361 research outputs found

    Efficient Vertical Handoffs in Wireless Overlay Networks

    Get PDF
    Mobile IP is used to keep track of location information and make the data available to the mobile device anytime, anywhere. It is designed to address the macro-mobility management, it does not address micro-level mobility issues such as handoff latency and packet loss. In this paper, we propose a mobility management scheme to handle the movements of mobile nodes among different wireless network technologies. Our scheme combines: (a) A hierarchical mobility management architecture to hide mobility of mobile nodes within the foreign domain from the home agent; (b) A handoff protocol to reduce packet loss during the transition from one cell to another; (c) The use of our proposed virtual cells in order to reduce the upward vertical handoff latency and disruption as much as possible. Our design is based on the Internet Protocol (IP) and is compatible with the Mobile IP standard (MIP). We also present simulation results showing that our handoff scheme is very fast to meet the requirements of an interactive communication session such as Internet telephony and avoiding packet loss

    An adaptive policy-based vertical handoff algorithm for heterogeneous wireless networks

    Full text link
    The next generation of wireless networks is envisioned as convergence of heterogeneous radio access networks. Since technologies are becoming more collaborative, a possible integration between IEEE 802.16 based network and previous generation of telecommunication systems (2G, ..., 3G) must be considered. A novel quality function based vertical handoff (VHO) algorithm, based on proposed velocity and average receive power estimation algorithms is discussed in this paper. The short-time Fourier analysis of received signal strength (RSS) is employed to obtain mobile speed and average received power estimates. Performance of quality function based VHO algorithm is evaluated by means of measure of quality of service (QoS). Simulation results show that proposed quality function, brings significant gains in QoS and more efficient use of resources can be achieved.<br /

    A novel adaptive schema to facilitates playback switching technique for video delivery in dense LTE cellular heterogeneous network environments

    Get PDF
    The services of the Video on Demand (VoD) are currently based on the developments of the technology of the digital video and the network’s high speed. The files of the video are retrieved from many viewers according to the permission, which is given by VoD services. The remote VoD servers conduct this access. A server permits the user to choose videos anywhere/anytime in order to enjoy a unified control of the video playback. In this paper, a novel adaptive method is produced in order to deliver various facilities of the VoD to all mobile nodes that are moving within several networks. This process is performed via mobility modules within the produced method since it applies a seamless playback technique for retrieving the facilities of the VoD through environments of heterogeneous networks. The main components comprise two servers, which are named as the GMF and the LMF. The performance of the simulation is tested for checking clients’ movements through different networks with different sizes and speeds, which are buffered in the storage. It is found to be proven from the results that the handoff latency has various types of rapidity. The method applies smooth connections and delivers various facilities of the VoD. Meantime, the mobile device transfers through different networks. This implies that the system transports video segments easily without encountering any notable effects.In the experimental analysis for the Slow movements mobile node handoff latency (8 Km/hour or 4 m/s) ,the mobile device’s speed reaches 4m/s, the delay time ranges from 1 to 1.2 seconds in the proposed system, while the MobiVoD system ranges from 1.1 to 1.5. In the proposed technique reaches 1.1026 seconds forming the required time of a mobile device that is switching from a single network to its adjacent one. while the handoff termination average in the MobiVoD reaches 1.3098 seconds. Medium movement mobile node handoff latency (21 Km/ hour or 8 m/s) The average handoff time for the proposed system reaches 1.1057 seconds where this implies that this technique can seamlessly provide several segments of a video segments regardless of any encountered problems. while the average handoff time for the MobiVoD reaches 1.53006623 seconds. Furthermore, Fast movement mobile node handoff latency (390 Km/ hour or 20 m/s). The average time latency of the proposed technique reaches 1.0964 seconds, while the MobiVoD System reaches to 1.668225 seconds

    An Optimum Vertical Handoff Decision Algorithm for UMTS-WLAN

    Full text link
    The integration of diverse but complementary cellular and wireless technologies in the next generation of wireless communication systems requires the design of intelligent vertical handoff decision algorithms to enable mobile users to seamlessly switch network access and experience uninterrupted service continuity anywhere and anytime. This paper provides an adaptive multiple attribute vertical handoff decision algorithm that enables wireless access network selection at a mobile terminal using fuzzy logic concepts and a genetic algorithm. A performance study using the integration of wireless wide area networks (WWANs) and wireless metropolitan area networks (WMANs) as an example shows that our proposed vertical handoff decision algorithm is able to determine when a handoff is required, and selects the best access network that is optimized to network conditions, quality of service requirements, mobile terminal conditions, user preferences, and service cost

    MIPv6 Experimental Evaluation using Overlay Networks

    Get PDF
    The commercial deployment of Mobile IPv6 has been hastened by the concepts of Integrated Wireless Networks and Overlay Networks, which are present in the notion of the forthcoming generation of wireless communications. Individual wireless access networks show limitations that can be overcome through the integration of different technologies into a single unified platform (i.e., 4G systems). This paper summarises practical experiments performed to evaluate the impact of inter-networking (i.e. vertical handovers) on the Network and Transport layers. Based on our observations, we propose and evaluate a number of inter-technology handover optimisation techniques, e.g., Router Advertisements frequency values, Binding Update simulcasting, Router Advertisement caching, and Soft Handovers. The paper concludes with the description of a policy-based mobility support middleware (PROTON) that hides 4G networking complexities from mobile users, provides informed handover-related decisions, and enables the application of different vertical handover methods and optimisations according to context.Publicad
    • …
    corecore