyline (DCRS) algorithm to compute the reverse skyline on
data stream, which provides continuous and high-speed data ele-
ments. More recently, Prasad and Deepak (2011) consider the re-
verse skyline query with arbitrary non-metric similarity measures,
i.e., the attributes do not have a total ordering among their values.
Prasad and Deepak explore block-based processing of objects and
pre-processing to speed-up computational and IO costs. Wang
et al. (2012) discuss how to process reverse skyline queries en-
ergy-efficiently in wireless sensor networks, and propose a sky-
band-based approach to tackle this problem. Liu et al. (2012)
study the problem of reverse k-skyband (RkSB) query processing,
and develop several efficient algorithms for computing the RkSB
of an arbitrary query point by using precomputation and pruning
techniques. Moreover, Islam, Zhou, and Liu (2013) answer the
why-not questions in reverse skyline queries. Specifically, they
show how to modify the why-not point (data point) and query
point to include the why-not point in the reverse skyline of the
query point. Towards it, Islam et al. (2013) propose the safe region
of a query point where it can be moved while keeping its existing
reverse skyline. All these reverse skyline variations are proposed
under certain circumstances and are different from RSQ. Therefore
these algorithms cannot be applied to tackle the RSQ directly. On
the other hand, these algorithms of reverse skyline variations are
different from the one we propose in this paper.

3. Reverse skyline computation

In this section, we formally define the reverse skyline query
(RSQ), and then present our proposed two RSQ processing algo-
rithms and their corresponding analysis.

3.1. Problem formulation

Let P be a D-dimensional dataset. For any point p e P, we use p[i]
to denote the ith dimensional value of p. A point p1 e P is said to
dominate another point p2 e P, denoted as p1 � p2, if (i) for every
i e {1,2, . . .,D}, p1[i] 6 p2[i]; and (ii) for at least one j e {1,2, . . .,D},
p1[j] < p2[j]. For example, in Fig. 1(a), point g dominates point e,
i.e., g � e.

Definition 3.1 (Reverse skyline query). Given P and a query point q,
a reverse skyline query (RSQ) finds all the points in P which take q
as one of their dynamic skyline points, that is, if a point p e P is a

Fig. 5. Example of window queries.

db

j
k

a

i

f
c

g

lh

q

e

m'

m

DDR(g)

DADR(g)

10864 212

2

10

8

6

4

o

12
db

j k

a

i

fc

g

l
h

q

e

m

a'
b'

i'
h' g'

m'

l'
k'

DDR(j)

DADR(j)

10864 212

2

10

8

6

4

o

12

(a) DDR(g) and DADR(g) (b) DDR(j) and DADR(j)

Fig. 4. Example of DDR and DADR.

Table 1
Heap contents of BBRS.

Action Heap contents S

Access Root hN7, N6i £

Expand N7 hN6, N4, N5, N3i £

Expand N6 hN4, N2, N1, N5, N3i £

Expand N4 hj, N2, N1, N5, i, N3i {j}
Expand N2 h , N1, N5, i, N3, di {j}
Expand N1 hc, N5, i, N3, a, b, di {j, c}
Expand N5 hk, i, N3, a, l, b, m, di {j, c, k}
Expand N3 h , , , , , , i {j, c, k}

3240 Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249

reverse skyline point of q, there does not exist any other point o
(–p) e P, such that (1) 8i 2 ½1;D�; jo½i� � p½i�j 6 jq½i� � p½i�j; and
ð2Þ9j 2 ½1;D�; jo½j� � p½j�j < jq½j� � p½j�j.

Take Fig. 1 as an example again. Since the dynamic skyline of g
contains the query point q, g is a reverse skyline point of q. As men-
tioned earlier, so far RSSA is the most efficient RSQ processing algo-
rithm, whereas it has to traverse the index R-tree on the dataset
repeatedly, incurring unnecessary I/O and CPU costs. To address this,
in what follows, we propose several enhanced algorithms by using
precomputation, reuse, and pruning techniques.

3.2. Reverse skyline query processing

In this subsection, we describe two efficient algorithms, namely,
full-reuse-based reverse skyline (FRRS) algorithm, and global-skyline-
based reverse skyline (GSRS) algorithm, for computing the reverse
skyline. In particular, FRRS is based on the reuse mechanism to
avoid multiple accesses of the same node, which significantly re-
duces the I/O and CPU costs. GSRS utilizes a novel global-skyline-
based pruning heuristic to eliminate evaluating candidate global
skyline points via window queries, and thus, further improve the
query performance.

3.2.1. The FRRS algorithm
Recall that if a global skyline point p cannot be refined by DDR/

DADR, existing RSSA algorithm applies a window query to verify it.
As an example, the query window of j is shown in Fig. 5(a) with its
corresponding window query processing steps and heap contents
listed in Fig. 5(c), and the query window of h is depicted in
Fig. 5(b) with its corresponding window query processing steps
and heap contents listed in Fig. 5(d). In this case, we can observe
that some entries (e.g., Root, N4, and N7) are visited multiple times
when performing window queries for different points. However, if
we store the visited R-tree nodes of previous window query and di-
rectly use it in the next time, it can avoid redundant node accesses
for all the window queries. By using the reuse technique for all the
window queries, it can achieve to traverse the R-tree only once,
which reduces the I/O cost significantly. Nonetheless, there is still
some room for further improvement. Recall that the first step of
RSSA is to compute the global skyline, which also needs to traverse
the R-tree. If we apply the reuse mechanism in both the global sky-
line computation and the window query processing, we can cut
down the R-tree traversal to only once.

To employ the reuse technique, we should preserve the visited
R-tree nodes. To this end, we can either maintain all the visited
nodes in the heap during the query processing or only store the
deepest level nodes of R-tree. Since maintaining all the visited
nodes takes considerable space, we adopt the second way in this
paper. When we utilize the reuse technique during the processing
of global skyline computation and window query, the visited R-
tree nodes can be classified into two categories: the first category
includes the node entries not globally dominated by the retrieved
global skyline points; and the other category contains the node en-
tries globally dominated by the retrieved global skyline points.
Therefore, in this paper, we use two heaps (Hg for the first category
node entries, and Hw for the second category node entries) to main-
tain the visited R-tree nodes. The combination of Hg and Hw is just
the deepest level’s nodes visited currently. One issue needs to be
addressed is that any node entry should not be discarded during
the processing unless it is expanded. Hence, it guarantees that
we do not miss any node entry in the whole query processing. In
the following, we illustrate the details of how the reuse technique
is used.

We integrate the reuse technique into RSSA algorithm to devel-
op our first RSQ query

Algorithm 1 full-reuse-based reverse skyline algorithm
(FRRS)

Input: an R-tree R on a data set, a query point q, the
dynamic skyline of the dataset
Output: the result set Sr of an RSQ

1: initialize sets Sg = Sr = £ and min-heaps Hg = Hw = £

2: insert all entries of the root into Hg

3: while Hg – £ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by any point in Sg then
6: insert e into Hw // for the reuse later
7: else
8: if e is an intermediate entry then
9: for each child ei e e do
10: if ei is globally dominated by any point in Sg

then
11: insert ei into Hw // for the reuse later
12: else insert ei into Hg

13: else // e is a data point
14: if q is in DADR(e) then add e to Sr and add e to Hw

15: else if q is in DDR(e) then insert e into Hw

16: else
17: if Window-Query(Hg, e, q) AND Window-

Query (Hw, e, q) then
18: add e to Sr // e is a result point
19: insert e into Hw // for the reuse later
20: add e to Sg // for the next round
21: return Sr

Algorithm 2 Window-query(H, p, q)

1: initialize tag = TRUE and an auxiliary min-heap Ha = £

2: while H – £ do
3: de-heap the top entry e of H
4: if e is in the window based on p and q then
5: tag = FALSE and insert e into Ha // e can be pruned
6: break // function terminates
7: else if e crosses the window based on p and q then
8: for each child ei e e do
9: insert ei into H
10: else insert e into Ha// e is out of the window
11: shift from elements in Ha to H if Ha – £ // for the reuse

later
12: return tag

processing algorithm, i.e., FRRS, whose pseudo-code is presented in
Algorithm 1. Firstly, FRRS utilizes Hg to find the global skyline of
query point, during which the node entries globally dominated by
the retrieved global skyline points are inserted into the heap Hw

for the reuse later (lines 6 and 11 of Algorithm 1). Then, FRRS uses
dynamic skyline to refine the global skyline and insert the refined
points into the heap Hw as well (lines 14 and 15 of Algorithm 1). Fi-
nally, the remained global skyline is further refined by window
query using both heaps Hg and Hw (lines 17–19 of Algorithm 1).
Algorithm 2 shows the pseudo-code of a window query. In the tra-
ditional window query, if a node is located outside the window, it
can be pruned away. Nevertheless, when employing the reuse
mechanism, this node has to be kept because it may be useful for
other window queries (lines 10 of Algorithm 2). We employ an aux-
iliary heap Ha to store this node temporarily. Once the current win-
dow query stops, the entries in the auxiliary heap Ha should be
shifted to the work heap for the reuse later (lines 11 of Algorithm 2).

Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249 3241

3.2.2. The GSRS algorithm
Although the reuse technique can avoid multiple accesses of the

same nodes, the window query processing is not very efficient.
For example, even though none of the heap entries is actually in-
side the query window of the real reverse skyline point, an
exhaustive evaluation is still triggered, which needs to scan all
the entries in the heaps Hg and Hw. In addition, the FRRS algo-
rithms have a very important shortcoming. It needs to maintain
in memory any data object or node that has been retrieved from
disk, and cannot discard any node that qualifies for the global sky-
line or window query. Even though the R-tree is traversed at most
once, this may lead to maintain the entire data set in memory,
which is not feasible for large data sets. To address these deficien-
cies, we develop a novel heuristic to prune away all the unqualified
points using the global skyline. Our second algorithm, namely,
GSRS, employs this heuristic, and it also traverses the R-tree only
once. Before we present GSRS, we first introduce an important
concept, i.e., the global 1-skyline, which is derived based on the
global skyline.

Definition 3.2 (Global 1-skyline). Given a D-dimensional data set P
and a query point q, if a point p e P is in the global 1-skyline of q,
there exists only one point o (–p) e P such that (1)
8i 2 ½1;D�; ðp½i� � q½i�Þðo½i� � q½i�Þ > 0; ð2Þ8i 2 ½1;D�; jo½i� � q½i�j 6jp½i��
q½i�j; and ð3Þ9j 2 ½1;D�; jo½j� � q½j�j < jp½j� � q½j�j.

In other words, global 1-skyline query finds all the points that
are globally dominated by exact one point. It is different from the
global skyline in which global skyline does not globally dominated
by other points. Fig. 6(a) shows an example of global skyline and
global 1-skyline. Points d, e, f, h, j, m, n, r and p constitute the glo-
bal skyline since they are not dominated by any other point. Point
i is only globally dominated by point h, whereas the point g is
globally dominated by both point h and point i. Consequently,
based on Definition 3.2, point i, but not point g, is a global 1-sky-
line point. Similarly, we can find the whole global 1-skyline
points, i.e., i, l, s and t. Note that, the global 1-skyline is an exten-
sion of the global skyline, and has some relationships with it: (i)
the global 1-skyline point must be globally dominated by one glo-
bal skyline point, i.e., the non global skyline point cannot globally
dominate it; and (ii) a global skyline point may globally domi-
nates many global 1-skyline points or none. Based on the charac-
teristics of global skyline and global 1-skyline, we offer the
following lemma to support GSRS.

Lemma 3.1. Given a D-dimensional data set P and a query point q, for
a query window corresponding to any point p, if it does not contain
any global skyline point or global 1-skyline point, the query window
must be empty. h

Proof. Assume, on the contrary, that there is at least one point p0 in
the query window. According to Lemma 3.1, p0 is neither a global
skyline point nor a global 1-skyline point, and thus, it is globally
dominated by at least one global skyline point pi or global 1-skyline
point pj (–pi). Based on the formation of the query window and the
dominance relationship defined, pi or pj must be within the query
window, which contradicts the condition of Lemma 3.1. Conse-
quently, our assumption is invalid, and the proof completes. h

As shown in Fig. 6(b), the query windows for points m and e do
not include any global skyline point or global 1-skyline point and
their windows are all empty. On the other hand, the window of h
contains global 1-skyline point i, and that of p contains global sky-
line point r. According to the result of window query, we can easily
determine that points e and m, not points h and p, are the reverse
skyline points. Therefore, based on Lemmas 3.1, we propose the
Heuristic 3.1 below.

Heuristic 3.1. Given a D-dimensional data set P and a query point
q, if p’s query window does not contain any global skyline point or
global 1-skyline of q, p is a real reverse skyline point; otherwise, p
is not a reverse skyline point. h

Heuristic 3.1 suggests that, for no window query, we only need
to check whether any global skyline point or global 1-skyline point
is located inside the query window, rather than to perform

Algorithm 3 global-skyline-based reverse skyline
algorithm (GSRS)

Input: an R-tree R on a data set, a query point q, the
dynamic skyline of the dataset
Output: the result set Sr of an RSQ
/⁄ Sg1: the set of global 1-skyline; Sc: the set of candidate
global skyline points that need to apply Heuristic 3.1 to
further verify. ⁄/

1: initialize sets Sg = Sg1 = Sr = Sc = £ and a min-heap
Hg = £

2: insert all entries of the root into Hg

3: while Hg – £ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by at least 2 points in
Sg [Sg1 then

6: discard e // e is not a global skyline and global 1-
skyline point

7: else
8: if e is an intermediate entry then
9: for each child ei e e do
10: if ei is globally dominated by at most 1 point

in Sg [Sg1 then
11: insert ei into Hg

12: else // e is a data point

10864 212

d

b

j

k

a
i

f
c

g

l

h
q

e

m

n
u

t

sr

p

2

10

8

6

4

o

12

10864 212

d

b

j

k

a
i

f

c

g

l

h
q

e

m

n
u

t

sr
p

2

10

8

6

4

o

12

(a) Global skyline and global 1-skyline (b) Lemma 3.1

Fig. 6. Example of Definition 3.2, and Lemma 3.1.

3242 Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249

13: if e is globally dominated by 1 point in Sg [Sg1

then
14: insert e into Sg1 // for the next round
15: else
16: insert e into Sg // for the next round
17: if q is in DADR(e) then add e to Sr // e is a result

point
18: else if q is in DDR(e) then discard e
19: else insert e into Sc

20: for each candidate ci e Sc do // Huristic 3.1
21: if the window based on ci and q contains any point in

Sg or Sg1 then
22: discard ci

23: else add ci to Sr // ci is a result point
24: return Sr

the window query via traversing the R-tree. GSRS applies Heuris-
tic 3.1 to improve the query performance of RSSA. When getting a
point/node, we can compute the times T it is globally dominated
by the current found global skyline and global 1-skyline. If T = 0, it
is/contains global skyline point. If T = 1, it is/contains global 1-sky-
line point. Otherwise, it is/contains neither global skyline point
nor global 1-skyline point. Therefore, the global 1-skyline can be
computed based on the global skyline and itself, and hence, GSRS
traverses the R-tree only once. The pseudo-code of GSRS is presented
in Algorithm 3, and its basic idea is as follows. First, it computes the
global skyline and the global 1-skyline (lines 4–16 of Algorithm 3).
Second, the global skyline points are refined by the dynamic skylines
that are pre-computed (lines 17–18 of Algorithm 3). For all the
remaining points that need further refinement, GSRS utilizes the en-
tire global skyline and the global 1-skyline to determine the final re-
sult, using Heuristic 3.1 (lines 20–23 of Algorithm 3).

3.3. Analysis

In the sequel, for our proposed RSQ algorithms, namely, FRRS
and GSRS, we analyse their properties and prove their correctness.

Lemma 3.2. The FRRS and GSRS visit (data point and intermediate)
entries of an R-tree in ascending order of their distances to the
specified query point q.

Proof. The proof is straightforward since the algorithm always vis-
its entries according to their mindist (i.e., L1-norm) order preserved
by the heap. h

Lemma 3.3. Every data point will be examined, unless one of its
ancestor nodes has been pruned away.

Proof. The proof is obvious because all entries that are not dis-
carded by existing global skyline points (preserved in the set Sg)
are added to the heap and examined. h

Lemma 3.4. FRRS and GSRS can return exactly the real reverse sky-
line, i.e., every algorithm has no false negative, no false positive, and
the reported result set Sr contains no duplicate points.

Proof. First, no result point is missed (i.e., no false negative) as only
unqualified entries, which are globally dominated by the existing
global skyline point(s) or/and global 1-skyline point(s), are pruned
away. Second, all the entries that can contain or be the actual
reverse skyline point(s) are verified to ensure no false positive.
Third, no duplicate points are guaranteed since each qualified point
is evaluated a single once. Therefore, the proof completes. h

Lemma 3.5. FRRS and GSRS visit the R-tree only once.

Proof. First, FRRS reuses the nodes visited in the computation of
global skyline when executing the window queries, and hence, it
incurs one R-tree traversal. Second, GSRS traverses the R-tree a sin-
gle once to compute the global skyline and the global 1-skyline, and
then employs Heuristic 3.1 to validate the final result. The proof
completes. h

Lemma 3.6. The number of node accesses involved in FRRS and GSRS
is minimized (no redundancy and repeated traverse).

Proof. The proof is obvious since FRRS and GSRS traverse the R-
tree only once according to Lemma 3.5, and only the entries that
are not pruned by existing global skyline points and global 1-sky-
line points are inserted into the heap and examined. h

4. Constrained reverse skyline computation

In this section, we extend our techniques presented above to
handle a natural variant of reverse skyline queries, namely, con-
strained reverse skyline query (CRSQ), which aims to compute the
reverse skyline in a specified region. In what follows, we formalize
the CRSQ, and then propose several algorithms for answering CRSQ
and offer their theoretical analysis.

In some real applications, users might enforce some constraints
(e.g., spatial region, distance, etc.) on reverse skyline queries, and
thus, we introduce the CRSQ, which is formally defined in Defini-
tion 4.1 below.

Definition 4.1 (Constrained reverse skyline). Given a D-dimen-
sional data set P, a query point q, and a constrained region CR, a
constrained reverse skyline query (CRSQ) returns the reverse
skyline inside CR, that is, if a point p e P is a constrained reverse
skyline point of q, there does not exist any other point o (–p) e P,
such that (1) o is within CR; (2) i e [1,D], |o[i] � p[i]| 6 |q[i] � p[i]|;
and (3) $j e [1,D], |o[j] � p[j]| < |q[j] � p[j]|.

As depicted in Fig. 7, points d, e, h, j, m, and r constitute the con-
strained reverse skyline. Notice that, the traditional reverse skyline
does not contain points h and r. Moreover, although point f is a re-
verse skyline point, it is not a constrained reverse skyline point,
since f is not located inside the constrained region. CRSQ has a large
application base. For instance, it can help the real estate agent to
identify the customers whose price preferences are in a given
range.

A naive solution to tackle CRSQ is to index the points in a given
constrained region in a single R-tree, and then, we perform the RSQ
based on the constructed R-tree to get the final result. In practice,

108642 12

d

b

j

k

a
i

f
c

l

hq
e

m

n u
t

sr

p

2

10

8

6

4

o

12

g

Fig. 7. Example of constrained reverse skyline.

Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249 3243

however, the constrained region is not fixed, and thus, the R-tree
that stores all the points located inside the constrained region
has to be re-constructed repeatedly, which is very inefficient. To ad-
dress this, we propose three algorithms, namely, BBS-based con-
strained reverse skyline (BCRS) algorithm, reuse-based constrained
reverse skyline (RCRS) algorithm, and global-skyline-based con-
strained reverse skyline (GCRS) algorithm, for answering the CRSQ.
In particular, BCRS, RCRS, and GCRS are extended from BBRS, FRRS,
and GSRS, respectively, and they will be presented below.

The proposed algorithms for RSQ, i.e., BBRS, FRRS, and GSRS, can
be easily used for dealing with CRSQ by integrating constrained
conditions (i.e., CR) during the execution of the query. Note that,
we do not extend RSSA to tackle CRSQ. This is because the RSSA
algorithm utilizes the precomputed dynamic skyline to prune
away unqualified candidates. If we extend RSSA to handle CRSQ,
we have to the precomputed dynamic skyline within the con-
strained region CR, which is not fixed. Consequently, it is not feasi-
ble to extend RSSA to answer CRSQ. Similarly, when extending
FRRS and GSRS to tackle CRSQ, they cannot employ the dynamic
skyline to prune the candidates. In addition, since the final result
of CRSQ must satisfy a given region constraint, all the entries not
intersecting the constrained region are discarded (i.e., not inserted
into the heap). We do not describe them in detail because our pro-
posed algorithms for answering CRSQ are similar as the reverse
skyline query processing algorithms.

According to Lemma 3.5, we can easily know that BCRS tra-
verses the R-tree multiple times, while both RCRS and GCRS visit
the R-tree only once. Based on Lemma 3.4, BCRS, RCRS, and GCRS
can return exactly actual constrained reverse skyline, i.e., every
algorithm has no false negative, no false positive, and the reported
result set contains no duplicate points.

5. Experimental evaluation

In this section, we experimentally evaluate the effectiveness
and efficiency of our proposed algorithms for reverse skyline and
constrained reverse skyline queries, using both real and synthetic
data sets. Section 5.1 describes the experimental settings. Sec-
tion 5.2 verifies the performance of the presented RSQ processing
algorithms, namely, FRRS and GSRS, by comparing them against
RSSA, which, according to the evaluation in Dellis and Seeger
(2007), is the most efficient existing algorithm for computing the
reverse skyline. Section 5.3 reports the experimental results on
CRSQ and our findings.

5.1. Experimental setup

We employ two real datasets, namely, CarDB and NBA. Specifi-
cally, CarDB is a 6D dataset, containing 45,311 tuples, which is ex-

tracted from Yahoo! Autos. In our experiments, we only select two
numerical attributes (i.e., Price and Mileage) of every car. NBA in-
cludes 15,272 records about 3542 players on 17 attributes, which
is available at the website www.databasebasketball.com each re-
cord provides the statistics of a player in a season. Four attributes,
including number of games played (GP), total points (PTS), total re-
bounds (REB), and total assists (AST), are considered in the experi-
ments. We also create three synthetic datasets, i.e., Independent
(Ind), Clustered (Clu), and Anti-correlated (Aco), with the dimension-
ality dim in the range [2,5] and the cardinality N in the range
[40K, 200K]. Specifically, for the Ind dataset, all attribute values
are generated independently, using a uniform distribution; the
Clu dataset comprises ten randomly centered clusters, each of them
follows a Gaussian distribution with the equal number of points;
and the Aco dataset denotes an environment, where points good
in one dimension are bad in one or all of the other dimension(s).
Fig. 8 illustrates the three datasets of different distributions with
100,000 points in 2D space. Note that, for all datasets, every dimen-
sion of the data space is normalized to the range [0,10,000]. Each
dataset is indexed by an R-tree (Beckmann et al., 1990), with a
page size of 4096 bytes. All the algorithms were implemented in
C++, and all the experiments were conducted on a PC with an Intel
Core 4 Duo 2.8 GHz PC with 4 GB RAM, running Microsoft Win-
dows XP Professional Edition.

The experiments investigate the performance of the proposed
algorithms under a variety of parameters, containing the number
t of dynamic skyline points, the constrained region CR, dimension-
ality dim, and cardinality N. It is worth noting that, in each exper-
iment, only one factor varies, whereas the others are fixed to their
default values. The settings of the parameters and their default val-
ues are listed in Table 2. The wall clock time (i.e., the sum of I/O cost
and CPU time, where the I/O cost is computed by charging 10 ms
for each page access, as with (Lian & Chen, 2010), the number of
node/page accesses (NA), the maximum number of entries in the re-
use heap (MH), the cardinality of global skyline and global 1-sky-
line (CG), and the cardinality of constrained global skyline and
constrained global 1-skyline (CCG) are used as the major perfor-
mance metrics. Each reported value in the following diagrams is
the average of 100 queries, whose locations follow the correspond-
ing dataset distribution.

5.2. Results on RSQ

The first set of the experiments verifies the performance of our
proposed two new algorithms for reverse skyline queries. First, we
study the effect of t on FRRS and GSRS, compared with RSSA, using
both real and synthetic datasets. Notice that, the setting of t for
CarDB is different from other settings. This is because, the number
of dynamic skyline points in CarDB is small, and hence, the corre-

(a) Ind (b) Clu (c) Aco

Fig. 8. Synthetic dataset distribution.

3244 Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249

http://www.databasebasketball.com

sponding t is set to 0, 5, 10, 15, and 20. The wall clock time (in sec-
onds) of the three algorithms as a function of t, for real and syn-
thetic datasets, is shown in Fig. 9. Here, the wall clock time is
broken into two components, corresponding to the I/O and CPU
costs, respectively. Furthermore, on the top of each bar, we list
the abbreviations of the algorithms (R for RSSA, F for FRRS, and G
for GSRS), and NA for every algorithm at the bottom of the bar. It
is observed that, as t grows, the wall clock time and NA both de-
crease. The reason is that, the number of dynamic skyline points
increases with the growth of t, which helps to prune away more
unqualified points, and boost the performance accordingly. In addi-
tion, it is clear that all the algorithms are I/O bounded. Compared
with RSSA and GSRS, the CPU time under FRRS actually occupies
a larger portion of the wall clock time because, FRRS spend more
time on the heap management for the reuse. On the other hand,
we can observe that, the NA under FRRS and GSRS almost remains
unchanged. This is because the NA of RSSA is mainly caused by the
window queries, which visit the R-tree multiple times. As both FRRS
and GSRS only need to traverse the R-tree only once, their NA is the
best. Note that, the NA of FRRS is slightly less than that of GSRS. The
NA of FRRS and GSRS consists of two parts. The first part is the com-
putation of global skyline, which is the same. For the second part,
the NA of FRRS comes from the window query, and GSRS comes
from the computation of global 1-skyline, which is more costly than
the former. Therefore, the NA of FRRS is slightly less than that of
GSRS. However, since the FRRS has to take more CPU time in main-
taining the reuse heap, the total time of FRRS is more than that of
GSRS. Overall, both FRRS and GSRS outperform RSSA significantly,

except their advantages under the CarDB dataset is not so obvious,
due to the distribution of CarDB.

Table 3 shows the maximum number of entries in the reuse
heap (MH: the sum of Hg and Hw) of FRRS and the cardinality of glo-
bal skyline and global 1-skyline (CG) of GSRS with respect to t. The
MH decreases with the growth of t because the increasing dynamic
skyline points helps to prune away more unqualified points and
thus the nodes visited decrease. However, the CG does not change
with the variation of t. This is because the global skyline and global
1-skyline are determined only by the given dataset and query
point. Hence, t does not influence it. We can find that MH, which
causes the major run-time memory consumption, is larger than
CG. It can also illustrate the phenomenon in Fig. 9, confirming that
FRRS take more CPU time than GSRS.

Next, we explore the impact of dimensionality dim on the per-
formance of the algorithms, using synthetic data sets. Towards this,
we vary dim from 2 to 5, and fix N = 100 K and t = 50. The efficiency
of different algorithms under various dim is depicted in Fig. 10.
Note that, the wall clock time is illustrated in logarithmic form.
As expected, the performance of all the algorithms degrades with
the growth of dim. This is because, in a low-dimensional space,
each point has a high probability of being dominated by others.
Nevertheless, as dim increases, more and more points are not
dominated by any other point, incurring more I/O and CPU costs.

Table 2
Parameter ranges and default values.

Parameter Range Default

t (The number t of dynamic skyline points) 0, 10, 30, 50, 70 50
CR (% of the space) 2, 4, 8, 16, 32, 64 32
dim (Dimensionality) 2, 3, 4, 5 3
N (cardinality) 40K, 80K, 120K, 160K, 200K 100 K

Table 3
The MH of FRRS and CG of GSRS vs. t.

t MH CG

Ind Clu Aco Ind Clu Aco

0 25,764 13,618 27,630 646 366 459
10 17,097 7004 16,822 646 366 459
30 16,405 6608 15,947 646 366 459
50 16,229 6501 15,313 646 366 459
70 16,160 6435 15,149 646 366 459

0

1

2

3

4

5

0 5 10 15 20
t

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA 40
8 89 90 22
7 88 90 17
7 88 90 17
2 88 90 17
2 88 90

R

R
R R R

F F F F FG G G G G

I/O CPU

0

1.5

3

4.5

6

7.5

0 10 30 50 70
t

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA 64
8

12
2

12
5

49
4

11
4

12
5

49
0

11
5

12
5

49
7

11
5

12
5

49
4

11
5

12
5

R

R R R R

FFF FF G G G G G

I/O CPU

(a) CarDB (dim = 2, N = 45,311) (b) NBA (dim = 4, N = 15,272)

0

15

30

45

60

75

0 10 30 50 70
t

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O CPU

63
05 92
5

93
4

56
23 92
4

93
4

54
23 92
4

93
4

54
13 92
4

93
4

53
01 92
4

93
4

R
R R R R

F F F F FG G G G G
0

10

20

30

40

0 10 30 50 70
t

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O CPU

35
13 46
1

46
5

29
46 46
0

46
5

28
56 46
0

46
5

27
57 46
0

46
5

27
30 46
0

46
5

R
R R R R

F F F F FG G G G G
0

15

30

45

60

0 10 30 50 70
t

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

I/O CPU

NA

53
32 81
9

82
5

46
94 81
9

82
5

45
11 81
9

82
5

43
19 81
9

82
5

43
19 81
9

82
5

R
R R R R

F F F F FG G G G G

(c) Ind (dim = 3, N = 100K) (d) Clu (dim = 3, N = 100K) (e) Aco (dim = 3, N = 100K)

Fig. 9. RSQ cost vs. the number t of dynamic skyline points.

Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249 3245

Moreover, the poor performance of the R-tree in high dimensions
(Papadopoulos & Manolopoulos, 1997) leads to this degradation.
However, FRRS and GSRS still exceed RSSA.

Table 4 lists the MH of FRRS and CG of GSRS with respect to dim.
With the growth of dim, both MH and CG increase. This is because
in high dimensionality, the point is more likely to be dominated,
and therefore, the global skyline and global 1-skyline become lar-
ger. On the other hand, reverse skyline also will increase in high
dimensionality, which result in larger MH. Again, the size of CG is
smaller than that of MH.

Finally, we evaluate the effect of cardinality N on the efficiency
of the algorithms, with t = 50, dim = 3, and N varying between 40K
and 200K. The experimental results are plotted in Fig. 11. Evi-
dently, the cost of algorithms grows as N ascends. The reason is
that, the size of the R-tree increases with N, which forces the algo-
rithms to access more entries when computing the reverse skyline.
Again, GSRS performs the best and RSSA is the worst.

Table 5 presents the MH of FRRS and CG of GSRS with respect to
N. As expected, the size of MH and CG grow when N increases. The
reason behind is that, the bigger dataset has a bigger global skyline,
global 1-skyline, and reverse skyline, which lead to the bigger MH
and CG. Also, MH is larger than CG. As shown in Table 5, the max-
imal heap contents, which are stored in main memory, increase
when N grows. According to the tendency, if N ascends continually,
the main memory may not keep all the heap contents, which will
limit the performance of FRRS.

In summary, GSRS performs the best among all the algorithms,
and it is usually 2–3 times faster than RSSA in most cases. FRRS is
worse than GSRS. Anyway, all our proposed algorithms outperform
RSSA significantly in all cases. As for FRRS, it is more suitable for
the small cardinality and low dimensionality.

5.3. Results on CRSQ

In the second set of the experiments, we examine the effective-
ness and efficiency of our proposed BCRS, RCRS, and GCRS algo-
rithms for supporting constrained reverse skyline queries. When
the given constrained region CR changes, the dynamic skyline
w.r.t. CR varies as well. Consequently, our developed algorithms
do not rely on the dynamic skyline for pruning, and thus the
parameter t is not considered in this set of the experiments. For
all the diagrams shown below, the letters on the top of the bars
are the abbreviations of the algorithms, i.e., BC for BCRS, RC for
RCRS, and GC for GCRS.

First, we inspect the influence of CR on the performance of the
algorithms, using real and synthetic datasets. The wall clock time
and NA of the algorithms with respect to CR under different data-
sets are depicted in Fig. 12. Notice that, CR for synthetic datasets
varies from 2% to 64% (of the data space), whereas that under real
datasets changes from 60% to 100% because, the distribution of the
real datasets differs from that of the synthetic datasets. It is

0

30

60

90

40K 80K 120K 160K 200K
N

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

33
64 50

0
50

8

47
18 78

7
79

6
63

46

10
73

10
84

71
19

12
94

13
04

76
64

14
77

14
89

R
R

R
R R

F F F F F
G G G G G

I/O
CPU

0

10

20

30

40

50

40K 80K 120K 160K 200K
N

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

14
40 22
9

23
2

22
19 37
6

38
1

29
48 51
5

52
0

38
92 66
3

66
9

41
80 76
5

77
1

R

R R

R
R

F F F F F
G G G G G

I/O
CPU

NA

0

15

30

45

60

75

40K 80K 120K 160K 200K
N

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

R

R
R

R R

F F F
G G G G GF

F

I/O
CPU

25
06 42
4

42
9

38
52 69
3

70
0

47
26 90
6

91
6

58
50

11
42

11
55

61
65

12
79

12
92

(a) Ind (t = 50, dim = 3) (b) Clu (t = 50, dim = 3) (c) Aco (t = 50, dim = 3)

Fig. 11. RSQ cost vs. cardinality.

Table 5
The MH of FRRS and CG of GSRS vs. cardinality.

N (K) MH CG

Ind Clu Aco Ind Clu Aco

40 8689 3199 7352 515 280 364
80 13,705 5265 13184 607 336 436
120 18,904 7232 16839 669 378 483
160 22,381 9415 21327 709 406 516
200 25,281 10346 24252 739 430 548

Table 4
The MH of FRRS and CG of GSRS vs. dimensionality.

dim MH CG

Ind Clu Aco Ind Clu Aco

2 1348 979 1107 68 61 66
3 16,229 6501 15,313 646 366 459
4 43,835 14,395 51,877 3008 1116 2134
5 77,898 20,398 88,818 9307 2582 7383

1e+0

1e+1

1e+2

1e+3

1e+4

2 3 4 5
dim

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

23
2

13
5

13
9

54
13 92

4

93
4

39
06

7

26
29

26
69

16
71

08

49
29

50
25NA

R

R

R
R

F

F
F

F

G

G
G G

I/O
CPU

1e–1

1e+0

1e+1

1e+2

1e+3

2 3 4 5
dim

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA 17
5

10
1

11
2

27
57 46
0

46
5

16
45

2

98
8

10
08

70
05

5

14
72

15
13

R

R

R
R

F
F

F F

G
G

G G

I/O
CPU

1e–1

1e+0

1e+1

1e+2

1e+3

1e+4

2 3 4 5
dim

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA 17
5 97 98

43
19 81

9

82
5

35
02

9

24
91

25
21

17
13

41

47
52

48
27

R

R

R
R

F
F

F F

G

G
G G

I/O
CPU

(a) Ind (t = 50, N = 100K) (b) Clu (t = 50, N = 100K) (c) Aco (t = 50, N = 100K)

Fig. 10. RSQ cost vs. dimensionality.

3246 Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249

obvious that, all the algorithms are I/O bounded, and both the wall
clock time and NA grow with CR. The reason is that, as the con-
strained region expands, it contains more points, and hence, more
points need to be checked, which results in higher I/O and CPU
overheads. Moreover, RCRS and GCRS are significantly faster than
BCRS. This is because, both RCRS and GCRS traverse the R-tree only
once, while BCRS traverses it repeatedly.

Table 6 lists the maximum number of entries in the heap (MH)
of RCRS and the cardinality of constrained global skyline and
constrained global 1-skyline (CCG) of GCRS with respect to CR.

With the expanding of CR, MH and CCG also increase. This is be-
cause when the constrained region becomes larger, more point will
fall in it. Therefore, more points may become the constrained glo-
bal skyline, constrained global 1-skyline, and constrained reverse
skyline, and the nodes visited ascend as well.

Then, we evaluate the effect of dimensionality dim on the effi-
ciency of the algorithms. Fig. 13 shows the performance of the
algorithms in terms of the wall clock time (by the logarithmic
form) and NA. As expected, the larger the dim, the higher the cost.
This tendency can be explained by the following two factors. First,
the points in high dimensions are more likely to be not dominated
by others. Second, the R-tree is inefficient in high dimensions. Even

Table 6
The MH of RCRS and CCG of GCRS vs. CR.

CR MH CCG

Ind Clu Aco Ind Clu Aco

2 1212 843 971 95 47 70
4 2000 1274 2115 124 75 104
8 3318 2732 2955 169 132 159
16 5630 4302 5077 241 192 196
32 9613 6377 9614 348 250 293
64 16,656 9873 17280 495 318 379

Table 7
The MH of RCRS and CCG of GCRS vs. dimensionality.

dim MH CCG

Ind Clu Aco Ind Clu Aco

2 2228 1994 2051 95 45 53
3 9613 6377 9614 348 250 293
4 21,028 9794 12,633 1438 673 1223
5 23,272 15,448 11,695 4014 1611 3874

0

0.9

1.8

2.7

3.6

4.5

31
8 75 75 35
8 81 81 37
7 84 84 39
6 85 85 40
8 86 86

60 70 80 90 100
CR

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O CPU

BC
BC BC BC BC

RC RC RC RC RCGC GC GC GC GC

0

3

6

9

42 12 12 13
4 21 22 29
3 49 50 58
0 87 89 82
7

12
2

12
5

60 70 80 90 100
CR

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O CPU

BC
BC

BC

BC

BC

RC RC RC RC RC
GC GC GC GC GC

(a) CarDB (dim = 2, N = 45,311) (b) NBA (dim = 4, N = 15,272)

0

15

30

45

60

49
6

10
2

10
2

73
6

15
3

15
3

11
37

23
0

23
1

18
64 34
4

34
6

29
89 52
5

52
9

47
84 79
0

79
7

2 4 8 16 32 64
CR

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O CPU

BC BC
BC

BC

BC

BC

RC RC RC RC RC RC
GCGCGCGCGCGC

0

7

14

21

28

35

23
4 58 59 35
8 86 88 83
5

14
8

14
8

12
19 21
0

21
2

19
77 29
9

30
3

30
69 41
4

41
8

2 4 8 16 32 64
CR

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O CPU

BC BC
BC

BC

BC

BC

RC RC RC RC RC RC
GCGCGCGCGCGC

0

10

20

30

40

50

47
1

11
3

11
3

81
0

18
6

18
6

14
20 28
2

28
2

19
88 41
3

41
5

30
53 55
4

55
7

44
51 73
4

73
8

2 4 8 16 32 64
CR

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O CPU

BC
BC

BC
BC

BC

BC

RC RC RC RC RC RC
GC

GCGCGCGC
GC

(c) Ind (dim = 3, N = 100K) (d) Clu (dim = 3, N = 100K) (e) Aco (dim = 3, N = 100K)

Fig. 12. CRSQ cost vs. constrained region.

1e–1

1e+0

1e+1

1e+2

1e+3

24
5 83 83

29
89 52
5

52
0

17
12

17
32

79
19

0

38
88

39
50

2 3 4 5
dim

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

19
57

5

I/O
CPU

BC

BC

BC

BC

RC

RC
RC

RC

GC
GC

GC

GC

NA

1e–1

1e+0

1e+1

1e+2

1e+3

25
4 72 72

19
77 29
9

30
3

84
12 60
2

61
3

37
96

2

11
17

11
65

2 3 4 5
dim

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O
CPU BC

BC

BC

BC
RC

RC
RC

RC

GC

GC
GC

GC

1e–1

1e+0

1e+1

1e+2

1e+3

25
3 77 77

30
53 55
4

55
7

21
05

5

17
37

17
54

97
17

4

37
49

38
01

2 3 4 5
dim

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O
CPU

BC

BC

BC

BC

RC

RC
RC

RC

GC

GC
GC

GC

(a) Ind (CR=32%, N=100K) (b) Clu (CR=32%, N=100K) (c) Aco (CR=32%, N=100K)

Fig. 13. CRSQ cost vs. dimensionality.

Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249 3247

though these, RCRS and GCRS are still over BCRS. Table 7 displays
MH of RCRS and CCG of GCRS with respect to dim. Again, both
MH and CCG increase. The explanations are the same as those in Ta-
ble 4, and thus omitted.

Finally, we investigate the effect of cardinality N on the perfor-
mance of the algorithms, and report the experimental results in
Fig. 14. Observe that, the cost of algorithms grows as N increases.
The reason is that, more points falling into the specified con-
strained region as N ascends, which results in more points to be
examined and hence longer wall clock time and higher NA. Table 8
shows MH of RCRS and CCG of GCRS with respect to N. The phe-
nomena and their explanations are the same as those in Table 5,
and hence omitted.

To sum up, GCRS performs the best, follows by RCRS, and BCRS
is the worst. Moreover, both GCRS and PCRS are several orders of
magnitude faster than BCRS.

6. Conclusions

In this paper, we propose several efficient algorithms to answer
the reverse skyline query (RSQ), by using the precomputation, reuse,
and pruning techniques. In addition, we study a new form of RSQ,
namely, constrained RSQ (CRSQ), and extend our methods to tackle
it efficiently. Extensive experiments with both real and synthetic
datasets demonstrate that our proposed RSQ algorithms achieves
several orders of magnitude performance gain over the
state-of-the-art RSSA algorithm under all experimental settings,
and our presented CRSQ algorithms can efficiently compute the
constrained reverse skyline. In the future, we intend to further
extend our approaches to handle other variants of RSQ, such as
ranked reverse skyline and group-by reverse skyline queries. Also,
we plan to explore RSQ and its variations in metric spaces. In addi-
tion, we are interested in further improving the performance of re-
verse skyline using cash.

Acknowledgments

Yunjun Gao was supported in part by NSFC Grants 61379033
and 61003049, the Fundamental Research Funds for the Central

Universities under Grants 2012QNA5018 and 2013QNA5020, and
the Key Project of Zhejiang University Excellent Young Teacher
Fund (Zijin Plan).

References

Bartolini, I., Ciaccia, P., & Patella, M. (2008). Efficient sort-based skyline evaluation.
ACM Transactions on Database Systems, 33(4), 1–45.

Beckmann, N., Kriegel, H. P., Schneider, R., & Seeger, B. (1990). The R⁄-tree: An
efficient and robust access method for points and rectangles. In Proceedings of
the ACM SIGMOD international conference on management of data (pp. 322–331).

Borzsony, S., Kossmann, D., & Stocker, K. (2001). The skyline operator. In Proceedings
of the international conference on data engineering (pp. 421–430).

Chen, L., Cui, B., & Lu, H. (2011). Constrained skyline query processing against
distributed data sites. IEEE Transactions on Knowledge and Data Engineering,
23(2), 204–217.

Chen, L., & Lian, X. (2009). Efficient processing of metric skyline queries. IEEE
Transactions on Knowledge and Data Engineering, 21(3), 351–365.

Chomicki, J., Godfrey, P., Gryz, J., & Liang, D. (2003). Skyline with presorting. In
Proceedings of the international conference on data engineering (pp. 717–719).

Dellis, E., & Seeger, B. (2007). Efficient computation of reverse skyline queries. In
Proceedings of the international conference on very large data base (pp. 291–302).

Dellis, E., Vlachou, A., Vladimirskiy, I., Seeger, B., & Theodoridis, Y. (2006).
Constrained subspace skyline computation. In Proceedings of the ACM
international conference on information and knowledge management (pp. 415–
424).

Fuhry, D., Jin, R., & Zhang, D. (2009). Efficient skyline computation in metric space.
In Proceedings of the international conference on extending database technology
(pp. 1042–1051).

Gao, Y., Chen, G., Chen, L., & Chen, C. (2006). Parallelizing progressive computation
for skyline queries in multi-disk environment. In Proceedings of the international
conference on database and expert systems applications (pp. 697–706).

Godfrey, P., Shipley, R., & Gryz, J. (2005). Maximal vector computation in large data
sets. In Proceedings of the international conference on very large data base (pp.
229–240).

Hose, K., & Vlachou, A. (2012). A survey of skyline processing in highly distributed
environments. VLDB Journal, 21(3), 359–384.

Huang, Z., Xiang, Y., Zhang, B., & Liu, X. (2011). A clustering based approach for
skyline diversity. Expert Systems with Applications, 38, 7984–7993.

Islam, M., Zhou, R., & Liu, C. (2013). On answering why-not questions in reverse
skyline queries. In Proceedings of the international conference on data engineering
(pp. 973–984).

Kohler, H., Yang, J., & Zhou, X. (2011). Efficient parallel skyline processing using
hyperplane projections. In Proceedings of the ACM SIGMOD international
conference on management of data (pp. 85–96).

Kossmann, D., Ramsak, F., & Rost, S. (2002). Shooting stars in the sky: An online
algorithm for skyline queries. In Proceedings of the international conference on
very large data base (pp. 275–286).

Lee, K. C. K., Zheng, B., Li, H., & Lee, W.-C. (2007). Approaching the skyline in z order.
In Proceedings of the international conference on very large data base (pp. 279–
290).

Lian, X., & Chen, L. (2010). Reverse skyline search in uncertain databases. ACM
Transactions on Database Systems, 35(1), 3.

Lin, X., Yuan, Y., Zhang, Q., & Zhang, Y. (2007). Selecting stars: The k most
representative skyline operator. In Proceedings of the international conference on
data engineering (pp. 86–95).

Lin, X., Zhang, Y., Zhang, W., & Cheema, M. A. (2011). Stochastic skyline operator. In
Proceedings of the international conference on data engineering (pp. 721–732).

Liu, Q., Gao, Y., Chen, G., Li, Q., & Jiang, T. (2012). On efficient reverse k-skyband
query processing. In Proceedings of the international conference on database
systems for advanced applications (pp. 544–559).

Papadias, D., Tao, Y., Fu, G., & Seeger, B. (2005). Progressive skyline computation in
database systems. ACM Transactions on Database Systems, 30(1), 41–82.

0

9

18

27

36

45

20
05 29

9

30
2

26
72 45

3
45

6

35
05 61

2

61
6

38
61 72

4

72
7

40
51 80

4

80
8

40K 80K 120K 160K 200K
cardinality

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O
CPU

BC

BC

BC
BC BC

RC RC RC RC RC
GC GC GC GC GC

0

7

14

21

28

35

11
69 16

1
16

3

16
30 25

0

25
3

20
91 33

8
34

0

27
29 44

2
44

3

29
09 48

4

48
7

40K 80K 120K 160K 200K
cardinality

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O
CPU

BC
BC

BC

BC BC

RC RC RC RC RC
GC GC GC GC GC

0

9

18

27

36

45

19
14 29
6

29
8

28
09 47
4

47
7

33
82 61
6

61
8

40
03 76
3

76
8

42
29 84
5

84
8

40K 80K 120K 160K 200K
cardinality

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

NA

I/O
CPU

BC

BC
BC

BC BC

RC RC RC RC RC
GC GC GC GC GC

(a) Ind (CR=32%, dim=3) (b) Clu (CR=32%, dim=3) (c) Aco (CR=32%, dim=3)

Fig. 14. CRSQ cost vs. cardinality.

Table 8
The MH of RCRS and CCG of GCRS vs. cardinality.

N (K) MH CCG

Ind Clu Aco Ind Clu Aco

40 5332 3299 4498 276 195 235
80 8296 5304 8183 325 230 269
120 11,311 7232 10,507 365 255 296
160 13,471 9476 12,802 388 275 319
200 15,363 10,422 14,912 401 288 338

3248 Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249

http://refhub.elsevier.com/S0957-4174(13)00923-8/h0005
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0005
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0020
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0020
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0020
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0025
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0025
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0060
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0060
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0065
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0065
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0090
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0090
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0110
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0110

Papadopoulos, A., & Manolopoulos, Y. (1997). Performance of nearest neighbor
queries in R-trees. In Proceedings of the international conference on database
theory (pp. 394–408).

Pei, J., Jiang, B., Lin, X., & Yuan, Y. (2007). Probabilistic skylines on uncertain data. In
Proceedings of the international conference on very large data base (pp. 15–26).

Pei, J., Yuan, Y., Lin, X., Jin, W., Ester, M., & Liu, Q. (2006). Towards multidimensional
subspace skyline analysis. ACM Transactions on Database Systems, 31(4),
1335–1381.

Prasad, M. D., & Deepak, P. (2011). Efficient reverse skyline retrieval with arbitrary
non-metric similarity measures. In Proceedings of the international conference on
extending database technology (pp. 319–330).

Sacharidis, D., Bouros, P., & Sellis, T. (2008). Caching dynamic skyline queries. In
Proceedings of the international conference on scientific and statistical database
management (pp. 455–472).

Tan, K.-L., Eng, P.-K., & Ooi, B. C. (2001). Efficient progressive skyline computation. In
Proceedings of the international conference on very large data base (pp. 301–310).

Tao, Y., Ding, L., Lin, X., & Pei, J. (2009). Distance-based representative skyline.
In Proceedings of the international conference on data engineering
(pp. 892–903).

Tao, Y., Xiao, X., & Pei, J. (2011). Efficient skyline and top-k retrieval in subspaces.
IEEE Transactions on Knowledge and Data Engineering, 23(2), 204–217.

Vlachou, A., Doulkeridis, C., & Kotidis, Y. (2008). Angle-based space partitioning for
efficient parallel skyline computation. In Proceedings of the ACM SIGMOD
international conference on management of data (pp. 227–238).

Wang, G., Xin, J., Chen, L., & Liu, Y. (2012). Energy-efficient reverse skyline queries
processing over wireless sensor networks. IEEE Transactions on Knowledge and
Data Engineering, 24(7), 1259–1275.

Wu, P., Zhang, C., Feng, Y., Zhao, B. Y., Agrawal, D., & Abbadi, A. E. (2006).
Parallelizing progressive skyline queries for scalable distribution. In Proceedings
of the international conference on extending database technology (pp. 112–130).

Wu, X., Tao, Y., Wong, R. C.-W., Ding, L., & Yu, J. X. (2009). Finding the influence set
through skylines. In Proceedings of the international conference on extending
database technology (pp. 1030–1041).

Zhang, W., Lin, X., Zhang, Y., Wang, W., & Yu, J. X. (2009). Probabilistic skyline
operator over sliding windows. In Proceedings of the international conference on
data engineering (pp. 1060–1071).

Zhang, S., Mamoulis, N., & Cheung, D. W. (2009). Scalable skyline computation using
object-based space partitioning. In Proceedings of the ACM SIGMOD international
conference on management of data (pp. 483–494).

Zhu, L., Li, C., & Chen, H. (2009). Efficient computation of reverse skyline on data
stream. In International joint conference on computational sciences and
optimization (pp. 735–739).

Y. Gao et al. / Expert Systems with Applications 41 (2014) 3237–3249 3249

http://refhub.elsevier.com/S0957-4174(13)00923-8/h0125
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0125
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0125
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0150
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0150
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0160
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0160
http://refhub.elsevier.com/S0957-4174(13)00923-8/h0160

	On Efficient Reverse Skyline Query Processing
	Citation

	On efficient reverse skyline query processing
	1 Introduction
	2 Related work
	2.1 Skyline queries
	2.2 Reverse skyline queries

	3 Reverse skyline computation
	3.1 Problem formulation
	3.2 Reverse skyline query processing
	3.2.1 The FRRS algorithm
	3.2.2 The GSRS algorithm

	3.3 Analysis

	4 Constrained reverse skyline computation
	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Results on RSQ
	5.3 Results on CRSQ

	6 Conclusions
	Acknowledgments
	References

