679 research outputs found

    From Personalized Medicine to Population Health: A Survey of mHealth Sensing Techniques

    Full text link
    Mobile Sensing Apps have been widely used as a practical approach to collect behavioral and health-related information from individuals and provide timely intervention to promote health and well-beings, such as mental health and chronic cares. As the objectives of mobile sensing could be either \emph{(a) personalized medicine for individuals} or \emph{(b) public health for populations}, in this work we review the design of these mobile sensing apps, and propose to categorize the design of these apps/systems in two paradigms -- \emph{(i) Personal Sensing} and \emph{(ii) Crowd Sensing} paradigms. While both sensing paradigms might incorporate with common ubiquitous sensing technologies, such as wearable sensors, mobility monitoring, mobile data offloading, and/or cloud-based data analytics to collect and process sensing data from individuals, we present a novel taxonomy system with two major components that can specify and classify apps/systems from aspects of the life-cycle of mHealth Sensing: \emph{(1) Sensing Task Creation \& Participation}, \emph{(2) Health Surveillance \& Data Collection}, and \emph{(3) Data Analysis \& Knowledge Discovery}. With respect to different goals of the two paradigms, this work systematically reviews this field, and summarizes the design of typical apps/systems in the view of the configurations and interactions between these two components. In addition to summarization, the proposed taxonomy system also helps figure out the potential directions of mobile sensing for health from both personalized medicines and population health perspectives.Comment: Submitted to a journal for revie

    Security for networked smart healthcare systems: A systematic review

    Get PDF
    Background and Objectives Smart healthcare systems use technologies such as wearable devices, Internet of Medical Things and mobile internet technologies to dynamically access health information, connect patients to health professionals and health institutions, and to actively manage and respond intelligently to the medical ecosystem's needs. However, smart healthcare systems are affected by many challenges in their implementation and maintenance. Key among these are ensuring the security and privacy of patient health information. To address this challenge, several mitigation measures have been proposed and some have been implemented. Techniques that have been used include data encryption and biometric access. In addition, blockchain is an emerging security technology that is expected to address the security issues due to its distributed and decentralized architecture which is similar to that of smart healthcare systems. This study reviewed articles that identified security requirements and risks, proposed potential solutions, and explained the effectiveness of these solutions in addressing security problems in smart healthcare systems. Methods This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines and was framed using the Problem, Intervention, Comparator, and Outcome (PICO) approach to investigate and analyse the concepts of interest. However, the comparator is not applicable because this review focuses on the security measures available and in this case no comparable solutions were considered since the concept of smart healthcare systems is an emerging one and there are therefore, no existing security solutions that have been used before. The search strategy involved the identification of studies from several databases including the Cumulative Index of Nursing and Allied Health Literature (CINAL), Scopus, PubMed, Web of Science, Medline, Excerpta Medical database (EMBASE), Ebscohost and the Cochrane Library for articles that focused on the security for smart healthcare systems. The selection process involved removing duplicate studies, and excluding studies after reading the titles, abstracts, and full texts. Studies whose records could not be retrieved using a predefined selection criterion for inclusion and exclusion were excluded. The remaining articles were then screened for eligibility. A data extraction form was used to capture details of the screened studies after reading the full text. Of the searched databases, only three yielded results when the search strategy was applied, i.e., Scopus, Web of science and Medline, giving a total of 1742 articles. 436 duplicate studies were removed. Of the remaining articles, 801 were excluded after reading the title, after which 342 after were excluded after reading the abstract, leaving 163, of which 4 studies could not be retrieved. 159 articles were therefore screened for eligibility after reading the full text. Of these, 14 studies were included for detailed review using the formulated research questions and the PICO framework. Each of the 14 included articles presented a description of a smart healthcare system and identified the security requirements, risks and solutions to mitigate the risks. Each article also summarized the effectiveness of the proposed security solution. Results The key security requirements reported were data confidentiality, integrity and availability of data within the system, with authorisation and authentication used to support these key security requirements. The identified security risks include loss of data confidentiality due to eavesdropping in wireless communication mediums, authentication vulnerabilities in user devices and storage servers, data fabrication and message modification attacks during transmission as well as while the data is at rest in databases and other storage devices. The proposed mitigation measures included the use of biometric accessing devices; data encryption for protecting the confidentiality and integrity of data; blockchain technology to address confidentiality, integrity, and availability of data; network slicing techniques to provide isolation of patient health data in 5G mobile systems; and multi-factor authentication when accessing IoT devices, servers, and other components of the smart healthcare systems. The effectiveness of the proposed solutions was demonstrated through their ability to provide a high level of data security in smart healthcare systems. For example, proposed encryption algorithms demonstrated better energy efficiency, and improved operational speed; reduced computational overhead, better scalability, efficiency in data processing, and better ease of deployment. Conclusion This systematic review has shown that the use of blockchain technology, biometrics (fingerprints), data encryption techniques, multifactor authentication and network slicing in the case of 5G smart healthcare systems has the potential to alleviate possible security risks in smart healthcare systems. The benefits of these solutions include a high level of security and privacy for Electronic Health Records (EHRs) systems; improved speed of data transaction without the need for a decentralized third party, enabled by the use of blockchain. However, the proposed solutions do not address data protection in cases where an intruder has already accessed the system. This may be potential avenues for further research and inquiry

    An energy-efficient and secure data inference framework for internet of health things: A pilot study

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Privacy protection in electronic healthcare applications is an important consideration, due to the sensitive nature of personal health data. Internet of Health Things (IoHT) networks that are used within a healthcare setting have unique challenges and security requirements (integrity, authentication, privacy, and availability) that must also be balanced with the need to maintain efficiency in order to conserve battery power, which can be a significant limitation in IoHT devices and networks. Data are usually transferred without undergoing filtering or optimization, and this traffic can overload sensors and cause rapid battery consumption when interacting with IoHT networks. This poses certain restrictions on the practical implementation of these devices. In order to address these issues, this paper proposes a privacy-preserving two-tier data inference framework solution that conserves battery consumption by inferring the sensed data and reducing data size for transmission, while also protecting sensitive data from leakage to adversaries. The results from experimental evaluations on efficiency and privacy show the validity of the proposed scheme, as well as significant data savings without compromising data transmission accuracy, which contributes to energy efficiency of IoHT sensor devices

    Double Secret Protection: Bridging Federal and State Law To Protect Privacy Rights for Telemental and Mobile Health Users

    Get PDF
    Mental health care in the United States is plagued by stigma, cost, and access issues that prevent many people from seeking and continuing treatment for mental health conditions. Emergent technology, however, may offer a solution. Through telemental health, patients can connect with providers remotely—avoiding stigmatizing situations that can arise from traditional healthcare delivery, receiving more affordable care, and reaching providers across geographic boundaries. And with mobile health technology, people can use smart phone applications both to self-monitor their mental health and to communicate with their doctors. But people do not want to take advantage of telemental and mobile health unless their privacy is protected. After evaluating the applicability of current health information privacy law to these new forms of treatment, this Note proposes changes to the federal regime to protect privacy rights for telemental and mobile health users

    Double Secret Protection: Bridging Federal and State Law To Protect Privacy Rights for Telemental and Mobile Health Users

    Get PDF
    Mental health care in the United States is plagued by stigma, cost, and access issues that prevent many people from seeking and continuing treatment for mental health conditions. Emergent technology, however, may offer a solution. Through telemental health, patients can connect with providers remotely—avoiding stigmatizing situations that can arise from traditional healthcare delivery, receiving more affordable care, and reaching providers across geographic boundaries. And with mobile health technology, people can use smart phone applications both to self-monitor their mental health and to communicate with their doctors. But people do not want to take advantage of telemental and mobile health unless their privacy is protected. After evaluating the applicability of current health information privacy law to these new forms of treatment, this Note proposes changes to the federal regime to protect privacy rights for telemental and mobile health users

    Using Granule to Search Privacy Preserving Voice in Home IoT Systems

    Get PDF
    The Home IoT Voice System (HIVS) such as Amazon Alexa or Apple Siri can provide voice-based interfaces for people to conduct the search tasks using their voice. However, how to protect privacy is a big challenge. This paper proposes a novel personalized search scheme of encrypting voice with privacy-preserving by the granule computing technique. Firstly, Mel-Frequency Cepstrum Coefficients (MFCC) are used to extract voice features. These features are obfuscated by obfuscation function to protect them from being disclosed the server. Secondly, a series of definitions are presented, including fuzzy granule, fuzzy granule vector, ciphertext granule, operators and metrics. Thirdly, the AES method is used to encrypt voices. A scheme of searchable encrypted voice is designed by creating the fuzzy granule of obfuscation features of voices and the ciphertext granule of the voice. The experiments are conducted on corpus including English, Chinese and Arabic. The results show the feasibility and good performance of the proposed scheme

    cii Student Papers - 2021

    Get PDF
    In this collection of papers, we, the Research Group Critical Information Infrastructures (cii) from the Karlsruhe Institute of Technology, present nine selected student research articles contributing to the design, development, and evaluation of critical information infrastructures. During our courses, students mostly work in groups and deal with problems and issues related to sociotechnical challenges in the realm of (critical) information systems. Student papers came from four different cii courses, namely Emerging Trends in Digital Health, Emerging Trends in Internet Technologies, Critical Information Infrastructures, and Digital Health in the winter term of 2020 and summer term of 2021
    • …
    corecore