56 research outputs found

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance

    Latest research trends in gait analysis using wearable sensors and machine learning: a systematic review

    Get PDF
    Gait is the locomotion attained through the movement of limbs and gait analysis examines the patterns (normal/abnormal) depending on the gait cycle. It contributes to the development of various applications in the medical, security, sports, and fitness domains to improve the overall outcome. Among many available technologies, two emerging technologies that play a central role in modern day gait analysis are: A) wearable sensors which provide a convenient, efficient, and inexpensive way to collect data and B) Machine Learning Methods (MLMs) which enable high accuracy gait feature extraction for analysis. Given their prominent roles, this paper presents a review of the latest trends in gait analysis using wearable sensors and Machine Learning (ML). It explores the recent papers along with the publication details and key parameters such as sampling rates, MLMs, wearable sensors, number of sensors, and their locations. Furthermore, the paper provides recommendations for selecting a MLM, wearable sensor and its location for a specific application. Finally, it suggests some future directions for gait analysis and its applications

    Network delay control through adaptive queue management

    Get PDF
    Timeliness in delivering packets for delay-sensitive applications is an important QoS (Quality of Service) measure in many systems, notably those that need to provide real-time performance. In such systems, if delay-sensitive traffic is delivered to the destination beyond the deadline, then the packets will be rendered useless and dropped after received at the destination. Bandwidth that is already scarce and shared between network nodes is wasted in relaying these expired packets. This thesis proposes that a deterministic per-hop delay can be achieved by using a dynamic queue threshold concept to bound delay of each node. A deterministic per-hop delay is a key component in guaranteeing a deterministic end-to-end delay. The research aims to develop a generic approach that can constrain network delay of delay-sensitive traffic in a dynamic network. Two adaptive queue management schemes, namely, DTH (Dynamic THreshold) and ADTH (Adaptive DTH) are proposed to realize the claim. Both DTH and ADTH use the dynamic threshold concept to constrain queuing delay so that bounded average queuing delay can be achieved for the former and bounded maximum nodal delay can be achieved for the latter. DTH is an analytical approach, which uses queuing theory with superposition of N MMBP-2 (Markov Modulated Bernoulli Process) arrival processes to obtain a mapping relationship between average queuing delay and an appropriate queuing threshold, for queue management. While ADTH is an measurement-based algorithmic approach that can respond to the time-varying link quality and network dynamics in wireless ad hoc networks to constrain network delay. It manages a queue based on system performance measurements and feedback of error measured against a target delay requirement. Numerical analysis and Matlab simulation have been carried out for DTH for the purposes of validation and performance analysis. While ADTH has been evaluated in NS-2 simulation and implemented in a multi-hop wireless ad hoc network testbed for performance analysis. Results show that DTH and ADTH can constrain network delay based on the specified delay requirements, with higher packet loss as a trade-off

    Novel Approaches for the Performance Enhancement of Cognitive Radio Networks

    Full text link
    This research is dedicated to the study of the challenges faced by Cognitive Radio (CR) networks, which include self-coexistence of the networks in the spectral environment, security and performance threats from malicious entities, and fairness in spectrum contention and utilization. We propose novel channel acquisition schemes that allow decentralized CR networks to have multiple channel access with minimal spectrum contentions. The multiple channel acquisition schemes facilitate fast spectrum access especially in cases where networks cannot communicate with each other. These schemes enable CR networks to self-organize and adapt to the dynamically changing spectral environment. We also present a self-coexistence mechanism that allows CR networks to coexist via the implementation of a risk-motivated channel selection based deference structure (DS). By forming DS coalitions, CR networks are able to have better access to preferred channels and can defer transmission to one another, thereby mitigating spectrum conflicts. CR networks are also known to be susceptible to Sybil threats from smart malicious radios with either monopolistic or disruptive intentions. We formulate novel threat and defense mechanisms to combat Sybil threats and minimize their impact on the performance of CR networks. A dynamic reputation system is proposed that considerably minimizes the effectiveness of intelligent Sybil attacks and improves the accuracy of spectrum-based decision-making processes. Finally, we present a distributed and cheat-proof spectrum contention protocol as an enhancement of the adaptive On-Demand Spectrum Contention (ODSC) protocol. The Modified On-Demand Spectrum Contention (MODSC) protocol enhances fairness and efficiency of spectrum access. We also show that there is substantial improvement in spectrum utilization with the incorporation of channel reuse into the MODSC protocol

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Multimedia computer networks quality of service techniques evaluation and development.

    Get PDF
    The growth in the transmission of time-sensitive applications over computer networks means that Quality of Service (QoS) needs to be managed in an efficient manner. Network QoS management in this thesis refers to evaluation and improvement of QoS provided by integrated wired and wireless computer networks. Evaluation of QoS aims to analyse and quantify network performance with respect of meeting multimedia applications' transmission requirements. QoS improvement involves the ability to take actions to change network performance toward improved operation. Therefore, the main aims of this thesis are: (i) to develop techniques for evaluation QoS in multimedia computer networks, (ii) to develop techniques that uses the information from (i) to manage and improve network performance. Multimedia traffic generates a large amount of data. Collecting this information poses a challenge as it needs to be sufficiently fast and accurate. A contribution of this thesis is that adaptive statistical sampling techniques to sample multimedia traffic were developed and their effectiveness was evaluated. Three different adjustment mechanisms were incorporated into statistical sampling techniques to adjust the traffic sampling rate: simple linear adjustment, quarter adjustment, and Fuzzy Inference System (FIS). The findings indicated that the developed methods outperformed the conventional non-adaptive sampling methods of systematic, stratified and random. The data collected included important QoS parameters, i.e. delay, jitter, throughput, and packet loss that indicated network performance in delivering real-time applications. An issue is that QoS needs evaluation in an informative manner. Therefore, the second contribution of this thesis is that statistical and Artificial Intelligent (AI) techniques were developed to evaluate QoS for multimedia applications. The application's QoS parameters were initially analysed either by Fuzzy C-Means (FCM) clustering algorithm or by Kohonen neural network. The analysed QoS parameters were then used as inputs to a regression model or Multi-Layer Perceptron (MLP) neural network in order to quantify the overall QoS. The proposed QoS evaluation system differentiated the network's QoS into a number of levels (Poor to Good QoS) and based on this information, the overall network's QoS was successfully quantified. In order to facilitate QoS assessment, a portable hand-held device for assessing the QoS in multimedia networks was designed, regression model was implemented on the microcontroller board and its performance was successfully demonstrated.Multimedia applications transmitted over computer networks require a large bandwidth that is a critical issue especially in wireless networks. The challenge is to enable end-to-end QoS by providing different treatments for different classes of traffic and efficient use of network resources. In this thesis, a new QoS enhancement scheme for wireless-wired networks is developed. This scheme consisted of an adaptive traffic allocation algorithm that is incorporated into the network's wireless side to improve the performance of IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol, and a Weighted Round Robin (WRR) queuing scheduling mechanism that was incorporated into the wired side. The proposed scheme improved the QoS for Multimedia applications. The average QoS for voice, and video applications were increased from their original values by 72.5%, and 70.3% respectively

    Energy efficient wireless sensor network protocols for monitoring and prognostics of large scale systems

    Get PDF
    In this work, energy-efficient protocols for wireless sensor networks (WSN) with applications to prognostics are investigated. Both analytical methods and verification are shown for the proposed methods via either hardware experiments or simulation. This work is presented in five papers. Energy-efficiency methods for WSN include distributed algorithms for i) optimal routing, ii) adaptive scheduling, iii) adaptive transmission power and data-rate control --Abstract, page iv
    • …
    corecore