52,252 research outputs found

    Cox process representation and inference for stochastic reaction-diffusion processes

    Get PDF
    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling

    Variational Hamiltonian Monte Carlo via Score Matching

    Full text link
    Traditionally, the field of computational Bayesian statistics has been divided into two main subfields: variational methods and Markov chain Monte Carlo (MCMC). In recent years, however, several methods have been proposed based on combining variational Bayesian inference and MCMC simulation in order to improve their overall accuracy and computational efficiency. This marriage of fast evaluation and flexible approximation provides a promising means of designing scalable Bayesian inference methods. In this paper, we explore the possibility of incorporating variational approximation into a state-of-the-art MCMC method, Hamiltonian Monte Carlo (HMC), to reduce the required gradient computation in the simulation of Hamiltonian flow, which is the bottleneck for many applications of HMC in big data problems. To this end, we use a {\it free-form} approximation induced by a fast and flexible surrogate function based on single-hidden layer feedforward neural networks. The surrogate provides sufficiently accurate approximation while allowing for fast exploration of parameter space, resulting in an efficient approximate inference algorithm. We demonstrate the advantages of our method on both synthetic and real data problems

    Variational Sequential Monte Carlo

    Full text link
    Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the variational sequential Monte Carlo (VSMC) family, and show how to optimize it in variational inference. VSMC melds variational inference (VI) and sequential Monte Carlo (SMC), providing practitioners with flexible, accurate, and powerful Bayesian inference. The VSMC family is a variational family that can approximate the posterior arbitrarily well, while still allowing for efficient optimization of its parameters. We demonstrate its utility on state space models, stochastic volatility models for financial data, and deep Markov models of brain neural circuits

    Stochastic Variational Inference

    Full text link
    We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets
    corecore