382 research outputs found

    Resilience to DDoS attacks

    Get PDF
    Tese de mestrado, Segurança Informática, 2022, Universidade de Lisboa, Faculdade de CiênciasDistributed Denial-of-Service (DDoS) is one of the most common cyberattack used by malicious actors. It has been evolving over the years, using more complex techniques to increase its attack power and surpass the current defense mechanisms. Due to the existent number of different DDoS attacks and their constant evolution, companies need to be constantly aware of developments in DDoS solutions Additionally, the existence of multiple solutions, also makes it hard for companies to decide which solution best suits the company needs and must be implemented. In order to help these companies, our work focuses in analyzing the existing DDoS solutions, for companies to implement solutions that can lead to the prevention, detection, mitigation, and tolerance of DDoS attacks, with the objective of improving the robustness and resilience of the companies against DDoS attacks. In our work, it is presented and described different DDoS solutions, some need to be purchased and other are open-source or freeware, however these last solutions require more technical expertise by cybersecurity agents. To understand how cybersecurity agents protect their companies against DDoS attacks, nowadays, it was built a questionnaire and sent to multiple cybersecurity agents from different countries and industries. As a result of the study performed about the different DDoS solutions and the information gathered from the questionnaire, it was possible to create a DDoS framework to guide companies in the decisionmaking process of which DDoS solutions best suits their resources and needs, in order to ensure that companies can develop their robustness and resilience to fight DDoS attacks. The proposed framework it is divided in three phases, in which the first and second phase is to understand the company context and the asset that need to be protected. The last phase is where we choose the DDoS solution based on the information gathered in the previous phases. We analyzed and presented for each DDoS solutions, which DDoS attack types they can prevent, detect and/or mitigate

    Distributed reflection denial of service attack: A critical review

    Get PDF
    As the world becomes increasingly connected and the number of users grows exponentially and “things” go online, the prospect of cyberspace becoming a significant target for cybercriminals is a reality. Any host or device that is exposed on the internet is a prime target for cyberattacks. A denial-of-service (DoS) attack is accountable for the majority of these cyberattacks. Although various solutions have been proposed by researchers to mitigate this issue, cybercriminals always adapt their attack approach to circumvent countermeasures. One of the modified DoS attacks is known as distributed reflection denial-of-service attack (DRDoS). This type of attack is considered to be a more severe variant of the DoS attack and can be conducted in transmission control protocol (TCP) and user datagram protocol (UDP). However, this attack is not effective in the TCP protocol due to the three-way handshake approach that prevents this type of attack from passing through the network layer to the upper layers in the network stack. On the other hand, UDP is a connectionless protocol, so most of these DRDoS attacks pass through UDP. This study aims to examine and identify the differences between TCP-based and UDP-based DRDoS attacks

    Automating Mitigation of Amplification Attacks in NFV Services

    Get PDF
    The combination of virtualization techniques with capillary computing and storage resources allows the instantiation of Virtual Network Functions throughout the network infrastructure, which brings more agility in the development and operation of network services. Beside forwarding and routing, this can be also used for additional functions, e.g., for security purposes. In this paper, we present a framework to systematically create security analytics for virtualized network services, specifically targeting the detection of cyber-attacks. Our framework largely automates the deployment of security sidecars into existing service templates and their interconnection to an external analytics platform. Notably, it leverages code augmentation techniques to dynamically inject and remove inspection probes without affecting service operation. We describe the implementation of a use case for the detection of DNS amplification attacks in virtualized 5G networks, and provide extensive evaluation of our innovative inspection and detection mechanisms. Our results demonstrate better efficiency with respect to existing network monitoring tools in terms of CPU usage, as well as good accuracy in detecting attacks even with variable traffic patterns

    Towards Protection Against Low-Rate Distributed Denial of Service Attacks in Platform-as-a-Service Cloud Services

    Get PDF
    Nowadays, the variety of technology to perform daily tasks is abundant and different business and people benefit from this diversity. The more technology evolves, more useful it gets and in contrast, they also become target for malicious users. Cloud Computing is one of the technologies that is being adopted by different companies worldwide throughout the years. Its popularity is essentially due to its characteristics and the way it delivers its services. This Cloud expansion also means that malicious users may try to exploit it, as the research studies presented throughout this work revealed. According to these studies, Denial of Service attack is a type of threat that is always trying to take advantage of Cloud Computing Services. Several companies moved or are moving their services to hosted environments provided by Cloud Service Providers and are using several applications based on those services. The literature on the subject, bring to attention that because of this Cloud adoption expansion, the use of applications increased. Therefore, DoS threats are aiming the Application Layer more and additionally, advanced variations are being used such as Low-Rate Distributed Denial of Service attacks. Some researches are being conducted specifically for the detection and mitigation of this kind of threat and the significant problem found within this DDoS variant, is the difficulty to differentiate malicious traffic from legitimate user traffic. The main goal of this attack is to exploit the communication aspect of the HTTP protocol, sending legitimate traffic with small changes to fill the requests of a server slowly, resulting in almost stopping the access of real users to the server resources during the attack. This kind of attack usually has a small time window duration but in order to be more efficient, it is used within infected computers creating a network of attackers, transforming into a Distributed attack. For this work, the idea to battle Low-Rate Distributed Denial of Service attacks, is to integrate different technologies inside an Hybrid Application where the main goal is to identify and separate malicious traffic from legitimate traffic. First, a study is done to observe the behavior of each type of Low-Rate attack in order to gather specific information related to their characteristics when the attack is executing in real-time. Then, using the Tshark filters, the collection of those packet information is done. The next step is to develop combinations of specific information obtained from the packet filtering and compare them. Finally, each packet is analyzed based on these combinations patterns. A log file is created to store the data gathered after the Entropy calculation in a friendly format. In order to test the efficiency of the application, a Cloud virtual infrastructure was built using OpenNebula Sandbox and Apache Web Server. Two tests were done against the infrastructure, the first test had the objective to verify the effectiveness of the tool proportionally against the Cloud environment created. Based on the results of this test, a second test was proposed to demonstrate how the Hybrid Application works against the attacks performed. The conclusion of the tests presented how the types of Slow-Rate DDoS can be disruptive and also exhibited promising results of the Hybrid Application performance against Low-Rate Distributed Denial of Service attacks. The Hybrid Application was successful in identify each type of Low-Rate DDoS, separate the traffic and generate few false positives in the process. The results are displayed in the form of parameters and graphs.Actualmente, a variedade de tecnologias que realizam tarefas diárias é abundante e diferentes empresas e pessoas se beneficiam desta diversidade. Quanto mais a tecnologia evolui, mais usual se torna, em contraposição, essas empresas acabam por se tornar alvo de actividades maliciosas. Computação na Nuvem é uma das tecnologias que vem sendo adoptada por empresas de diferentes segmentos ao redor do mundo durante anos. Sua popularidade se deve principalmente devido as suas características e a maneira com o qual entrega seus serviços ao cliente. Esta expansão da Computação na Nuvem também implica que usuários maliciosos podem tentar explorá-la, como revela estudos de pesquisas apresentados ao longo deste trabalho. De acordo também com estes estudos, Ataques de Negação de Serviço são um tipo de ameaça que sempre estão a tentar tirar vantagens dos serviços de Computação na Nuvem. Várias empresas moveram ou estão a mover seus serviços para ambientes hospedados fornecidos por provedores de Computação na Nuvem e estão a utilizar várias aplicações baseadas nestes serviços. A literatura existente sobre este tema chama atenção sobre o fato de que, por conta desta expansão na adopção à serviços na Nuvem, o uso de aplicações aumentou. Portanto, ameaças de Negação de Serviço estão visando mais a camada de aplicação e também, variações de ataques mais avançados estão sendo utilizadas como Negação de Serviço Distribuída de Baixa Taxa. Algumas pesquisas estão a ser feitas relacionadas especificamente para a detecção e mitigação deste tipo de ameaça e o maior problema encontrado nesta variante é diferenciar tráfego malicioso de tráfego legítimo. O objectivo principal desta ameaça é explorar a maneira como o protocolo HTTP trabalha, enviando tráfego legítimo com pequenas modificações para preencher as solicitações feitas a um servidor lentamente, tornando quase impossível para usuários legítimos aceder os recursos do servidor durante o ataque. Este tipo de ataque geralmente tem uma janela de tempo curta mas para obter melhor eficiência, o ataque é propagado utilizando computadores infectados, criando uma rede de ataque, transformando-se em um ataque distribuído. Para este trabalho, a ideia para combater Ataques de Negação de Serviço Distribuída de Baixa Taxa é integrar diferentes tecnologias dentro de uma Aplicação Híbrida com o objectivo principal de identificar e separar tráfego malicioso de tráfego legítimo. Primeiro, um estudo é feito para observar o comportamento de cada tipo de Ataque de Baixa Taxa, a fim de recolher informações específicas relacionadas às suas características quando o ataque é executado em tempo-real. Então, usando os filtros do programa Tshark, a obtenção destas informações é feita. O próximo passo é criar combinações das informações específicas obtidas dos pacotes e compará-las. Então finalmente, cada pacote é analisado baseado nos padrões de combinações feitos. Um arquivo de registo é criado ao fim para armazenar os dados recolhidos após o cálculo da Entropia em um formato amigável. A fim de testar a eficiência da Aplicação Híbrida, uma infra-estrutura Cloud virtual foi construída usando OpenNebula Sandbox e servidores Apache. Dois testes foram feitos contra a infra-estrutura, o primeiro teste teve o objectivo de verificar a efectividade da ferramenta proporcionalmente contra o ambiente de Nuvem criado. Baseado nos resultados deste teste, um segundo teste foi proposto para verificar o funcionamento da Aplicação Híbrida contra os ataques realizados. A conclusão dos testes mostrou como os tipos de Ataques de Negação de Serviço Distribuída de Baixa Taxa podem ser disruptivos e também revelou resultados promissores relacionados ao desempenho da Aplicação Híbrida contra esta ameaça. A Aplicação Híbrida obteve sucesso ao identificar cada tipo de Ataque de Negação de Serviço Distribuída de Baixa Taxa, em separar o tráfego e gerou poucos falsos positivos durante o processo. Os resultados são exibidos em forma de parâmetros e grafos

    A Survey on Enterprise Network Security: Asset Behavioral Monitoring and Distributed Attack Detection

    Full text link
    Enterprise networks that host valuable assets and services are popular and frequent targets of distributed network attacks. In order to cope with the ever-increasing threats, industrial and research communities develop systems and methods to monitor the behaviors of their assets and protect them from critical attacks. In this paper, we systematically survey related research articles and industrial systems to highlight the current status of this arms race in enterprise network security. First, we discuss the taxonomy of distributed network attacks on enterprise assets, including distributed denial-of-service (DDoS) and reconnaissance attacks. Second, we review existing methods in monitoring and classifying network behavior of enterprise hosts to verify their benign activities and isolate potential anomalies. Third, state-of-the-art detection methods for distributed network attacks sourced from external attackers are elaborated, highlighting their merits and bottlenecks. Fourth, as programmable networks and machine learning (ML) techniques are increasingly becoming adopted by the community, their current applications in network security are discussed. Finally, we highlight several research gaps on enterprise network security to inspire future research.Comment: Journal paper submitted to Elseive

    Review of Detection Denial of Service Attacks using Machine Learning through Ensemble Learning

    Get PDF
    Today's network hacking is more resource-intensive because the goal is to prohibit the user from using the network's resources when the target is either offensive or for financial gain, especially in businesses and organizations. That relies on the Internet like Amazon Due to this, several techniques, such as artificial intelligence algorithms like machine learning (ML) and deep learning (DL), have been developed to identify intrusion and network infiltration and discriminate between legitimate and unauthorized users. Application of machine learning and ensemble learning algorithms to various datasets, consideration of homogeneous ensembles using a single algorithm type or heterogeneous ensembles using several algorithm types, and evaluation of the discovery outcomes in terms of accuracy or discovery error for detecting attacks. The survey literature provides an overview of the many approaches and approaches of one or more machine-learning algorithms used in various datasets to identify denial of service attacks. It has also been shown that employing the hybrid approach is the most common and produces better attack detection outcomes than using the sole approaches. Numerous machine learning techniques, including support vector machines (SVM), K-Nearest Neighbors (KNN), and ensemble learning like random forest (RF), bagging, and boosting, are illustrated in this work (DT). That is employed in several articles to identify different denial of service (DoS) assaults, including the trojan horse, teardrop, land, smurf, flooding, and worm. That attacks network traffic and resources to deny users access to the resources or to steal confidential information from the company without damaging the system and employs several algorithms to obtain high attack detection accuracy and low false alarm rates
    corecore