
A study of set-sharing analysis via diques

Jorge Navas1 Francisco Bueno2 Manuel Hermenegildo1 '2

jorgeQcs.unm.edu, hermeQunm.edu,
{bueno, hermejQfi.upm.es

1Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New México,
Albuquerque, NM, USA.

2School of Computer Science, T. U. Madrid (UPM), Madrid, Spain

Abstract. We study the problem of efñcient, scalable set-sharing analy­
sis of logic programs. We use the idea of representing sharing information
as a pair of abstract substitutions, one of which is a worst-case sharing
representation called a clique set, which was previously proposed for the
case of inferring pair-sharing. We use the clique-set representation for (1)
inferring actual set-sharing information, and (2) analysis within a top-
down framework. In particular, we define the abstract functions required
by standard top-down analyses, both for sharing alone and also for the
case of including freeness in addition to sharing. Our experimental evalu-
ation supports the conclusión that, for inferring set-sharing, as it was the
case for inferring pair-sharing, precisión losses are limited, while useful
efñciency gains are obtained. At the limit, the clique-set representation
allowed analyzing some programs that exceeded memory capacity using
classical sharing representations.

1 Introduction

In static analysis of logic programs the tracking of variables shared among terms
is essential. Arguably, the most accurate abstract domain deñned for tracking
sharing is the Sharing domain [JL92,MH92], which represents variable occur­
rences, i.e., the possible occurrences of run-time variables within the terms to
which program variables will be bound. In this paper we s tudy an alternative
representation for this domain.

Example 1. Let V = {x, y, z) be a set of variables of interest. A substitution such
as {x/f(ui, «2, vi, V2, w),y/g(vi,V2,w), z/g(w, w)} will be abstracted in Sharing
as {x, xy, xyz}.1 Sharing group x in the abstraction represents the occurrence of
run-time variables u\ and u<i in the concrete substitution, xy represents v\ and
V2, and xyz represents w. Note tha t the number of (occurrences of) run-time
variables shared is abstracted away.

1 To simplify notation, we denote a sharing group (a set of variables representing
sharing) by the concatenation of its variables, e.g., xyz is {x,y,z}.

http://jorgeQcs.unm.edu
http://hermeQunm.edu

Sharing analysis has been used for inferring several interesting properties of
programs; most notably (but not only), variable independence. Several program
variables are said to be independent if the terms they are bound to do not have
(run-time) variables in common. Variable independence is the counterpart of
sharing: program variables share when the terms they are bound to do have
run-time variables in common. When we are talking of only two variables then
we refer to pair-sharing, and when it is more than two variables we refer to
set-sharing. Sharing abstract domains are used to infer possíble sharing, Le., the
possibility that shared variables exist, and thus, in the absence of such possibility,
definíte information about independence.

Example 2. Let V = {x,y,z} be variables of interest. A Sharing abstract sub-
stitution such as {x, y, z) (which denotes the set of the singleton sets containing
each variable) represents that all three variables are independent.

The Sharing domain has deserved a lot of attention in the literature in the
past. It has been enhanced in several ways [Fil94,ZBH99]. It has also been ex­
tended with other kinds of information, the most relevant of which being freeness
and linearity [JL92,CDFB96,HZB04], but also for example information about
term structure [KS94,BCM94,MSJB95]. Its combination with other abstract do­
mains has also been studied to a great extent [CMB+93,Fec96]. In particular,
in [ZBH99] an alternative representation for Sharing is proposed for the non-
redundant domain of [BHZ97] and this representation is thoroughly studied for
inferring pair-sharing. A new component is added to abstract substitutions that
represents sets of variables, the powerset of which would have been part of the
original abstract substitution. Such sets are called diques.

Example 3. Let V be as above. Consider the abstraction {x, xy, xyz, xz, y, yz, z},
Le., the powerset of V (without the empty set). Such an abstraction conveys
no information: there might be run-time variables shared by any pair of the
three program variables, by the three of them, or not shared at all. However,
abstractions such as this one are expensive to process during analysis: they
penalize efñciency for no beneñt at all. The clique that will convey the same
information is simply the set V.

A clique is thus a compact representation for a piece of sharing which in
fact does not convey any useful information. The resulting precisión and efñ­
ciency results for the case of inferring pair-sharing were reported in [ZBH99].
In [ZafOl] diques are incorporated to the original Sharing domain, but preci­
sión and efñciency are again studied for the case of inferring pair-sharing. Here,
we are interested in studying precisión and efñciency for the different case of
inferring set-sharing. Another difference with previous work is that we develop
the analysis for a top-down analysis framework, which requires the deñnition of
additional abstract functions in the domain. Such functions were not deñned in
the previous works cited, since bottom-up analyses were used there.

The rest of the paper proceeds as follows. Notation and preliminaries are
presented in Section 2. Then Section 3 introduces the representation based on

diques and the clique-domains for set-sharing and set-sharing with freeness. In
Section 4 the required functions for top-down analysis are deñned. In Section 5
we present an algorithm for detecting diques, and in Section 6 our experimental
evaluation of the proposed analyses. Finally Sedion 7 condudes.

2 Preliminaries

Let p(S) denote the powerset of set S, and p°(S) denote the proper powerset of
set S, Le., p°(S) = p(S) \ {0}. Let also \S\ denote the cardinality of a set S.

Let V be a set of variables of interest; e.g., the variables of a program.
A sharing group is a set of variables of interest, which represents the possible
sharing among them (Le., that they might be bound to terms which have a
common variable). Let SG = p°(V) be the set of all sharing groups. A sharing
set is a set of sharing groups. The Sharing domain is SH = p(SG), the set of all
sharing sets.

For two elements s-¡_ G SH, S2 G SH, let s-¡_ \& S2 be their binary unión, Le.,
the result of applying unión to each pair in their Cartesian product si x S2- Let
also s* be the star unión of si, Le., its closure under unión. Given terms s and
t, and sh G SH, we denote by sht the set of sets in sh which have non-empty
intersection with the set of variables of t. By extensión, in shst st acts as a single
term. Also, sht is the complement of sht, Le., sh\ sht.

Let F and P be sets of ranked (Le., with a given arity) functors of interest;
e.g., the function symbols and the predicate symbols of a program. We will use
Term to denote the set of terms constructed from V and F U P. Although
somehow unorthodox, this will allow us to simply write g G Term whether g is
a term or a predicate atom, since all our operations apply equally well to both
classes of syntactic objects. We will denote t the set of variables of t G Term.
For two elements s G Term and t G Term, st = s U í .

Analysis of a program proceeds by abstractly solving uniñcation equations
of the form ti = Í2, ¿i G Term, ti G Term. Let solve(t\ = ¿2) denote the
solved form of uniñcation equation ti = Í2- The results of analysis are abstract
substitutions which approximate the concrete substitutions that may occur dur-
ing execution of the program. Let U be a denumerable set of variables (e.g., the
variables that may occur during execution of a program). Concrete substitutions
that occur during execution are mappings from V to the set of terms constructed
from U U V and F. Abstract substitutions are sharing sets.

3 Clique domains

When a sharing set sh G SH includes the proper powerset of some set C of
variables, the representation can be made more compact by using C to represent
the same sharing that its powerset represents in the sharing set sh [ZBH99].
The proper powerset of C can then be eliminated from sh, since it is already
represented by C. In fact, we will be using pairs (el, sh) of two sharing sets. The

second one represents sharing as in SH. However, in the ñrst one, each element
C G el represents the sharing tha t in SH would be represented by p°(C).

A dique is, thus, a set of variables of interest, much the same as a sharing
group, but a clique C represents all the sharing groups in p°(C). For a clique C,
we will use [C = p°(C). Note tha t [C denotes all the sharing tha t is implicitly
represented in a clique C. A dique set is a set of diques. Let CL = SH denote
the set of all clique sets. For a clique set el G CL we define ¿le/ = L^jC | C e cí}.
Note tha t ¿le/ denotes all the sharing tha t is implicitly represented in a clique
set el. For a pair (el, sh) of a clique set el and a sharing set sh, the sharing tha t
the pair represents is ¿le/ U sh.

The Clique-Sharing domain is SHW = {(el, sh) | el G CL, sh G SH}, Le.,
the set of pairs of a clique set and a sharing set [ZBH99]. An abstract uniñcation
operation amguw is deñned in [ZafOl] which uses a function reí : p(V) x CL —>
CL, deñned as:

rel(S, el) = { C \ S | C G el } \ {0}

and (amguw) is equivalent to the following deñnition:

amgus(x = t, {el, sh))

(el , shxt U (shx &l sh*)) if clx = clt =
(rel{xt, el) , shxt) if clx = shx =

or clt = sht =
(rel(xt, el) U {U(clx U clt U shx l¡ sht)}
, shTt) otherwise

Freeness can be introduced to the Clique-Sharing domain in the usual way [MH91],
by including a component which tracks the variables which are known to be free.
The Clique-Sharing+Freeness domain is thus SHFW = SHW x V.

Abstract uniñcation amgusf for equation x = t, x G V, t G Term, and
s G SHFW, s = ((el, sh), f), is given by amgusf (x = t,s) = ((el1, sh'), / ') , with:

Í
amgusff(x = t, (el, sh)) if x G / or t G /
amgusfl(x = t, (el, sh)) if x G' / , t G' / and lins(t)
amgus(x = t,(cl, sh)) otherwise

where lins(t) holds iff t is a linear term and2 for all {y, z} Ct such tha t y ^ z,
shy n s/iz = 0 and cly n c/z = 0; and:

amgusff (x = t, (el, sh)) = (rel(xt, c/)U
((clx U shx) &l c/¿) U (clx «l s/ií)

amgus' (x = t, (el, sh))

, shxt U (shx &l sht))

(rel(xt, el) U (clx \£ {Usht})

, sh^t U (shx « s/^)) if c/¿ = 0

(rel(xt, el) U ((c/^ U shx) «I {U(c/¿ U sht)})

, shxt) if clt ^ 0

2 Note that checking this second condition can be rather expensive. Instead, the fol­
lowing, which is more eñicient, can be checked: for all s e (sht U clt), \sC\t\ = 1.

file:///sC/t/

{/ if x G /, t G /

f\(u(shxudx)) if xef,t¿f
f\(U(shtUclt)) if x¿f,t€f
f \ (l)((shx U clx) U (sht U clt))) if x ¿ f, t ¿ f

The operation amgusf deñned above is a simpliñcation of the corresponding
operation which results from the method outlined in [ZafOl] to obtain an abstract
uniñcation for SHW plus freeness and linearity.

4 Abstract functions required by top-down analysis
In top-down analysis frameworks, the analysis of a clause Head:-Body is as
follows. There is a goal Goal for the predicate of Head, which is called in a
context represented by abstract substi tution Cali on a set of variables (distinct
from Head U Body) which contains the variables of Goal. Then the success of
Goal by executing the above clause is represented by abstract substi tution Succ
given by:

Succ = extend{Call, Goal, Prime)
Prime = exit2succ(project(Head, Exit), Goal, Head)
Exit = entry2exit{Body, Entry)
Entry = augment(F, call2entry(Proj, Goal, Head))
Proj = project(Goal, Cali)

where F is any term with the variables Body \ Head. Function project approxi-
mates the projection of a substi tution on the variables of a given term. Function
augment extends the domain of an abstract substi tution to the variables of a
given term, which are assumed to be new fresh variables. The rest of the func­
tions are as follows:

call2entry(Proj, Goal, Head)
yields a substi tution on the variables of Head which represents the effects of
uniñcation Goal = Head in a context represented by substitution Proj on
the variables of Goal.

entry2exit(Body, Entry)
yields a substi tution which represents the success of Body when called in
a context represented by substitution Entry. Both substitutions have a do­
main which includes the variables of Body, and the domain of the resulting
substitution includes the domain of Entry.

exit2succ{Exit'', Goal, Head)
yields a substi tution on the variables of Goal which represents the effects of
uniñcation Goal = Head in a context represented by substitution Exit' on
the variables of Head.

extend(Call, Goal, Prime)
yields a substitution for the success of Goal when it is called in a context
represented by substitution Cali on a set of variables which contains the
variables of Goal, given tha t in such context the success of Goal is already
represented by substitution Prime on the variables of Goal. The domain of
the resulting substitution is the same as the domain of Cali.

Function entry'lexit is given by the framework, and basically traverses the
body of a clause, analyzing each atom in turn. The three domain-dependent
abstract functions which are essential are: call2entry, exit2succ, and extend.
The ñrst two can be deñned from the abstract uniñcation operation amgu. The
third one, however, is speciñc to the top-down framework and needs to be deñned
speciñcally for a given domain.

Given an operation amgu(x = t,ASub) of abstract uniñcation for equation
x = t, x G V, t G Term, and ASub an abstract substi tution (the domain of which
contains variables í U {#}), abstract uniñcation for equation t\ = t2, t\ & Term,
Í2 £ Term, is given by:

unify(ASub, t\, t2) = project(ti, Amgu(solve{t\ = t2), augment{t\, ASub)))

(ASub iíEq = íD
Amgu^q,Aauo) <yAmgu^Eq^amgu(^x = t^ASuh^ if Eq = Eq> U {x = t}

Functions call'lentry and exit'lsucc can deñned as follows:

call2entry(ASub, Goal, Head) = unify(ASub, Head, Goal)
exit2succ(ASub, Goal, Head) = unify(ASub, Goal, Head)

However, extend, together with project, augment, and amgu are all domain-
dependent. In the Sharing domain, extend [MH92], project, and augment are
deñned as follows:

extend{Call, g, Prime) = Callg U { s \ s G Cali* (s n g) G Prime }

project(g, sh) = {s n g \ s G sh} \ {0}

augment(g, sh) = sh U {{x} \ x G g}

In the Sharing+Freeness domain, these functions are deñned as follows [MH91]:

project1 {g, (sh, /)) = (project(g, sh), f n g)

augment' (g, (sh, /)) = (augment(g, sh), f U g)

extend1 ((shi, fi), g,(sh2, Í2)) = (sh',f)

sh' = extend(sh\, g, shq)

/ ' = / 2 U { i | i € (/ i \ g), ((UsK) Hg)C f2}

4.1 A b s t r a c t funct ions for t o p - d o w n analys i s in t h e C l i q u e - D o m a i n s

Fünctions call2entry and exit2succ have usually been deñned in a way which
is speciñc to the domain (see, e.g., [MH92] for a deñnition for set-sharing). We
have chosen instead to present here a formalization of a way to use amgu in
top-down frameworks. Thus, the deñnitions of call2entry and exit'lsucc based
on amgu given above. Our intuition in doing this is tha t the results should be
(more) comparable to goal-dependent bot tom-up analyses, where amgu is used
directly.

Note, however, tha t such deñnitions imply a possible loss of precisión. Using
amgu in the way explained above does not allow to take advantage of the fact
that all variables in the head of the clause being entered during analysis are free.
Alternative deñnitions of call'lentry can be obtained tha t improve precisión
from this observation. The overall effect would be equivalent to using the amgu
function for the Sharing domain coupled with freeness, with the head variables
as free variables, and then throwing out the freeness component of the result. For
example, for the Clique-Sharing domain a function call2entrys can be deñned
as follows, where unifysf is the versión of unify tha t uses amgusf:

call2entrys (ASub, Goal, Head) = ASub'
where (ASub', Free) = unifys¡ ((ASub, 0), Head, Goal)

However, for the reasons mentioned above, we have used the deñnitions of
calVlentry and exit2succ based on amgu. The rest of the top-down functions
are deñned below. For the Clique-Sharing domain, let g G Term, and (el, sh) G
SHW. Functions projects and augment8 are deñned as follows:

projects(g, (el, sh)) = (project(g, cl),project(g, sh))

augment8(g, (el, sh)) = (el, augment(g, sh))

Function extends(Call, g, Prime) is deñned as follows. Let Cali = (cl\, sh\) and
Prime = (el2, sh2). Let normalize be a function which normalizes a pair (el, sh)
so tha t no powersets oceur in sh (all are "transferred" to diques in el; Section 5
presents a possible implementation of such a function). Let Prime be already
normalized, and:

(el', sh') = normalize((cl\ U (cl\ &l sh\q), sh{*))

The following two functions lift the classical extend [MH92] respectively to
the cases of the two dique sets and of the two sharing sets occurring in each of
the pairs in Cali and Prime:

extsh(sh\, g, sh2) = sh\g U { s \ s G sh', (sC\ g) G sh2 }

extcl(cl\, g, cl2) = rel(g, ch) U { (s ' n s) U (s' \ g) \ s' G el', s G c/2 }

The following two functions account respectively for the cases of the d ique
set of Cali and the sharing set of Prime, and the other way around:

clsh(cl', g, sh2) = { s I s C c G el', (s n g) G sh2 }

shcl(sh', g, cl2) = { s \ s G sh', (s n j) C c G c¡2 }

The fünction extend for the Clique-Sharing domain is thus:

extends ((cl\, sh\), g, (c/2, sh2)) =
(extcl(cl\, g, c/2)
, extsh(sh\, g, sh2) U clsh(cl', <;, s/12) U shcl(sh', g, c/2))

Example 4- Let Ca// = (cli,shi) = ({xyz}, {w,-y}), Prime = (c/2, s/12) =
({1}, { W }) , and 3 = {x, w,-y}. Then we have (cl',sh') = ({xyzuv},%). The
fünction extends is computed as follows:

extsh(sh\, g, s/12) = extsh({u, v}, g, {uv}) = 0

extcl(cl\, <;, c/2) = extcl({xyz}, g, {x}) = {xyz, yz}

clsh(cl', g, s/12) = clsh({xyzuv}, g, {uv}) = {yzuv, yuv, zuv, uv}

shcl(sh', g, c/2) = shcl(tf), g, {x}) = 0

Thus, extend?{Cali, g, Prime) = {{xyz, yz}, {yzuv, yuv, zuv, uv}), which after
regularization yields {{xyz}, {yzuv, yuv, zuv, uv}).

Note how the result is less precise than the exact result {{xyz}, {uv}). This
is due to overestimation of sharing implied by the diques; in particular, for
the case of extend, overestimations stem mainly from the necessary worst-case
assumption given by {cl',sh'), which is then "pruned" as much as possible by
the functions deñned above.

T h e o r e m 1. Let Cali G SHW, Prime G SHW, and g G Term, such that the
conditions for the extend fünction are satisfied. Let Cali = {cl\, sh\), Prime =
(c/2, s/12), and extend?{Cali, g, Prime) = {el', sh'). Then

{ \¡)cl' U sh') D extend{ ijjc/i U s/ii, g, l¿c/2 U sh2) .

For the Clique-Sharing+Freeness domain, let g G Term, and s G SHFW,
s = {{el, sh), f). Functions projecff and augmenff are deñned as follows:

projectsf{g, s) = {projects{g, {el, sh)), f n g)

augments' {g, s) = {augments{g, {el, sh)), f U g)

Fünction extend?f (Cali, g, Prime) is deñned as follows. Let Cali = ((cl\, sh\), f\)
and Prime = ((c/2, s/12), Í2), extend8 f (Cali, g, Prime) = ((el', sh'), f), where:

(el', sh') = extend?((cli, sh\), g, (c/2, s/12))

/ ' = h U {x I x G (h \ g), ((U(sh'x U cl'x)) Dg)C f2}

T h e o r e m 2. Let Cali G SHFW, Prime G SHFW, and g G Term, such that
the conditions for the extend fünction are satisfied. Let Cali = ((c/i, sh\), f \) ,
Prime = ((c/2, sh2), f 2) , and extend8f (Cali, g, Prime) = ((el1, sh'), / ') . Let also
si = UJc/ iUs/ i i , S2 = UJC/2US/12, and extend?((si, f \) , g, (s2, f2)) = (sh,f).
Then

(Újcl'Ustí) D sh and f C / .

5 Detecting diques

Obviously to minimize the representation in SHW it pays off to replace any set
S of sharing groups which is the proper powerset of some set of variables C by
including C as a clique. Once this is done, the set S can be eliminated from the
sharing set, since the presence of C in the clique set makes S redundant. This is
the normalization mentioned in Section 4.1 when deñning extend for the Clique-
Sharing domain, and denoted there by a function normalize. In this section we
present an algorithm for such a normalization.

Given an element (el, sh) G SHW, sharing groups might oceur in sh which
are already implicit in el. Such groups are redundant with respect to the sharing
represented by the pair. We say that an element (el, sh) G SHW is mínímal if
¿le/ n sh = 0. An algorithm for minimization is straightforward: it should delete
from sh all sharing groups which are a subset of an existing clique in el. But
normalization goes a step further by "moving sharing" from the sharing set of
a pair to the clique set, thus forcing redundaney of some sharing groups (which
can therefore be eliminated).

While normalizing, it turns out that powersets may exist which can be ob-
tained from sharing groups in the sharing set plus sharing groups implied by
existing diques in the clique set. The representation can be minimized further if
such sharing groups are also "transferred" to the clique set by adding the ade-
quate clique. We say that an element (el, sh) G SHW is normalízed if whenever
there is an s C (¿icZ U sh) such that s =[c for some set c then s n sh = 0.

It is important to stress the fact that neither minimization ñor normalization
change the precisión of the sharing representation. They are both reductíons, or
compressions of the representation of a substitution, in the sense that the sub-
stitution is the same (i.e., conveys the same information) but its representation
is smaller. Thus, they are not a widening operation, in the sense, widely used, of
a change in domain or representation with the objective of improving efñciency
at the cost of losing precisión. This is not the case in the above operations.

Our normalization algorithm is presented in Figure 1. It starts with an el­
ement (el, sh) G SHW, which is already minimal, and obtains an equivalent
element (w.r.t. the sharing represented) which is normalized. First, the num­
ber m is computed, which is the length of the longest possible clique. Then the
sharing set sh is traversed to obtain candidate diques of the greatest possible
length i (which starts in m and is iteratively decremented). Existing subsets of
a candidate clique S of length i are extracted from sh. If there are 2* — 1 — [S]
subsets of 5 in s/i then S is a clique: it is added to el and its subsets deleted
from sh. Note that the test is performed on the number of existing subsets, and
requires the computation of a number [S], which is crucial for the correctness of
the test.

The number [S] corresponds to the number of subsets of S which may not
appear in sh because they are already represented in el (i.e., they are already
subsets of an existing clique). In order to correctly compute this number it is
essential that the input to the algorithm is already minimal; otherwise, redun­
dant sharing groups might bias the calculation: the formula below may count

1
2
3
4
5
6
7
8
9

10

11

Let n = \sh\; if n < 3, stop.
Compute the máximum m such that n > 2
Let i = m.
If ¿ = 1, stop.
Let C = {s s e sh, \s\ = i).
If C = 0 then decrement i and go to 4.
Take S £ C and delete it from C.
Let SS = {s\ se sh,sC S}.
Compute [S].
If \SS\ = 2i - 1 - [S] then:
(a) Add S to c/ (regularize cZ).
(b) Subtract SS from s/i.
Go to 6.

Fig. 1. Algorithm for detecting diques

as not present in sh a (redundant) group which is in fact present. The compu-
tation of [S] is as follows. Take el in its state at step 9 of the algorithm. Let
/ = {S n C | C G el} \ {0} and Ai = {C\A \AQI, \A\ = i}. Then:

[•*]= E (-1)4-1 E (2 ' A | - 1)
1<¿<|/ | AeA¿

Note that the representation can be minimized further by eliminating diques
which are redundant with other diques. This is the regularization mentioned in
step 10 of the algorithm. We say that a dique set el is regular if there are no
two diques c\ G el, C2 G el, such that c\ C c<i. This can be tested while adding
diques in step 10 above.

Finally, there is a chance for further minimization by considering as diques
candidate sets of variables such that not all of their subsets exist in the given
element of SHW. This opens up the possibility of using the above algorithm
as a widening. Note that the algorithm preserves precisión, since the sharing
represented by the element of SHW input to the algorithm is the same as that
represented by the element which is output. However, we could set up a threshold
for the number of subsets of the candidate dique that need be detected, and in
this case the output element may in general represent more sharing.

6 Experimental results

We have measured experimentally the relative efñciency and precisión obtained
with the inclusión of diques in the Sharing and Sharing+Preeness domains. We
measure absolute precisión of a sharing set by the number of its sharing groups
relative to the number of sharing groups in the worst-case for the set of variables
in its domain. The number of sharing groups in the worst-case sharing for n
variables is given by 2™ — 1.

Our results are shown in Tables 1 for Sharing and 2 for Sharing+Preeness.
Columns labeled t ime show analysis times in milliseconds. on a medium-loaded

Pentium IV Xeon 2.0Ghz with two processors, 4Gb of RAM memory running
Fedora Core 2.0, and averaging several runs after eliminating the best and worst
valúes. Ciao versión 1.11^326 and CiaoPP 1.0^2292 were used. Columns labeled
precisión show the number of sharing groups in the information inferred and,
between parenthesis, the number of sharing groups for the worst-case sharing.
Columns labeled # C show the number of clique groups. In both tables, ñrst the
numbers for the original domain are shown, then the numbers for the clique-
domain. Since our analyses infer information at all program points (before and
after calling each clause body atom), and also several variants for each program
point, we show the accumulated number of sharing groups in all variants for all
program points.

append
deriv
mmatrix
qsort
query
serialize

aiakl
boyer
browse
prolog_read
rdtok
warplan
zebra

ann
peephole
qplan
witt

Sharing
time

11
35
13
24
11

306

35
369

30
400
325

3261
25

2382
831

-
405

precisión
29 (60)

27 (546)
14 (694)

30 (1716)
35 (501)

1734 (10531)

145 (13238)
1688 (4631)

69 (776)
1080 (408755)

1350 (11513)
8207 (42089)

280 (671088746)

10000 (314354)
2210 (12148)

-
858 (4545564)

c
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
-
0

Clique-Sharing
time

8
27
11
25
13
90

42
267

29
465
344

1430
34

802
435
860
437

precisión
44 (60)

27 (546)
14 (694)

30 (1716)
35 (501)

2443 (10531)

145 (13238)
1997 (4631)

69 (776)
1080 (408755)

1391 (11513)
8191 (26857)

280 (671088746)

19544 (313790)
2920 (12118)

420203 (3826458)
858 (4545564)

c
4
0
0
0
5

88

0
158

0
10

182
420

0

700
171
747

25
Table 1. Precisión and Time-efñciency for Sharing

Benchmarks are divided into three groups. Of each group we only show a
reduced number of the benchmarks actually used: those which are more repre-
sentative. The ñrst group, append through serialize, is a set of simple programs,
used as a testbed for an analysis: they have only direct recursion and make a
straightforward use of uniñcation (basically, for input/output of arguments). The
second group, aiakl through zebra, are more involved: they make use of mutual
recursion and of elaborated aliasing between arguments to some extent; some
of them are parts of "real" programs (aiakl is part of an analyzer of the AKL
language; prolog_read and rdtok are parsers of Prolog). The benchmarks in the
third group are all (parts of) "real" programs: ann is the <fc-prolog parallelizer,
peephole is the peephole optimizer of the SB-Prolog compiler, qplan is the core
of the Chat-80 application, and witt is a conceptual clustering application.

append
deriv
mmatrix
qsort
query
serialize

aiakl
boyer
browse
prolog_read
rdtok
warplan
zebra

ann
peephole
qplan
witt

Sharing+Freeness
t ime

6
27

9
25
12
61

37
373

29
425
335

1320
41

1791
508

-
484

precisión
7 (30)

21 (546)
12 (694)

30 (1716)
22 (501)

545 (5264)

145 (13238)
1739 (5036)

69 (776)
1050 (408634)

1047 (11513)
3068 (23501)

280 (671088746)

7811 (401220)
1475 (9941)

-
813 (4545594)

c
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
-
0

Clique-Sharing+Freeness
t ime

6
27
11
27
14
55

43
278

31
481
357

1264
42

968
403

2181
451

precisión
7 (30)

21 (546)
12 (694)

30 (1716)
22 (501)

736 (5264)

145 (13238)
2074 (5036)

69 (776)
1050 (408634)

1053 (11513)
5705 (25345)

280 (671088746)

14108 (394800)
2825 (12410)

233070 (3126973)
813 (4545594)

c
0
0
0
0
0

41

0
163

0
0
2

209
0

510
135
529

0
Table 2. Precisión and Time-efficiency for Sharing+Freeness

In order to understand the results shown in the tables above it is important
to note an existing synergy between normalization, efñciency, and precisión.
If normalization causes no change in the sharing representation (i.e., sharing
groups are not moved to diques), usually because powersets do not really occur
during analysis, then the clique part is empty. Analysis is the same as without
diques, but with the extra overhead due to the use of the normalization process.
Then precisión is the same but the time spent in analyzing the program is
a little longer. This also occurs often if the use of normalization is kept to a
minimum: only for correctness (in our implementation, normalization is required
for correctness at least for the extend function and other functions used for
comparing abstract substitutions). This should not be surprising, since the fact
that powersets occur during analysis at a given time does not necessarily mean
that they keep on occurring afterward: they can disappear because of groundness
or other precisión improvements during subsequent analysis (of, e.g., builtins).

When the normalization process is used more often (like for example at every
cali to call2entry as we have done), then sharing groups are moved more often
to diques. Thus, the use of the operations that compute on clique sets produces
efñciency gains, and also precisión losses, as it was expected. However, precisión
losses are not high. Finally, if normalization is used too often, then the analy­
sis process suffers from heavy overhead, causing too high penalty in efñciency.
Therefore it is very clear that a thorough tuning of the use of the normalization
process is crucial to lead analysis to good results in terms of both precisión and
efñciency.

As usual in top-down analysis, the extend function plays a crucial role. In our
case, this function is a very important bottleneck for the use of normalization.

As we have said, we use the normalization for correctness at the beginning of the
function extend. Additionally it would be convenient to use it also at the end of
such function, since the number of sharing groups can grow too much. However,
this is not possible due to the clsh function, which can genérate so many sharing
groups that, at the limit, the normalization process itself cannot run. Alternative
deñnitions oí clsh have been studied, but because of the precisión losses incurred,
they have been found impractical.

From the above tables we can notice that there are always programs the
analysis of which does not produce diques. This shows up in some of the bench­
marks (like all of the ñrst group but serialize and some of the second one such as
aiakl, browse, prolog_read, and zebra). In this case, as it was expected, precisión
is maintained but there is a small loss of efñciency due to the commented extra
overhead. The same thing happens with benchmarks which produce diques, but
this does not affect precisión: append, query prolog_read, and witt, in the case
of Sharing without freeness.

On the other hand, for those benchmarks which do genérate diques (like
serialize, boyer, warplan, ann, and peephole) the gain in efñciency is considerable
at the cost of a small precisión loss. As usual, efñciency and precisión correlate
inversely: if precisión increases then efñciency decreases and vice versa. A special
case is, to some extent, that of rdtok, since precisión losses are not coupled with
efñciency gains. The reason is that for this benchmark there are extra success
substitutions (which do not convey extra precisión and, in fact, the result is less
precise) that make the analysis runs longer.

In general, the same effects are maintained with the addition of freeness,
although the efñciency gains are lower whereas the precisión gains are a little
higher. The reason is that the function amgusf is less efñcient than amgus (but
more precise). Overall, however, the trade-off between precisión and efñciency
is beneñcial. Moreover, the more compact representation of the dique domain
makes possible to analyze benchmarks (e.g., qplan) which run out of memory
with the standard representation.

Effectiveness. We have also tested how relevant precisión losses can be when
the analysis is used as part of another application. In particular, we have used the
Clique-Sharing+Freeness domain for inferring non-failure information [BLGH04].
We have selected a representative subset of our benchmarks. Results for them
are shown in Table 3. Columns marked Total show the number of predicates.
Columns marked N F show the number of predicates which the analysis can
infer that they will not fail. Columns marked Cov show the number of predi-
cates that the analysis can infer that they are covered (a necessary condition for
guaranteeing non-failure). The results obtained suggest that the precisión losses
caused by the use of the dique domain are not relevant when the information
from analysis is used as input in this particular application.

append
deriv
qsort
serialize

rdtok
zebra

Sharing+Freeness
Total

1
1
3
5

22
6

N F (%)
1 (100)
1 (100)
3 (100)

0(0)

8 (36)
1(16)

Cov (%)
1 (100)
1 (100)
3 (100)

2 (40)

13 (59)
4 (66)

Clique-Sharing+Freeness
Total

1
1
3
5

22
6

NF (%)
1 (100)
1 (100)
3 (100)

0(0)

8 (36)
1(16)

Cov (%)
1 (100)
1 (100)
3 (100)

2 (40)

13 (59)
4 (66)

Table 3. Accuracy of the non-failure analysis

7 Conclusions and Future work

We have reported on a s tudy of efñciency and precisión of the clique repre-
sentation of sharing when used for inferring proper set-sharing, as opposed to
pair-sharing. We have also included the case of Clique-Sharing plus freeness in-
formation. Besides the abstract uniñcation operations for both domains with the
clique representation (equivalent deñnitions of which were already proposed in
the li terature), we have contributed other operations required for top-down anal-
yses, in particular, the extend function. Experiments reported aim speciñcally at
the use of diques as an alternative representation, not as a widening (as opposed
to similar experiments reported in [ZafOl], where a threshold on the number of
allowed sharing groups was imposed tha t triggered their move into diques) . We
are currently working on using the clique representation as a widening in or-
der to solve the mentioned limitations of the extend function. In line with the
conclusions from previous experiments, our experimental evaluation also sup-
ports the conclusión tha t precisión losses are reasonable. This is also supported
additionally by our experiments in actually using the information inferred, as
we have showed for inferring non-failure. Efñciency gains have also been shown,
to the extreme case of being able to analyze programs tha t exceeded memory
capacity using the classical sharing representation.

References

[BCM94] M. Bruynooghe, M. Codish, and A. Mulkers. Abstract uniñcation for a
composite domain deriving sharing and freeness properties of program vari­
ables. In F.S. de Boer and M. Gabbrielli, editors, Verification and Analysis
of Logic Languages, pages 213-230, 1994.

[BHZ97] R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for
pair-sharing. In Static Analysis Symposium, pages 53-67. Springer-Verlag,
1997.

[BLGH04] F. Bueno, P. López-García, and M. Hermenegildo. Multivariant Non-Failure
Analysis via Standard Abstract Interpretation. In 7th International Sympo­
sium on Functional and Logic Programming (FLOPS 2004), number 2998 in
LNCS, pages 100-116, Heidelberg, Germany, April 2004. Springer-Verlag.

[CDFB96] Michael Codish, Dennis Dams, Gilberto Filé, and Maurice Bruynooghe. On
the design of a correct freeness analysis for logic programs. The Journal of
Logic Programming, 28(3):181-206, 1996.

[CMB+93] M. Codish, A. Mulkers, M. Bruynooghe, M. García de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining Do-
mains. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and
Semantics Based Program Manipulation, pages 194-206. ACM, June 1993.

[Fec96] Christian Fecht. An efñcient and precise sharing domain for logic programs.
In Herbert Kuchen and S. Doaitse Swierstra, editors, PLILP, volume 1140
of Lecture Notes in Computer Science, pages 469-470. Springer, 1996.

[Fil94] G. Filé. Share x Free: Simple and correct. Technical Report 15, Diparta-
mento di Matemática, Universita di Padova, December 1994.

[HZB04] P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise and efñcient
integration of set-sharing, freeness and linearity for the analysis of finite
and rational tree languages. Theory and Practice of Logic Programming,
4(3):289-323, 2004.

[JL92] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Indepen-
dent And-Parallelism. Journal of Logic Programming, 13(2 and 3):291-314,
July 1992.

[KS94] A. King and P. Soper. Depth-k Sharing and Freeness. In International
Conference on Logic Programming. MIT Press, June 1994.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In
1991 International Conference on Logic Programming, pages 49-63. MIT
Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

[MSJB95] A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On the Practi-
cality of Abstract Equation Systems. In International Conference on Logic
Programming. MIT Press, June 1995.

[ZafOl] Enea Zaffanella. Correctness, Precisión and Efficiency in the Sharing Anal­
ysis of Real Logic Languages. PhD thesis, School of Computing, University
of Leeds, Leeds, U.K., 2001.

[ZBH99] E. Zaffanella, R. Bagnara, and P. M. Hill. Widening Sharing. In G. Na-
dathur, editor, Principies and Practice of Declarative Programming, volume
1702 of Lecture Notes in Computer Science, pages 414-431, Paris, France,
1999. Springer-Verlag, Berlin.

