1,090 research outputs found

    A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Full text link
    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a "Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named "Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.Comment: in 18th International Conference on Extending Database Technology (EDBT) (2015

    Link Prediction Based on Subgraph Evolution in Dynamic Social Networks

    Get PDF
    We propose a new method for characterizing the dynamics of complex networks with its application to the link prediction problem. Our approach is based on the discovery of network subgraphs (in this study: triads of nodes) and measuring their transitions during network evolution. We define the Triad Transition Matrix (TTM) containing the probabilities of transitions between triads found in the network, then we show how it can help to discover and quantify the dynamic patterns of network evolution. We also propose the application of TTM to link prediction with an algorithm (called TTM-predictor) which shows good performance, especially for sparse networks analyzed in short time scales. The future applications and research directions of our approach are also proposed and discussed

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System

    Periodic subgraph mining in dynamic networks

    Get PDF
    La tesi si prefigge di scoprire interazioni periodiche frequenti tra i membri di una popolazione il cui comportamento viene studiato in un certo arco di tempo. Le interazioni tra i membri della popolazione sono rappresentate da archi E tra vertici V di un grafo. Una rete dinamica consiste in una serie di T timestep per ciascuno dei quali esiste un grafo che rappresenta le interazioni attive in quel dato istante. Questa tesi presenta ListMiner, un algoritmo per il problema dell’estrazione di sottografi periodici. La complessità computazionale di tale algoritmo è O((V+E) T2 ln (T /σ)), dove σ è il minimo numero di ripetizioni periodiche necessarie per riportare il sottografo estratto in output. Questa complessità propone un miglioramento di un fattore T rispetto l’unico algoritmo noto in letteratura, PSEMiner. Nella tesi sono inoltre presenti un’analisi dei risultati ottenuti e una presentazione di una variante del problem
    • …
    corecore