147 research outputs found

    Improvements and New Constructions of Digital Signatures

    Get PDF
    Ein digitales Signaturverfahren, oft auch nur digitale Signatur genannt, ist ein wichtiger und nicht mehr wegzudenkender Baustein in der Kryptographie. Es stellt das digitale Äquivalent zur klassischen handschriftlichen Signatur dar und liefert darüber hinaus noch weitere wünschenswerte Eigenschaften. Mit solch einem Verfahren kann man einen öffentlichen und einen geheimen Schlüssel erzeugen. Der geheime Schlüssel dient zur Erstellung von Signaturen zu beliebigen Nachrichten. Diese können mit Hilfe des öffentlichen Schlüssels von jedem überprüft und somit verifiziert werden. Desweiteren fordert man, dass das Verfahren "sicher" sein soll. Dazu gibt es in der Literatur viele verschiedene Begriffe und Definitionen, je nachdem welche konkreten Vorstellungen beziehungsweise Anwendungsgebiete man hat. Vereinfacht gesagt, sollte es für einen Angreifer ohne Kenntnis des geheimen Schlüssels nicht möglich sein eine gültige Signatur zu einer beliebigen Nachricht zu fälschen. Ein sicheres Signaturverfahren kann somit verwendet werden um die folgenden Ziele zu realisieren: - Authentizität: Jeder Empfänger kann überprüfen, ob die Nachricht von einem bestimmten Absender kommt. - Integrität der Nachricht: Jeder Empfänger kann feststellen, ob die Nachricht bei der Übertragung verändert wurde. - Nicht-Abstreitbarkeit: Der Absender kann nicht abstreiten die Signatur erstellt zu haben. Damit ist der Einsatz von digitalen Signaturen für viele Anwendungen in der Praxis sehr wichtig. Überall da, wo es wichtig ist die Authentizität und Integrität einer Nachricht sicherzustellen, wie beim elektronischen Zahlungsverkehr, Softwareupdates oder digitalen Zertifikaten im Internet, kommen digitale Signaturen zum Einsatz. Aber auch für die kryptographische Theorie sind digitale Signaturen ein unverzichtbares Hilfsmittel. Sie ermöglichen zum Beispiel die Konstruktion von stark sicheren Verschlüsselungsverfahren. Eigener Beitrag: Wie bereits erwähnt gibt es unterschiedliche Sicherheitsbegriffe im Rahmen von digitalen Signaturen. Ein Standardbegriff von Sicherheit, der eine recht starke Form von Sicherheit beschreibt, wird in dieser Arbeit näher betrachtet. Die Konstruktion von Verfahren, die diese Form der Sicherheit erfüllen, ist ein vielschichtiges Forschungsthema. Dazu existieren unterschiedliche Strategien in unterschiedlichen Modellen. In dieser Arbeit konzentrieren wir uns daher auf folgende Punkte. - Ausgehend von vergleichsweise realistischen Annahmen konstruieren wir ein stark sicheres Signaturverfahren im sogenannten Standardmodell, welches das realistischste Modell für Sicherheitsbeweise darstellt. Unser Verfahren ist das bis dahin effizienteste Verfahren in seiner Kategorie. Es erstellt sehr kurze Signaturen und verwendet kurze Schlüssel, beides unverzichtbar für die Praxis. - Wir verbessern die Qualität eines Sicherheitsbeweises von einem verwandten Baustein, der identitätsbasierten Verschlüsselung. Dies hat unter anderem Auswirkung auf dessen Effizienz bezüglich der empfohlenen Schlüssellängen für den sicheren Einsatz in der Praxis. Da jedes identitätsbasierte Verschlüsselungsverfahren generisch in ein digitales Signaturverfahren umgewandelt werden kann ist dies auch im Kontext digitaler Signaturen interessant. - Wir betrachten Varianten von digitalen Signaturen mit zusätzlichen Eigenschaften, sogenannte aggregierbare Signaturverfahren. Diese ermöglichen es mehrere Signaturen effizient zu einer zusammenzufassen und dabei trotzdem alle zugehörigen verschiedenen Nachrichten zu verifizieren. Wir geben eine neue Konstruktion von solch einem aggregierbaren Signaturverfahren an, bei der das Verfahren eine Liste aller korrekt signierten Nachrichten in einer aggregierten Signatur ausgibt anstatt, wie bisher üblich, nur gültig oder ungültig. Wenn eine aggregierte Signatur aus vielen Einzelsignaturen besteht wird somit das erneute Berechnen und eventuell erneute Senden hinfällig und dadurch der Aufwand erheblich reduziert

    Fault-Tolerance and Deaggregation Security of Aggregate Signatures

    Get PDF
    Ein zentrales Problem der digitalen Kommunikation ist die Absicherung der Authentizität und Integrität digitaler Dokumente, wie etwa Webseiten, E-Mails oder Programmen. So soll beispielsweise für den Empfänger einer E-Mail nachvollziehbar sein, dass die empfangene E-Mail tatsächlich vom angegebenen Absender stammt (Authentizität) und nicht durch Dritte verändert wurde (Integrität). Digitale Signaturen sind ein Hauptwerkzeug der Kryptographie und IT-Sicherheit, um diese Eigenschaften zu gewährleisten. Hierzu wird vom Absender ein geheimer Schlüssel verwendet, um für das zu sichernde Dokument eine Signatur zu erstellen, die mithilfe eines öffentlich bekannten Verifikationsschlüssels jederzeit überprüft werden kann. Die Sicherheitseigenschaften solcher digitaler Signaturverfahren garantieren sowohl, dass jede Änderung am Dokument dazu führt, dass diese Überprüfung fehlschlägt, als auch dass eine Fälschung einer Signatur praktisch unmöglich ist, d.h. ohne den geheimen Schlüssel kann keine gültige Signatur berechnet werden. Somit kann bei einer erfolgreichen Verifikation davon ausgegangen werden, dass das Dokument tatsächlich vom angegebenen Absender erstellt und seit der Berechnung der Signatur nicht verändert wurde, da nur der Absender über den geheimen Schlüssel verfügt. Aggregierbare Signaturen bieten zusätzlich die Möglichkeit Signaturen mehrerer Dokumente zu einer einzigen Signatur zusammenzuführen bzw. zu aggregieren. Diese Aggregation ist dabei jederzeit möglich. Eine aggregierte Signatur bezeugt weiterhin sicher die Integrität und Authentizität aller ursprünglichen Dokumente, benötigt dabei aber nur so viel Speicherplatz wie eine einzelne Signatur. Außerdem ist die Verifikation einer solchen aggregierten Signatur üblichrweise schneller möglich als die sukzessive Überprüfung aller Einzelsignaturen. Somit kann die Verwendung eines aggregierbaren Signaturverfahrens anstelle eines gewöhnlichen Verfahrens zu erheblichen Verbesserungen der Performanz und des Speicherverbrauchs bei Anwendungen von Signaturen führen. In dieser Dissertation werden zwei zusätzliche Eigenschaften von aggregierbaren Signaturverfahren namens Fehlertoleranz und Deaggregationssicherheit untersucht. Fehlertoleranz bietet eine Absicherung des Verfahrens gegen fehlerhafte Signier- und Aggregationsvorgänge und Deaggregationssicherheit schützt vor ungewollten Löschungen. Beide Eigenschaften werden im Folgenden erläutert. Fehlertoleranz: Durch System- und Programmfehler, sowie inkorrektes oder auch bösartiges Nutzerverhalten ist es möglich, dass fehlerhafte Einzelsignaturen zu einer bestehenden aggregierten Signatur hinzugefügt werden. Alle bisherige aggregierbaren Signaturverfahren haben jedoch den Nachteil, dass bereits das Aggregieren einer einzigen fehlerhaften Einzelsignatur dazu führt, dass auch die aggregierte Signatur fehlerhaft und somit unbrauchbar wird. Die aggregierte Signatur kann danach nicht mehr korrekt verifiziert werden. Insbesondere kann aus ihr nun keinerlei Aussage mehr über die Integrität und Authentizität der Dokumente abgeleitet werden, die vor dem Hinzufügen der fehlerhaften Einzelsignatur korrekt signiert wurden. Dies hat zur Folge, dass alle gegebenen Sicherheitsgarantien verloren gehen und es wird ein aufwändiges Neusignieren aller Dokumente notwendig, welches unter Umständen und je nach Anwendung nur schwer bis überhaupt nicht möglich ist. In dieser Dissertation wird das erste fehlertolerante aggregierbare Signaturverfahren vorgestellt, bei dem das Hinzufügen einzelner falscher Signaturen bis zu einer gewissen Grenze keine schädlichen Auswirkungen hat. Eine aggregierte Signatur wird erst dann ungültig und unbrauchbar, sobald die Anzahl hinzugefügter fehlerhafter Signaturen diese Grenze überschreitet und behält davor weiterhin seine Gültigkeit für die korrekt signierten Dokumente. Dazu wird ein Verfahren vorgestellt, mit dem jedes beliebige aggregierbare Signaturverfahren in ein fehlertolerantes Verfahren transformiert werden kann. Das zugrundeliegende Verfahren wird dabei nur als Black-Box verwendet und der Schutz gegen Fälschungsangriffe übertragt sich beweisbar und ohne Einschränkung auf das neue fehlertolerante Verfahren. Des Weiteren wird als Anwendung von fehlertoleranten Verfahren gezeigt, wie aus ihnen ein sicheres Log-Verfahren konstruiert werden kann. Deaggregationssicherheit: Erlangt ein Angreifer Zugriff auf eine aggregierte Signatur für einen bestimmten Datensatz, so sollte es ihm nicht möglich sein aus diesem Aggregat eine gültige Signatur für einen Teil der geschützten Dokumente abzuleiten, indem er einzelne Signaturen entfernt oder deaggregiert. Solche Angriffe können für viele Anwendungsfälle problematisch sein, da so Signaturen für Mengen von Dokumenten berechnet werden könnten, die nicht von den eigentlichen Erstellern beabsichtigt waren und nie von ihnen selbst signiert wurden. Wird ein aggregierbares Signaturverfahren etwa verwendet um eine Datenbank abzusichern, so sollte es Angreifern nicht möglich sein einzelne Einträge daraus zu entfernen. In dieser Dissertation werden mehrere Deaggregationssicherheitsbegriffe entwickelt, vorgestellt und untersucht. Dazu wird eine Hierarchie von verschieden starken Sicherheitsbegriffen entwickelt und die Zusammenhänge zwischen den einzelnen Begriffen werden formal untersucht. Dabei wird auch gezeigt, dass der von aggregierbaren Signaturverfahren garantierte Schutz gegen Fälschungen keinerlei Sicherheit gegen Deaggregationsangriffe gewährleistet. Des Weiteren wird die Deaggregationssicherheit einer Reihe von bekannten und wichtigen aggregierbaren Signaturverfahren näher betrachtet. Die von diesen Verfahren gebotene Sicherheit wird exakt klassifiziert, indem entweder Angriffsmöglichkeiten demonstriert werden oder formal bewiesen wird, welcher Sicherheitsbegriff der Hierarchie vom Verfahren erfüllt wird. Außerdem wird die Verbindung von Fehlertoleranz und Deaggregationssicherheit untersucht. Dabei stellt sich heraus, dass beide Begriffe nicht zueinander kompatibel sind, indem bewiesen wird, dass fehlertolerante aggregierbare Signaturverfahren keinerlei Sicherheit gegen Deaggregationsangriffe bieten können. Somit muss bei Anwendungen von aggregierbaren Verfahren genau abgewogen werden, welche der beiden Eigenschaften notwendig ist und ob zusätzliche Sicherheitsmaßnahmen angewendet werden müssen, um dieses Problem für die konkrete Anwendung zu beheben

    Advanced Cryptographic Techniques for Protecting Log Data

    Get PDF
    This thesis examines cryptographic techniques providing security for computer log files. It focuses on ensuring authenticity and integrity, i.e. the properties of having been created by a specific entity and being unmodified. Confidentiality, the property of being unknown to unauthorized entities, will be considered, too, but with less emphasis. Computer log files are recordings of actions performed and events encountered in computer systems. While the complexity of computer systems is steadily growing, it is increasingly difficult to predict how a given system will behave under certain conditions, or to retrospectively reconstruct and explain which events and conditions led to a specific behavior. Computer log files help to mitigate the problem of retracing a system’s behavior retrospectively by providing a (usually chronological) view of events and actions encountered in a system. Authenticity and integrity of computer log files are widely recognized security requirements, see e.g. [Latham, ed., "Department of Defense Trusted Computer System Evaluation Criteria", 1985, p. 10], [Kent and Souppaya, "Guide to Computer Security Log Management", NIST Special Publication 800-92, 2006, Section 2.3.2], [Guttman and Roback, "An Introduction to Computer Security: The NIST Handbook", superseded NIST Special Publication 800-12, 1995, Section 18.3.1], [Nieles et al., "An Introduction to Information Security" , NIST Special Publication 800-12, 2017, Section 9.3], [Common Criteria Editorial Board, ed., "Common Criteria for Information Technology Security Evaluation", Part 2, Section 8.6]. Two commonly cited ways to ensure integrity of log files are to store log data on so-called write-once-read-many-times (WORM) drives and to immediately print log records on a continuous-feed printer. This guarantees that log data cannot be retroactively modified by an attacker without physical access to the storage medium. However, such special-purpose hardware may not always be a viable option for the application at hand, for example because it may be too costly. In such cases, the integrity and authenticity of log records must be ensured via other means, e.g. with cryptographic techniques. Although these techniques cannot prevent the modification of log data, they can offer strong guarantees that modifications will be detectable, while being implementable in software. Furthermore, cryptography can be used to achieve public verifiability of log files, which may be needed in applications that have strong transparency requirements. Cryptographic techniques can even be used in addition to hardware solutions, providing protection against attackers who do have physical access to the logging hardware, such as insiders. Cryptographic schemes for protecting stored log data need to be resilient against attackers who obtain control over the computer storing the log data. If this computer operates in a standalone fashion, it is an absolute requirement for the cryptographic schemes to offer security even in the event of a key compromise. As this is impossible with standard cryptographic tools, cryptographic solutions for protecting log data typically make use of forward-secure schemes, guaranteeing that changes to log data recorded in the past can be detected. Such schemes use a sequence of authentication keys instead of a single one, where previous keys cannot be computed efficiently from latter ones. This thesis considers the following requirements for, and desirable features of, cryptographic logging schemes: 1) security, i.e. the ability to reliably detect violations of integrity and authenticity, including detection of log truncations, 2) efficiency regarding both computational and storage overhead, 3) robustness, i.e. the ability to verify unmodified log entries even if others have been illicitly changed, and 4) verifiability of excerpts, including checking an excerpt for omissions. The goals of this thesis are to devise new techniques for the construction of cryptographic schemes that provide security for computer log files, to give concrete constructions of such schemes, to develop new models that can accurately capture the security guarantees offered by the new schemes, as well as to examine the security of previously published schemes. This thesis demands that cryptographic schemes for securely storing log data must be able to detect if log entries have been deleted from a log file. A special case of deletion is log truncation, where a continuous subsequence of log records from the end of the log file is deleted. Obtaining truncation resistance, i.e. the ability to detect truncations, is one of the major difficulties when designing cryptographic logging schemes. This thesis alleviates this problem by introducing a novel technique to detect log truncations without the help of third parties or designated logging hardware. Moreover, this work presents new formal security notions capturing truncation resistance. The technique mentioned above is applied to obtain cryptographic logging schemes which can be shown to satisfy these notions under mild assumptions, making them the first schemes with formally proven truncation security. Furthermore, this thesis develops a cryptographic scheme for the protection of log files which can support the creation of excerpts. For this thesis, an excerpt is a (not necessarily contiguous) subsequence of records from a log file. Excerpts created with the scheme presented in this thesis can be publicly checked for integrity and authenticity (as explained above) as well as for completeness, i.e. the property that no relevant log entry has been omitted from the excerpt. Excerpts provide a natural way to preserve the confidentiality of information that is contained in a log file, but not of interest for a specific public analysis of the log file, enabling the owner of the log file to meet confidentiality and transparency requirements at the same time. The scheme demonstrates and exemplifies the technique for obtaining truncation security mentioned above. Since cryptographic techniques to safeguard log files usually require authenticating log entries individually, some researchers [Ma and Tsudik, "A New Approach to Secure Logging", LNCS 5094, 2008; Ma and Tsudik, "A New Approach to Secure Logging", ACM TOS 2009; Yavuz and Peng, "BAF: An Efficient Publicly Verifiable Secure Audit Logging Scheme for Distributed Systems", ACSAC 2009] have proposed using aggregatable signatures [Boneh et al., "Aggregate and Verifiably Encrypted Signatures from Bilinear Maps", EUROCRYPT 2003] in order to reduce the overhead in storage space incurred by using such a cryptographic scheme. Aggregation of signatures refers to some “combination” of any number of signatures (for distinct or equal messages, by distinct or identical signers) into an “aggregate” signature. The size of the aggregate signature should be less than the total of the sizes of the orginal signatures, ideally the size of one of the original signatures. Using aggregation of signatures in applications that require storing or transmitting a large number of signatures (such as the storage of log records) can lead to significant reductions in the use of storage space and bandwidth. However, aggregating the signatures for all log records into a single signature will cause some fragility: The modification of a single log entry will render the aggregate signature invalid, preventing the cryptographic verification of any part of the log file. However, being able to distinguish manipulated log entries from non-manipulated ones may be of importance for after-the-fact investigations. This thesis addresses this issue by presenting a new technique providing a trade-off between storage overhead and robustness, i.e. the ability to tolerate some modifications to the log file while preserving the cryptographic verifiability of unmodified log entries. This robustness is achieved by the use of a special kind of aggregate signatures (called fault-tolerant aggregate signatures), which contain some redundancy. The construction makes use of combinatorial methods guaranteeing that if the number of errors is below a certain threshold, then there will be enough redundancy to identify and verify the non-modified log entries. Finally, this thesis presents a total of four attacks on three different schemes intended for securely storing log files presented in the literature [Yavuz et al., "Efficient, Compromise Resilient and Append-Only Cryptographic Schemes for Secure Audit Logging", Financial Cryptography 2012; Ma, "Practical Forward Secure Sequential Aggregate Signatures", ASIACCS 2008]. The attacks allow for virtually arbitrary log file forgeries or even recovery of the secret key used for authenticating the log file, which could then be used for mostly arbitrary log file forgeries, too. All of these attacks exploit weaknesses of the specific schemes. Three of the attacks presented here contradict the security properties of the schemes claimed and supposedly proven by the respective authors. This thesis briefly discusses these proofs and points out their flaws. The fourth attack presented here is outside of the security model considered by the scheme’s authors, but nonetheless presents a realistic threat. In summary, this thesis advances the scientific state-of-the-art with regard to providing security for computer log files in a number of ways: by introducing a new technique for obtaining security against log truncations, by providing the first scheme where excerpts from log files can be verified for completeness, by describing the first scheme that can achieve some notion of robustness while being able to aggregate log record signatures, and by analyzing the security of previously proposed schemes

    Structure-aware combinatorial group testing: a new method for pandemic screening

    Full text link
    Combinatorial group testing (CGT) is used to identify defective items from a set of items by grouping them together and performing a small number of tests on the groups. Recently, group testing has been used to design efficient COVID-19 testing, so that resources are saved while still identifying all infected individuals. Due to test waiting times, a focus is given to non-adaptive CGT, where groups are designed a priori and all tests can be done in parallel. The design of the groups can be done using Cover-Free Families (CFFs). The main assumption behind CFFs is that a small number dd of positives are randomly spread across a population of nn individuals. However, for infectious diseases, it is reasonable to assume that infections show up in clusters of individuals with high contact (children in the same classroom within a school, households within a neighbourhood, students taking the same courses within a university, people seating close to each other in a stadium). The general structure of these communities can be modeled using hypergraphs, where vertices are items to be tested and edges represent clusters containing high contacts. We consider hypergraphs with non-overlapping edges and overlapping edges (first two examples and last two examples, respectively). We give constructions of what we call structure-aware CFF, which uses the structure of the underlying hypergraph. We revisit old CFF constructions, boosting the number of defectives they can identify by taking the hypergraph structure into account. We also provide new constructions based on hypergraph parameters

    Scalable Architecture for Integrated Batch and Streaming Analysis of Big Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2015As Big Data processing problems evolve, many modern applications demonstrate special characteristics. Data exists in the form of both large historical datasets and high-speed real-time streams, and many analysis pipelines require integrated parallel batch processing and stream processing. Despite the large size of the whole dataset, most analyses focus on specific subsets according to certain criteria. Correspondingly, integrated support for efficient queries and post- query analysis is required. To address the system-level requirements brought by such characteristics, this dissertation proposes a scalable architecture for integrated queries, batch analysis, and streaming analysis of Big Data in the cloud. We verify its effectiveness using a representative application domain - social media data analysis - and tackle related research challenges emerging from each module of the architecture by integrating and extending multiple state-of-the-art Big Data storage and processing systems. In the storage layer, we reveal that existing text indexing techniques do not work well for the unique queries of social data, which put constraints on both textual content and social context. To address this issue, we propose a flexible indexing framework over NoSQL databases to support fully customizable index structures, which can embed necessary social context information for efficient queries. The batch analysis module demonstrates that analysis workflows consist of multiple algorithms with different computation and communication patterns, which are suitable for different processing frameworks. To achieve efficient workflows, we build an integrated analysis stack based on YARN, and make novel use of customized indices in developing sophisticated analysis algorithms. In the streaming analysis module, the high-dimensional data representation of social media streams poses special challenges to the problem of parallel stream clustering. Due to the sparsity of the high-dimensional data, traditional synchronization method becomes expensive and severely impacts the scalability of the algorithm. Therefore, we design a novel strategy that broadcasts the incremental changes rather than the whole centroids of the clusters to achieve scalable parallel stream clustering algorithms. Performance tests using real applications show that our solutions for parallel data loading/indexing, queries, analysis tasks, and stream clustering all significantly outperform implementations using current state-of-the-art technologies

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore