8,809 research outputs found

    Efficient top-down set-sharing analysis using cliques

    Get PDF
    Abstract. We study the problem of efficient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a top-down framework. In particular, we define the new abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. We use cliques both as an alternative representation and as widening, defining several widening operators. Our experimental evaluation supports the conclusión that, for inferring set-sharing, as it was the case for inferring pair-sharing, precisión losses are limited, while useful efficieney gains are obtained. We also derive useful conclusions regarding the interactions between thresholds, precisión, efficieney and cost of widening. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations

    A study of set-sharing analysis via cliques

    Get PDF
    We study the problem of efficient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a top-down framework. In particular, we define the abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. Our experimental evaluation supports the conclusion that, for inferring set-sharing, as it was the case for inferring pair-sharing, precision losses are limited, while useful efficiency gains are obtained. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations.Comment: 15 pages, 0 figure

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page

    Parallel Maximum Clique Algorithms with Applications to Network Analysis and Storage

    Full text link
    We propose a fast, parallel maximum clique algorithm for large sparse graphs that is designed to exploit characteristics of social and information networks. The method exhibits a roughly linear runtime scaling over real-world networks ranging from 1000 to 100 million nodes. In a test on a social network with 1.8 billion edges, the algorithm finds the largest clique in about 20 minutes. Our method employs a branch and bound strategy with novel and aggressive pruning techniques. For instance, we use the core number of a vertex in combination with a good heuristic clique finder to efficiently remove the vast majority of the search space. In addition, we parallelize the exploration of the search tree. During the search, processes immediately communicate changes to upper and lower bounds on the size of maximum clique, which occasionally results in a super-linear speedup because vertices with large search spaces can be pruned by other processes. We apply the algorithm to two problems: to compute temporal strong components and to compress graphs.Comment: 11 page

    On the Parikh-de-Bruijn grid

    Full text link
    We introduce the Parikh-de-Bruijn grid, a graph whose vertices are fixed-order Parikh vectors, and whose edges are given by a simple shift operation. This graph gives structural insight into the nature of sets of Parikh vectors as well as that of the Parikh set of a given string. We show its utility by proving some results on Parikh-de-Bruijn strings, the abelian analog of de-Bruijn sequences.Comment: 18 pages, 3 figures, 1 tabl
    • …
    corecore