
Efficient Top-Down Set-Sharing Analysis
Using Cliques

Jorge Navas1 , Francisco Bueno2 , and Manuel Hermenegildo1 '2

1 D. of C.S. and Electr. and Comp. Eng., U. of New México, Albuquerque, NM, USA
2 School of Computer Science, T.U. Madrid (UPM), Madrid, Spain

jorge@cs.unm.edu, herme@unm.edu
{bueno, herme}@fi.upm.es

Abs t r ac t . We study the problem of efficient, scalable set-sharing analy­
sis of logic programs. We use the idea of representing sharing information
as a pair of abstract substitutions, one of which is a worst-case sharing
representation called a clique set, which was previously proposed for the
case of inferring pair-sharing. We use the clique-set representation for
(1) inferring actual set-sharing information, and (2) analysis within a
top-down framework. In particular, we define the new abstract functions
required by standard top-down analyses, both for sharing alone and also
for the case of including freeness in addition to sharing. We use cliques
both as an alternative representation and as widening, defining several
widening operators. Our experimental evaluation supports the conclusión
that, for inferring set-sharing, as it was the case for inferring pair-sharing,
precisión losses are limited, while useful efficieney gains are obtained. We
also derive useful conclusions regarding the interactions between thresh-
olds, precisión, efficieney and cost of widening. At the limit, the clique-set
representation allowed analyzing some programs that exceeded memory
capacity using classical sharing representations.

1 Introduction

In static analysis of logic programs the tracking of variables shared among terms
is essential. Arguably, the most accurate abstract domain defined for tracking
sharing is the so called Sharing domain [JL92, MH92], which represents variable
occurrences, i.e., the possible occurrences of run-time variables within the terms
to which program variables will be bound. In this paper we study an alternative
representation for this domain.

Example 1. Let V = {x, y, z) be a set of variables of interest. A substitution such
as {x/f(ui, «2, vi,V2,w), y/g(vi, V2,w), z/g(w, w)} will be abstracted in Sharing
as {x, xy, xyz}.1 Sharing group x in the abstraction represents the oceurrence of
run-time variables u\ and «2 in the concrete substitution, xy represents v\ and
V2, and xyz represents w. Note tha t the number of (occurrences of) run-time
variables shared is abstracted away.

1 To simplify notation, we denote a sharing group (a set of variables representing
sharing) by the concatenation of its variables, e.g., xyz is {x,y,z}.

mailto:jorge@cs.unm.edu
mailto:herme@unm.edu

Sharing analysis has been used for inferring several interesting properties of
programs; most notably (but not only), variable and goal independence. Several
program variables are said to be independent if the terms they are bound to do
not have (run-time) variables in common. Variable independence is the counter-
part of sharing: program variables share when the terms they are bound to do
have run-time variables in common. When we are talking of only two variables
then we refer to pair-sharing, and when we track relations among more than
two variables we refer to set-sharing. Sharing abstract domains are used to infer
possíble sharing, Le., the possibility that shared variables exist, and thus, in the
absence of such possibility, definíte information about independence.

Example 2. Let V = {x,y,z} be the variables of interest. A Sharing abstract
substitution such as {x, y, z) (which denotes the set of the singleton sets con-
taining each variable) represents that all three variables are independent.

The Sharing domain has deserved a lot of attention in the literature in the
past. It has been enhanced in several ways [Fil94, ZBH99]. It has also been ex­
tended with other kinds of information, the most relevant of which being freeness
and linearity [JL92, CDFB96, HZB04], but also for example information about
term structure [KS94, BCM94, MSJB95]. Its combination with other abstract
domains has also been studied [CMB+93, Fec96]. In particular, in [ZBH99] an
alternative representation for Sharing is proposed for the non-redundant do­
main of [BHZ02] and this representation is thoroughly studied for inferring pair-
sharing. A new component is added to abstract substitutions that represents sets
of variables, the powerset of which would have been part of the original abstract
substitution. Such sets are called diques.

Example 3. Let V be as above. Consider the abstraction {x, xy, xyz, xz, y, yz, z},
i.e., the powerset of V (without the empty set). Such an abstraction conveys
no information: there might be run-time variables shared by any pair of the
three program variables, by the three of them, or not shared at all. However,
abstractions such as this one are expensive to process during analysis: they
penalize emciency for no benefit at all. The clique that will convey the same
information is simply the set V.

A clique is thus a compact representation for a piece of sharing which in
fact does not convey any useful information. The precisión and emciency of
using diques for the case of inferring pair-sharing were reported in [ZBH99].
In [ZafOl] diques were incorporated into the original Sharing domain, but preci­
sión and emciency are again studied for the case of inferring pair-sharing. Here,
we are interested in studying the substantially different case of inferring set-
sharing. Another important difference with previous work is that we develop
the analysis for a top-down framework. This requires the deflnition of additional
and non-trivial abstract functions in the domain. Such functions were not de-
fined in [ZBH99, ZafOl], since bottom-up analyses were used there. We use the
PLAI/CiaoPP framework [HBPLG99], which is an efficient implementation of
a top-down analyzer using the fixpoint algorithms and optimizations described
in [MH90,MH92,HPMS00].

The rest of the paper proceeds as follows. Notation and preliminaries are
presented in Section 2, together with the representation based on diques and
the clique-domains for set-sharing and set-sharing with freeness. In Section 3
the required functions for top-down analysis are defined. In Section 4 we present
an algorithm for detecting diques, in Section 5 we introduce the use of the
representation based on diques as widening, and in Section 6 our experimental
evaluation of the proposed analyses. Finally, Section 7 concludes.

2 Preliminaries

Let p(S) denote the powerset of set S, and p°(S) denote the proper powerset of
set S, i.e., p°(S) = p(S) \ {0}. Let also 15*1 denote the cardinality of a set S.

Let V be a set of variables of interest; e.g., the variables of a program. A
sharing group is a set of variables of interest, which represents the possible shar­
ing among them (i.e., that they might be bound to terms which have a common
variable). Let SG = p°(V) be the set of all sharing groups. A sharing set is a set
of sharing groups. The Sharing domain is SH = p(SG), the set of all sharing
sets.

Let F and P be sets of ranked (i.e., with a given arity) functors of interest;
e.g., the function symbols and the predicate symbols of a program. We will use
Term to denote the set of terms constructed from V and F U P. Although
somehow unorthodox, this will allow us to simply write g G Term whether g is
a term or a predicate atom, since all our operations apply equally well to both
classes of syntactic objects. We will denote t the set of variables of t G Term.
For two elements s G Term and t G Term, st = s U í .

For two elements si G SH, S2 & SH, let si &i S2 be their binary unión, i.e.,
the result of applying unión to each pair in their Cartesian product si x S2- Let
also s* be the star unión of si, i.e., its closure under unión. Given terms s and
t, and sh G SH, we denote by sht the set of sets in sh which have non-empty
intersection with t, the set of variables of t. By extensión, in shst we use st as
the set of variables. Also, sht is the complement of sht, i.e., sh \ sht.

Analysis of a program proceeds by abstractly solving unification equations
of the form ¿i = ti, ¿i G Term, ti G Term. Let solve(t\ = ¿2) denote the
solved form of unification equation ¿i = Í2- The results of analysis are abstract
substitutions which approximate the concrete substitutions that may occur dur-
ing execution of the program. Let U be a denumerable set of variables (e.g., the
variables that may occur during execution of a program). Concrete substitutions
that occur during execution are mappings from V to the set of terms constructed
from U U V and F. Abstract substitutions are sharing sets.

2.1 Clique Domains

When a sharing set sh G SH includes the proper powerset of some set C of
variables, the representation can be made more compact by using C to represent
the same sharing that its powerset represents in the sharing set sh [ZBH99]. A
clique is, thus, a set of variables of interest, much the same as a sharing group,

but a clique C represents all the sharing groups in p°(C). For a clique C, we
will use [C = p°(C). Note that [C denotes all the sharing that is implicitly
represented in a clique C. A dique set is a set of diques. Let CL = SH denote
the set of all clique sets. For a clique set el G CL we define iJjcZ = U{ J.C | C G el}.
Note that ¿id denotes all the sharing that is implicitly represented in a clique
set el. For a pair (el, sh) of a clique set el and a sharing set sh, the sharing that
the pair represents is ¿ciUsfe.

The Clique-Sharing domain is SHW = {(el, sh) | el G CL, sh G ¿vH"}, i.e., the
set of pairs of a clique set and a sharing set [ZBH99]. An abstract unification
operation amguw is defined in [ZafOl] which uses a function reí : p(V) x CL —>
CL (complement oí reí), defined as:

rel(S, cl) = {C\S \C ecl}\{9}

which approximates the sharing not related to variables in S. We have used an
equivalent definition of amguw to the one in [ZafOl] (see [BNH05]).

Freeness can be introduced to the Clique-Sharing domain in the usual way
[MH91], by including a component which tracks the variables which are known
to be free. The Clique-Shfr domain is thus SHFW = SHW x V. A method
to define an abstract unification function for SHW with freeness and linearity
is outlined in [ZafOl]. We have used an abstract unification operation amgusf
for SHW with freeness which is a simplification of the corresponding operation
which results from the application of such method.

3 Abstract Functions Required by Top-Down Analysis

In top-down frameworks, the analysis of a clause Head:-Body proceeds as fol-
lows. There is a goal Goal for the predicate of Head, which is called in a context
represented by abstract substitution Cali on a set of variables (distinct from
HeadU Body) which contains those of Goal. Then the success of Goal by exe-
cuting the above clause is represented by abstract substitution Succ given by:

Succ = extend{Call, Goal, Prime)
Prime = exit2succ(project(Head, Exit), Goal, Head)
Exit = entry2exit(Body, Entry)
Entry = augment(F, call2entry(Proj, Goal, Head))
Proj = project(Goal, Cali)

where F is any term with the variables Body \ Head. Function project approxi­
mates the projection of a substitution on the variables of a given term. Function
augment extends the domain of an abstract substitution to the variables of a
given term, which are assumed to be new fresh variables. Function entry'lexit is
given by the framework, and basically traverses the body of a clause, analyzing
each atom in turn. The other three domain-dependent abstract functions which
are essential are:

— call2entry(Proj, Goal, Head) yields a substitution on the variables of Head
which represents the effects of unification Goal = Head in a context repre-
sented by substi tution Proj on the variables of Goal.

— exit2succ(Exit', Goal, Head) yields a substitution on the variables of Goal
which represents the effects of unification Goal = Head in a context repre-
sented by substi tution Exit' on the variables of Head.

— extend(Call, Goal, Prime) yields a substi tution for the success of Goal when
it is called in a context represented by substi tution Cali on a set of variables
which contains those of Goal, given tha t in such context the success of Goal
is already represented by substi tution Prime on the variables of Goal. The
domain of the resulting substitution is the same as the domain of Cali.

In fact, the first two can be defined from the abstract unification operation
amgu. The third one, however, is specific to the top-down framework and needs
to be defined specifically for a given domain.

Given an operation amgu(x = t, ASub) of abstract unification for equation
x = t, x G V, t G Term, and ASub an abstract substi tution (the domain of which
contains variables t U {x}), abstract unification for equation ¿i = t2, í i & Term,
Í2 £ Term, is given by:

uni]y(ASub,t\,t2) = project(t\, Amgu(solve(t\ = t2), augment(t\, ASub)))

_ J ASub iíEq = íD
Amgu^q, AOUO) - j Amgu(Eq^ amgu(x = í? ASub)) if Eq = Eq' U {x = í }

Functions call'lentry and exit'lsucc can defined as follows:

call2entry(ASub, Goal, Head) = unify(ASub, Head, Goal)
exit2succ(ASub, Goal, Head) = unify(ASub, Goal, Head)

However, extend, together with project, augment, and amgu are all domain-
dependent. In the Sharing domain, extend [MH92], project, and augment are
defined as follows:

extend(Call, g, Prime) = Callg U { s \ s G Cali* (s n g) G Prime }
project(g, sh) = {s n g \ s G sh} \ {0}
augment(g, sh) = sh U {{x} | x G g}

In the Shfr domain, these functions are defined as follows [MH91]:

projectf(g, (sh, /)) = (project(g, sh), f n g)
augment?(g, (sh, /)) = (augment(g, sh), f U g)
extendf ((shi, / i) , g, (sh2, / 2)) = (extend(shi, g, sh2), / ')
/ ' = f2 U {x I x G (/i \ ff), ((u O n á) c /2}

3.1 A b s t r a c t Funct ions for T o p - D o w n A n a l y s i s in t h e
C l i q u e - D o m a i n s

Functions call2entry and exit2succ have usually been defined in a way which is
specific to the domain and for top-down analysis (see, e.g., [MH92] for a definition

for set-sharing). We have chosen instead to present here a formalization of a way
to use the amgu in top-down frameworks. Thus, the definitions of calVZentry
and exit'lsucc based on amgu given above. Our intuition in doing this is tha t
the results should be (more) comparable to goal-dependent bot tom-up analyses,
where amgu is used directly.

Note, however, tha t such definitions imply a possible loss of precisión. Using
amgu in the way explained above does not allow to take advantage of the fact
tha t all variables in the head of the clause being entered during analysis are free.
Alternative definitions of calVZentry can be obtained tha t improve precisión
from this observation.2 The overall effect would be equivalent to using the amgu
function for the Sharing domain coupled with freeness, with the head variables
as free variables, and then throwing out the freeness component of the result.
For example, for the Clique-Sharing domain a function call2entrys tha t takes
advantage of freeness information can be defined as follows, where unifysf is
the versión of unify tha t uses amgusf:

call2entrys(ASub, Goal, Head) = ASub'
where (ASub1, Free) = unify?((ASub, 0), Head, Goal)

However, for the reasons mentioned above, we have used the definitions of
calVZentry and exitZsucc based on amgu. The rest of the top-down functions
are defined below. For the Clique-Sharing domain, let g G Term, and (el, sh) G
SHW. Functions projects and augmenf are defined as follows:

projects(g, (el, sh)) = (project(g, cl),project(g, sh))
augments(g, (el, sh)) = (el, augment(g, sh))

Function extends(Cali,g,Prime) is defined as follows. Let Cali = (cl\,shi)
and Prime = (c¿2, sii2). Let normalize be a function which normalizes a pair
(cl,sh) so that no powersets oceur in sh (all are "transferred" to diques in el;
Section 4 presents a possible implementation of such a function). Let Prime be
already normalized, and:

(cV, sh') = normalize((cl\ U (cl\ &l sh\q), sh\q))

The following two functions lift the classical extend [MH92] respectively to
the cases of the two clique sets (clique groups of the Cali allowed by the clique
component of the Prime) and of the two sharing sets (sharing groups belonging
to the Cali allowed by the sharing part of the Prime):

extsh(sh\, g, sh^) = sh\g U { s \ s G sh', (s n g) G shi }
extcl(cl\, g, CI2) = rel(g, cl\) U { (s' n s) U (s' \g) \ s' G el', s G cli }

The following two functions account respectively for the sharing sets belonging
to the clique component of the Cali allowed by the sharing par t of the Prime,

2 For example, one such definition (developed independently) can be found in [AS05].

and the sharing sets of the sharing component of the Cali allowed by the clique
par t of the Prime:

clsh{cl', g, sh2) = { s I s C c G el', (s n g) G sh2 }
shcl{sh', <;, c/2) = { s | s G s/i', (s fl g) C c G c/2 }

The extend function for the Clique-Sharing domain is thus:

extends {{cl\, sh\), g, (c/2, s/12)) =
(extcl{cl\, g, c/2)
, extsh{sh\, g, s/12) U clsh{cl', g, s/12) U shcl{sh', g, c/2))

Example 4- Let Ca/Z = {cl\, sh\) = ({xyz}, {w,-y}), Prime = (c/2, s/12) =
({#}, {««}), and 3 = {x,w,-y}. Then we have {cl',sh') = {{xyzuv},%). The
extends function is computed as follows:

extsh{sh\, g, s/12) = extsh{{u, v}, g, {uv}) = 0
exíc/(c/i, <;, c/2) = extcl({xyz}, g, {x}) = {xyz, yz}
clsh(cl', g, s/12) = clsh({xyzuv}, g, {uv}) = {yzuv, yuv, zuv, uv}
shcl(sh', g, c/2) = shcl(tf), g, {x}) = 0

Thus, extend6,'{Cali, g, Prime) = {{xyz,yz}, {yzuv, yuv, zuv,uv\), which after
regularization yields {{xyz}, {yzuv, yuv, zuv, uv}).

Note how the result is less precise than the exact result {{xyz}, {uv}). This
is due to overestimation of sharing implied by the diques; in particular, for
the case of extend, overestimations stem mainly from the necessary worst-case
assumption given by {cl',sh'), which is then "pruned" as much as possible by
the functions defined above. The resulting operation, however, is correct: the
sharing implied by extends on two abstract substitutions Cali and Prime is
an over-approximation of tha t given by extend on the sharing set substitutions
corresponding to Cali and Prime.

T h e o r e m 1. Let Cali G SHW, Prime G SHW, and g G Term, such that the
conditions for the extend function are satisfied. Let Cali = {cl\, sh\), Prime =
(c/2, s/12), o/nd extends{Cali, g, Prime) = {el', sh'). Then

{ ¿le/' U sh') D extend{ ¿lc/i U sh\, g, ¿lc/2 U sh2) .

For the Clique-Shfr domain, let g G Term, and s G SHFW, s = {{el, sh), /) .
Functions projecff and augmenf? are defined as follows:

projectsf{g, s) = {projects{g, {el, sh)), f n g)
augment8f (g, s) = {augmenf {g, {el, sh)), f U g)

Function extendsf {Call, g, Prime) is defined as follows. Let Call = ((c/i, sh\), f\)
and Prime = ((c/2, s/12), f'2), extends?{Call, g, Prime) = {{el', sh'), / ') , where:

{el', sh') = extends{{cl\, sh\), g, {cl2, s/12))
/ ' = f2 U {x I x G (/ i \ g), {{U{sh'x U <)) Hg)C / 2 }

Operation extendsf is correct: it gives safe approximations. The resulting
sharing it implies when applied on two abstract substitutions Cali and Prime is
no less than that given by extend? on the sharing set substitutions corresponding
to Cali and Prime; and the freeness is no more than what extend? would have
computed.

Theorem 2. Let Cali G SHFW, Prime G SHFW, and g G Term, such that
the conditions for the extend function are satisfied. Let Cali = ((c/i, shi),fi),
Prime = ((c¿2, s/12), f'2), and extends? (Cali, g, Prime) = ((el1, sh'), / ') . Let also
si = Ú) cl\ U sh\, S2 = Ú) c/2 U sh,2, and extend? ((si, f \) , g, (s2, f'2)) = (sh, /) .
Then (iJjcZ' U sh') D sh and f C / .

4 Detecting Cliques

Obviously to minimize the representation in SHW it pays off to replace any set
5 of sharing groups which is the proper powerset of some set of variables C by
including C as a clique. Once this is done, the set S can be eliminated from the
sharing set, since the presence of C in the clique set makes S redundant. This is
the normalization mentioned in Section 3.1 when defining extend for the Clique-
Sharing domain, and denoted there by a normalize function. In this section we
present an algorithm for such a normalization.

Given an element (el, sh) G SHW, sharing groups might oceur in sh which
are already implicit in el. Such groups are redundant with respect to the sharing
represented by the pair. We say that an element (el, sh) G SHW is mínímal if
lile/ n sh = 0. An algorithm for minimization is straightforward: it should delete
from sh all sharing groups which are a subset of an existing clique in el. But
normalization goes a step further by "moving sharing" from the sharing set of
a pair to the clique set, thus forcing redundaney of some sharing groups (which
can therefore be eliminated).

While normalizing, it turns out that powersets may exist which can be ob-
tained from sharing groups in the sharing set plus sharing groups implied by
existing cliques in the clique set. The representation can be minimized further if

1
2
3
4
5
6
7
8
9

10

11

Let n = \sh\; if n < 3, stop.
Compute the máximum m such that n > 2
Let i = m.
If i = 1, stop.
Let C = {s s e sh, \s\ = i}.
If C = 0 then decrement i and go to 4.
Take S e C and delete it from C.
Let SS = {s\ s esh,sC S}.
Compute [S].
If IS^I = 2i - 1 - [S] then:
(a) Add S to el (regularize el).
(b) Subtract SS from sh.
Go to 6.

Fig. 1. Algorithm for detecting cliques

such sharing groups are also "transferred" to the clique set by adding the ade-
quate clique. We say that an element (el, sh) G SHW is normalízed if whenever
there is an s C (\\)cl U sh) such that s =[c for some set c then s n sh = 0.

Our normalization algorithm is presented in Figure 1. It starts with an ele­
ment (el, sh) G SHW, which is already minimal, and obtains an equivalent ele­
ment (w.r.t. the sharing represented) which is normalized and minimal. First, the
number m is computed, which is the length of the longest possible clique. Then
the sharing set sh is traversed to obtain candidate diques of the greatest possible
length i (which starts in m and is iteratively decremented). Existing subsets of a
candidate clique S of length i are extracted from sh. If there are 2* — 1 — [S] sub­
sets of S in sh then S is a clique: it is added to el and its subsets deleted from sh.
Note that the test is performed on the number of existing subsets, and requires
the computation of a number [S], which is crucial for the correetness of the test.

The number [S] stands for the number of subsets of S which may not appear
in sh because they are already represented in el (i.e., they are already subsets of
an existing clique). In order to correctly compute this number it is essential that
the input to the algorithm be already minimal; otherwise, redundant sharing
groups might bias the calculation: the formula below may count as not present
in sh a (redundant) group which is in fact present. The computation of [S] is as
follows. Let I = {S n C | C G el} \ {0} and Ai = {C\A \ACI, \A\ = i}. Then:

[S] = E (-1)'"1 E (2|A| - !)
i<¿< | / | AeAi

Note that the representation can be minimized further by eliminating diques
which are redundant with other diques. This is the regularization mentioned in
step 10 of the algorithm. We say that a clique set el is regular if there are no
two diques c\ G el, C2 G el, such that c\ C c<i. This can be tested while adding
diques in step 10 above.

Finally, there is a chance for further minimization by considering as diques
candidate sets of variables such that not all of their subsets exist in the given
element of SHW. Note that the algorithm preserves precisión, since the sharing
represented by the element of SHW input to the algorithm is the same as that
represented by the element which is output. However, we could set up a threshold
for the number of subsets of the candidate clique that need be detected, and in
this case the output element may in general represent more sharing. This might
in fact be useful in practice in order to use the normalization algorithm as a
widening operation. Note that, although the complexity of this algorithm is
exponential since it is actually the problem of solving all the maximal diques
of an undirected graph (NP-complete), it is not a practical problem due to the
small size of these graphs.

5 Widening Set-Sharing

A widen function for SHW is based on a widening operator y : SHW —s- SHW,
which must guarantee that for each clsh G SHW, xjclsh D clsh. The following
theorem is necessary to establish the correetness of the widenings used:

Theorem 3. Let clsh G SHW and equation x = t, x G V, t G Term, we have

amgus(xjclsh, x = t) D amgus(clsh, x = t)

For our experiments we start defining two widenings. The first of them,
by [Fec96], is of an intermedíate precisión and it is as follows:

\/F(cl,sh) = (clUsh, 0)

The second widening was defined in [ZBH99] as a cautious widening (because
it did not introduce new sharing sets, although obviously information was lost
as soon as the operations for the Clique-Sharing domain were used) and the idea
was to define an undirected graph from an element clsh G SHW and compute
the maximal diques of that graph:

V
G(cl,sh) = ({C\,...,Ck},sh)

where C\,..., C¡. are all the maximal diques of the induced graph from (el, sh).
For the experimental evaluation in [ZBH99] a versión of this cautious widening
V9 was used which is equivalent to the previous one but disregarding the sin-
gletons. It is easy to see that our normalization process is totally equivalent to
the computation of the maximal diques of a graph and thus we will use the nor­
malization process as a cautious widening \/N. In the same way as [ZBH99], we
use a more precise versión of \/N which is based on disregarding the singletons
called y" -

Since diques should only be used when it is strictly necessary to keep the
analysis from running out of memory its application is guarded by a condition.
We use the simplest possible condition based on cardinality of the sets in SHW,
imposing a threshold n on cardinality which triggers the widening. We have
tuned the threshold in order to be able to achieve a reasonable trade-off between
the objective of triggering widening only when strictly required and preventing
running out of memory in all cases. For each widening, the triggering condition
is defined as follows:

mden(cl, sh) = í Y\\\h) * (£ -€ .* N) > n
K [(el, sh) otherwise

6 Experimental Results

We have measured experimentally the relative efiiciency and precisión obtained
with the inclusión of diques both as an alternative representation in the Sharing
and Shfr domains and as a widening in the Shfr domain. Our first objective is to
study the implications of the change in representation for analysis: although the
introduction of diques does not by itself imply a loss of precisión, the abstract
operations for diques are not precise. We first want to measure such loss in
practice. Second, to minimize precisión loss, the clique representation should
ideally be used only whenever necessary, i.e., when the classical representation

cannot deal with the analysis of the program at hand. In this case, we will be
using the clique representation as a widening to guarantee (smooth) termination
of the analysis, i.e., that analysis does not abort because of running out of
memory. It turns out that this is not a trivial task: it is not easy to determine
beforehand when analysis will need more memory than is available.

Benchmarks are divided into three groups. Because of space limitations, for
each group we only show a reduced number of the benchmarks actually used:
those which are more representative. The first group, append (app in the ta-
bles) through serialize (serial), is a set of simple programs, used as a testbed for
an analysis: they have only direct recursion and make a straightforward use of
unification (basically, for input/output of arguments i.e., they are moded). The
second group, aiakl through zebra, are more involved: they make use of mutual
recursion and of elabórate aliasing between arguments to some extent; some of
them are parts of "real" programs (aiakl is part of an analyzer of the AKL
language; prolog_read (plread) and rdtok are Prolog parsers). The benchmarks
in the third group are all (parts of) "real" programs: ann is the <fc-prolog par-
allelizer, peephole (peep) is the peephole optimizer of the SB-Prolog compiler,
qplan is the core of the Chat-80 application, and witt is a conceptual clustering
application.

Our results are shown in Tables 1 and 2. Columns labeled T show analysis
times in milliseconds, on a médium-loaded Pentium IV Xeon 2.0Ghz with two
processors, 4Gb of RAM memory, running Fedora Core 2.0, and averaging several
runs after eliminating the best and worst valúes. Ciao versión 1.11^326 and
CiaoPP 1.0^2292 were used. Columns labeled P (precisión) show the number of
sharing groups in the information inferred and, between parenthesis, the number
of sharing groups for the worst-case sharing. Columns labeled # W show the
number of widenings performed and columns labeled # C show the number of
clique groups. Since our top-down framework infers information at all program
points (before and after calling each clause body atom), and also several variants
for each program point, it is not trivial to provide a good absolute measure of
precisión: changes in precisión may cause more variants during analysis, which
in turn affect the precisión measure. Instead, we have chosen to provide the
accumulated number of sharing groups in all variants for all program points, in
order to be able to compare results in different situations.

6.1 Cliques as Alternative Representation

Table 1 shows the results for Sharing, Clique-Sharing, Shfr, and Clique-Shfr, for
the cases in which cliques are used as an alternative representation.

In order to understand the results it is important to note an existing syn-
ergy between normalization, emciency, and precisión when cliques are used as
an alternative representation. If normalization causes no change in the sharing
representation (i.e., sharing groups are not moved to cliques), usually because
powersets do not really occur during analysis, then the clique part is empty.
Analysis is the same as without cliques, but with the extra overhead due to the

use of the normalization process. Then precisión is the same but the time spent
in analyzing the program is a little longer. This also occurs often if the use of
normalization is kept to a minimum: only for correctness (in our implementa-
tion, normalization is required for correctness at least for the extend function
and other functions used for comparing abstract substitutions). This should not
be surprising, since the fact that powersets occur during analysis at a given time
does not necessarily mean that they keep on occurring afterward: they can disap-
pear because of groundness or other precisión improvements during subsequent
analysis (of, e.g., builtins).

Table 1. Precisión and Time-efnciency

app
deriv

mmat

qsort

query

serial

aiakl

boyer

brow

plread

rdtok

wplan

zebra

ann
peep

qplan

witt

Sh
T
11
35
13
24
11
306

35
369
30
400
325
3261

25

2382

831

-
405

P
29 (60)

27 (546)

14 (694)

30 (1716)

35 (501)

1734 (10531)

145 (13238)

1688 (4631)

69 (776)

1080 (408755)

1350 (11513)

8207 (42089)

280 (6740')

10000 (3M04)

2210 (12148)

-
858 (45-105)

SHW

T
8
27
11
25
13
90

42
267
29
465
344
1430

34

802
435
860
437

P
44 (60)

27 (546)

14 (694)

30 (1716)

35 (501)

2443 (10531)

145 (13238)

1997 (4631)

69 (776)

1080 (408755)

1391 (11513)

8191 (26857)

280 (6740')

19544 (3M04)

2920 (12118)

42404 (38405)

858 (45405)

#o
4
0
0
0
5
88

0
158
0
10
182
420
0

700
171
747
25

Shfr
T
6
27
9
25
12
61

37
373
29
425
335
1320

41

1791

508

-
484

P
7 (30)

21 (546)

12 (694)

30 (1716)

22 (501)

545 (5264)

145 (13238)

1739 (5036)

69 (776)

1050 (408634)

1047 (11513)

3068 (23501)

280 (6740')

7811 (404 04)

1475 (9941)

-
813 (45405)

SHwír
T
6
27
11
27
14
55

43
278
31
481
357
1264

42

968
403
2181

451

P
7 (30)

21 (546)

12 (694)

30 (1716)

22 (501)

736 (5264)

145 (13238)

2074 (5036)

69 (776)

1050 (408634)

1053 (11513)

5705 (25345)

280 (6740')

14108 (39404)

2825 (12410)

23 104 (31 105)

813 (45405)

#o
0
0
0
0
0
41

0
163
0
0
2

209
0

510
135
529
0

When the normalization process is used more often (like for example at every
cali to call2entry as we have done), then sharing groups are moved more often
to diques. Thus, the use of the operations that compute on clique sets produces
emciency gains, and also precisión losses, as it was expected. However, precisión
losses are not high. Finally, if normalization is used too often, then the analysis
process suffers from heavy overhead, causing too high penalty in emciency that it
makes the analysis intractable. Therefore it is very clear that a thorough tuning
of the use of the normalization process is crucial to lead analysis to good results
in terms of both precisión and emciency.

As usual in top-down analysis, the extend function plays a crucial role. In our
case, this function is a very important bottleneck for the use of normalization.
As we have said, we use the normalization for correctness at the beginning of
the extend function. Additionally, it would be convenient to use it also at the
end of such function, since the number of sharing groups can grow too much.
However, this is not possible in practice due to the clsh function, which can
genérate so many sharing groups that, at the limit, the normalization process

itself cannot run. Alternative definitions of clsh have been studied, but because
of the precisión losses incurred, they have been found impractical.

Table 1 shows that there are always programs whose analysis of which does
not produce diques. This occurs in some of the benchmarks (like all of the first
group but serialize and some of the second one such as aiakl, browse (brow),
prolog_read, and zebra). In this case, precisión is maintained as expected but
there is a small loss of emciency due to the extra overhead discussed above. The
same thing happens with benchmarks which produce diques (append, query,
prolog_read, and witt, in the case of Sharing without freeness), but this does not
affect precisión.

On the other hand, for those benchmarks which do genérate diques (like
serialize, boyer, warplan (wplan), ann, and peephole) the gain in emciency is
considerable at the cost of a small precisión loss. As usual, emciency and precisión
correlate inversely: if precisión increases then emciency decreases and vice versa.
A special case is, to some extent, that of rdtok, since precisión losses are not
coupled with emciency gains. The reason is that for this benchmark there are
extra success substitutions (which do not convey extra precisión and, in fact, the
result is less precise) that make the analysis times larger.

In general, the same effects are maintained with the addition of freeness,
although the emciency gains are lower whereas the precisión gains are a little
higher. The reason is that the amgusf function is less efficient than amgus (but
more precise). Overall, however, the trade-off between precisión and emciency
is beneficial. Moreover, the more compact representation of the dique domain
makes possible to analyze benchmarks (e.g., qplan) which ran out of memory
with the standard representation.

6.2 Widening Set-Sharing Via Cliques

As mentioned before, the intention of the widening operator is to limit the use of
cliques only to the cases where it is necessary in order to avoid analysis running
out of memory. This is not a trivial task, as explained below. Table 2 shows
results from our experiments for Shfr, Clique-Shfr using widening. The widenings
have been applied before each abstract unification and at the end of the extend
function, and they are guarded by the condition discussed in Section 5.

The choice of a suitable valué of the threshold is a key issue, since this thresh-
old is responsible for triggering widening only for the cases where it is needed.
In a top-down framework the choice of threshold is further complicated by the
extend function. As commented above, this function and, in particular, the clsh
function defined in Section 3.1 can make the number of sharing groups grow
excessively after every cali, since that function generates powersets of the given
cliques. In order to sol ve this problem we studied two different alternatives.

First, we tried a more efficient versión of the clsh function, which moved some
extra sharing groups to cliques. This, however, resulted in excessive precisión
losses which reduced the usefulness of the analysis. Given this, we also developed
a hybrid approach for the case of y " , where y™ is used in unifications but the
more aggressive \/F is used after calling clsh. We cali this versión \/nF.

As for practical thresholds, we have concluded experimentally that an appro­
priate valué for the guard for the widenings in our test platform is 250. This is
the highest valué that prevenís analysis from running out of memory. However,
as we will see, it also triggers widening for a few cases where it is not needed. For
the additional threshold used in the \/nF operations (Section 4) we have deter-
mined that 40% is an appropriate valué since, although low, it gives surprisingly
good results. The results in Table 2 thus correspond to V250 a n (i V 250-40 •

Table 2. Precisión and Time-efnciency with Widening

app
deriv
mmat
qsort
query
serial

aiakl
boyer
brow
plread
rdtok
wplan
zebra

ann
peep
qplan
witt

Shfr
T

6
27
9

25
12
61

37
373

29
425
335

1320
41

1791
508

-
484

P
7 (30)

21 (546)
12 (694)

30 (1716)
22 (501)

545 (5264)

145 (13238)
1739 (5036)

69 (776)
1050 (408634)
1047 (11513)
3068 (23501)
280 (67400

7811 (401220)
1475 (9941)

-
813 (4545594)

SHwfr+^250
T
11
48
16
40
23
74

63
561
44

3419
472

1878
42

751
453

1722
2333

P
7 (30)

21 (546)
12 (694)

30 (1716)
22 (501)

722 (5264)

145 (13238)
1744 (5036)

69 (776)
24856 (1754310)

1047 (11513)
5376 (21586)
280 (67400

16122 (394800)
2827 (12410)

238426 (3141556)
259366 (23378597)

#W
0
0
0
0
0
6

6
2
0

198
0

42
1

17
8

26
110

S i ^ f r + v a f o - t ó
T
10
35
16
43
25
70

61
536
42

593
466

1394
56

726
512

1897
736

P
7 (30)

21 (546)
12 (694)

30 (1716)
22 (501)

703 (5264)

145 (13238)
1743 (5036)

69 (776)
1050 (408634)

1047 (11513)
5121 (20894)
280 (67400

16122 (394800)
2815 (12410)

233070 (3126973)
813 (4545594)

#W
0
0
0
0
0

10

33
4
0

103
0

60
48

34
16
55

140

As expected, the use of widening allows executing programs which the Shfr
domain could not due to exceeded memory capacity. However, as mentioned in
the discussion of the threshold, we do also widen for some benchmarks which
the original domain could handle. Fortunately, the precisión losses are limited.

Widening operator V250-40 r e s u l t s at least as precise as V250 a n (i , f°r m o s t
of the cases, better. In fact, the results obtained for prolog_read and witt using
V250 a r e remarkable since the information obtained is very poor.

The difference in time efticiency between V250 a n (i V250-40 ^s a c c ePt able,
and in fact for some programs V 250-40 is m o r e efticient than viso- Note that
for prolog_read and witt the difference is considerable in favor of V250-40 • There
appears to be a clear correspondence between number of widenings and efticiency
gains. This holds even if the widening operations are expensive, such as with
V 250-40) because the widening expense is offset by efticiency gains in the abstract
operations due to the reduction in the size of the abstract substitutions being
processed.

7 Conclusions

We have studied the problem of efficient, scalable set-sharing analysis of logic
programs using diques both as alternative representation and as widenings. We
have concentrated on the previously unexplored case of inferring set-sharing
information in the context of top-down analyses. To this end, we have proposed
all the operations required for top-down analyses for the cases of combining
diques with both Sharing and Sharing+Preeness. We have also proposed and
studied several widenings, providing different levéis of precisión and efficiency
tradeoff.

Our experimental evaluation supports the conclusión tha t , for inferring set-
sharing, the use of diques as an alternative representation results in limited preci­
sión losses (due to normalizations) while useful efficiency gains are obtained. We
have also derives useful conclusions regarding the interactions between thresh-
olds, precisión, efficiency and cost of widening which have resulted in the proposal
of a hybrid widening which resulted quite useful in practice. In fact, the new rep-
resentations allowed analyzing some programs tha t exceeded memory capacity
using classical sharing representations. Thus, we believe our results contribute
to the practical application of top-down analysis of set sharing.

References

[AS05] Gianluca Amato and Francesca Scozzari. Optimality in goal-dependent
analysis of sharing. Technical Report TR-05-06, Dipartimento di Infor­
mática, Universitá di Pisa, 2005.

[BCM94] M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a
composite domain deriving sharing and freeness properties of program
variables. In F.S. de Boer and M. Gabbrielli, editors, Verification and
Analysis of Logic Languages, pages 213-230, 1994.

[BHZ02] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Set-sharing is
redundant for pair-sharing. Theoretical Computer Science, 277(l-2):3-46,
2002.

[BNH05] F. Bueno, J. Navas, and M. Hermenegildo. Sharing, freeness, linearity,
redundancy, widenings, and diques. Technical Report CLIP5/2005.0,
Technical University of Madrid (UPM), School of Computer Science,
UPM, April 2005.

[CDFB96] Michael Codish, Dennis Dams, Gilberto Filé, and Maurice Bruynooghe.
On the design of a correct freeness analysis for logic programs. The
Journal of Logic Programming, 28(3):181-206, 1996.

[CMB+93] M. Codish, A. Mulkers, M. Bruynooghe, M. García de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining
Domains. In Proc. ACM SIGPLAN Symposium on Partial Evaluation
and Semantics Based Program Manipulation, pages 194-206. ACM, June
1993.

[Fec96] Christian Fecht. An efficient and precise sharing domain for logic pro­
grams. In Herbert Kuchen and S. Doaitse Swierstra, editors, PLILP, vol-
ume 1140 of Lecture Notes in Computer Science, pages 469-470. Springer,
1996.

[Fil94] G. Filé. Share x Free: Simple and correct. Technical Report 15, Dipar-
tamento di Matemática, Universita di Padova, December 1994.

[HBPLG99] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program
Analysis, Debugging and Optimization Using the Ciao System Prepro-
cessor. In 1999 Int'l. Conference on Logic Programming, pages 52-66,
Cambridge, MA, November 1999. MIT Press.

[HPMSOO] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental
Analysis of Constraint Logic Programs. ACM Transactions on Program­
ming Languages and Systems, 22(2):187-223, March 2000.

[HZB04] P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise and efñcient
integration of set-sharing, freeness and linearity for the analysis of finite
and rational tree languages. Theory and Practice of Logic Programming,
4(3):289-323, 2004.

[JL92] D. Jacobs and A. Langen. Static Analysis of Logic Programs for In-
dependent And-Parallelism. Journal of Logic Programming, 13(2 and
3):291-314, July 1992.

[KS94] A. King and P. Soper. Depth-k Sharing and Freeness. In International
Conference on Logic Programming. MIT Press, June 1994.

[MH90] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computa-
tion Algorithm for Top-down Abstract Interpretation of Logic Programs.
Technical Report ACT-DC-153-90, Microelectronics and Computer Tech­
nology Corporation (MCC), Austin, TX 78759, April 1990.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of
Sharing and Freeness of Program Variables Through Abstract Interpre­
tation. In 1991 International Conference on Logic Programming, pages
49-63. MIT Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Vari­
able Dependency Using Abstract Interpretation. Journal of Logic Pro­
gramming, 13(2/3):315-347, July 1992.

[MSJB95] A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On the
Practicality of Abstract Equation Systems. In International Conference
on Logic Programming. MIT Press, June 1995.

[ZafOl] Enea Zaffanella. Correctness, Precisión and Efficiency in the Sharing
Analysis of Real Logic Languages. PhD thesis, School of Computing,
University of Leeds, Leeds, U.K., 2001.

[ZBH99] E. Zaffanella, R. Bagnara, and P. M. Hill. Widening Sharing. In G. Na-
dathur, editor, Principies and Practice of Declarative Programming, vol-
ume 1702 of Lecture Notes in Computer Science, pages 414-431, Paris,
France, 1999. Springer-Verlag, Berlin.

