7 research outputs found

    UAV VISUAL AUTOLOCALIZATON BASED ON AUTOMATIC LANDMARK RECOGNITION

    Get PDF

    Horizon Line Detection: Edge-less and Edge-based Methods

    Get PDF
    Planetary rover localization is a challenging problem due to unavailability ofconventional localization cues e.g. GPS, architectural landmarks etc. Hori-zon line (boundary segmenting sky and non-sky regions) nds its applicationsfor smooth navigation of UAVs/MAVs, visual geo-localization of mountain-ous images, port security and ship detection and has proven to be a promisingvisual cue for outdoor robot/vehicle localization.Prominent methods for horizon line detection are based on faulty as-sumptions and rely on mere edge detection which is inherently a non-stableapproach due to parameter choices. We investigate the use of supervisedmachine learning for horizon line detection. Specically we propose two dif-ferent machine learning based methods; one relying on edge detection andclassication while other solely based on classication. Given a query image;an edge or classication map is rst built and converted into a multi-stagegraph problem. Dynamic programming is then used to nd a shortest pathwhich conforms to the detected horizon line in the given image. For the rstmethod we provide a detailed quantitative analysis for various texture fea-tures (SIFT, LBP, HOG and their combinations) used to train an SupportVector Machine (SVM) classier and dierent choices (binary edges, classi-ed edge score, gradient score and their combinations) for the nodal costsfor Dynamic Programming. For the second method we investigate the use ofdense classication maps for horizon line detection. We use Support VectorMachines (SVMs) and Convolutional Neural Networks (CNNs) as our classi-er choices and use raw intensity patches as features. Dynamic Programmingis then applied on the resultant dense classier score image to nd the hori-zon line. Both proposed formulations are compared with a prominent edgebased method on three dierent data sets: City (Reno) Skyline, Basalt Hillsand Web data sets and outperform the previous method by a high margin

    Machine Learning based Mountainous Skyline Detection and Visual Geo-Localization

    Get PDF
    With the ubiquitous availability of geo-tagged imagery and increased computational power, geo-localization has captured a lot of attention from researchers in computer vision and image retrieval communities. Significant progress has been made in urban environments with stable man-made structures and geo-referenced street imagery of frequently visited tourist attractions. However, geo-localization of natural/mountain scenes is more challenging due to changed vegetations, lighting, seasonal changes and lack of geo-tagged imagery. Conventional approaches for mountain/natural geo-localization mostly rely on mountain peaks and valley information, visible skylines and ridges etc. Skyline (boundary segmenting sky and non-sky regions) has been established to be a robust natural feature for mountainous images, which can be matched with the synthetic skylines generated from publicly available terrain maps such as Digital Elevation Models (DEMs). Skyline or visible horizon finds further applications in various other contexts e.g. smooth navigation of Unmanned Aerial Vehicles (UAVs)/Micro Aerial Vehicles (MAVs), port security, ship detection and outdoor robot/vehicle localization.\parProminent methods for skyline/horizon detection are based on non-realistic assumptions and rely on mere edge detection and/or linear line fitting using Hough transform. We investigate the use of supervised machine learning for skyline detection. Specifically we propose two novel machine learning based methods, one relying on edge detection and classification while other solely based on classification. Given a query image, an edge or classification map is first built and converted into a multi-stage graph problem. Dynamic programming is then used to find a shortest path which conforms to the detected skyline in the given image. For the first method, we provide a detailed quantitative analysis for various texture features (Scale Invariant Feature Transform (SIFT), Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG) and their combinations) used to train a Support Vector Machine (SVM) classifier and different choices (binary edges, classified edge score, gradient score and their combinations) for the nodal costs for Dynamic Programming (DP). For the second method, we investigate the use of dense classification maps for horizon line detection. We use Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) as our classifier choices and use normalized intensity patches as features. Both proposed formulations are compared with a prominent edge based method on two different data sets.\par We propose a fusion strategy which boosts the performance of the edge-less approach using edge information. The fusion approach, which has been tested on an additional challenging data set, outperforms each of the two methods alone. Further, we demonstrate the capability of our formulations to detect absence of horizon boundary and detection of partial horizon lines. This could be of great value in applications where a confidence measure of the detection is necessary e.g. localization of planetary rovers/robots. In an extended work, we compare our edge-less skyline detection approach against deep learning networks recently proposed for semantic segmentation on an additional data set. Specifically, we compare our proposed fusion formulation with Fully Convolutional Network (FCN), SegNet and another classical supervised learning based method.\par We further propose a visual geo-localization pipeline based on evolutionary computing; where Particle Swarm Optimization (PSO) is adopted to find/refine an orientation estimate by minimizing the cost function based on horizon-ness probability of pixels. The dense classification score image resulting from our edge-less/fusion approach is used as a fitness measure to guide the particles toward best solution where the rendered horizon from DEM perfectly aligns with the actual horizon from the image without even requiring its explicit detection. The effectiveness of the proposed geo-localization pipeline is evaluated on a decent sized data set

    Fast geo-location method based on panoramic skyline in hilly area

    Get PDF
    Localization method based on skyline for visual geo-location is an important auxiliary localization method that does not use a satellite positioning system. Due to the computational complexity, existing panoramic skyline localization methods determine a small area using prior knowledge or auxiliary sensors. After correcting the camera orientation using inertial navigation sensors, a fine position is achieved via the skyline. In this paper, a new panoramic skyline localization method is proposed that involves the following. By clustering the sampling points in the location area and improving the existing retrieval method, the computing efficiency of the panoramic skyline localization is increased by fourfold. Furthermore, the camera orientation is estimated accurately from the terrain features in the image. Experimental results show that the proposed method achieves higher localization accuracy and requires less computation for a large area without the aid of external sensors

    Camera geolocation using digital elevation models in hilly area

    Get PDF
    he geolocation of skyline provides an important application in unmanned vehicles, unmanned aerial vehicles, and other fields. However, the existing methods are not effective in hilly areas. In this paper, we analyze the difficulties to locate in hilly areas and propose a new geolocation method. According to the vegetation in hilly area, two new skyline features, enhanced angle chain code and lapel point, are proposed. In order to deal with the skyline being close to the camera, we also propose a matching method which incorporates skyline distance heatmap and skyline pyramid. The experimental results show that the proposed method is highly effective in hilly area and has a robust performance against noise and rotation effects

    Skyline matching: absolute localisation for planetary exploration rovers

    Get PDF
    Skyline matching is a technique for absolute localisation framed in the category of autonomous long-range exploration. Absolute localisation becomes crucial for planetary exploration to recalibrate position during long traverses or to estimate position with no a-priori information. In this project, a skyline matching algorithm is proposed, implemented and evaluated using real acquisitions and simulated data. The function is based on comparing the skyline extracted from rover images and orbital data. The results are promising but intensive testing on more real data is needed to further characterize the algorithm
    corecore