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  Abstract 
Planetary rover localization is a challenging problem due to unavailability of conventional 

localization cues e.g. GPS, architectural landmarks etc. Horizon line (boundary segmenting sky 

and non-sky regions) finds its applications for smooth navigation of UAVs/MAVs, visual geo-

localization of mountainous images, port security and ship detection and has proven to be a 

promising visual cue for outdoor robot/vehicle localization. 

Prominent methods for horizon line detection are based on faulty assumptions and rely on 

mere edge detection which is inherently a non-stable approach due to parameter choices. We 

investigate the use of supervised machine learning for horizon line detection. Specifically we 

propose two different machine learning based methods; one relying on edge detection and 

classification while other solely based on classification. Given a query image; an edge or 

classification map is first built and converted into a multi-stage graph problem. Dynamic 

programming is then used to find a shortest path which conforms to the detected horizon line in 

the given image. For the first method we provide a detailed quantitative analysis for various 

texture features (SIFT, LBP, HOG and their combinations) used to train an Support Vector 

Machine (SVM) classifier and different choices (binary edges, classified edge score, gradient 

score and their combinations) for the nodal costs for Dynamic Programming. For the second 

method we investigate the use of dense classification maps for horizon line detection. We use 

Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) as our classifier 

choices and use raw intensity patches as features. Dynamic Programming is then applied on the 

resultant dense classifier score image to find the horizon line. Both proposed formulations are 

compared with a prominent edge based method on three different data sets: City (Reno) 

Skyline, Basalt Hills and Web data sets and outperform the previous method by a high margin.
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Chapter 1 

Introduction 

In computer vision community, problem of segmenting an image into sky and non-sky 

regions is termed as horizon line detection or skyline extraction problem. Earlier 

methods for horizon line detection either rely on edge detection as preprocessing 

step [3, 21, 28, 29] or address the problem using supervised (classification) [5, 6, 7, 9, 

19] or unsupervised (clustering) [4] machine learning techniques. Edge based 

methods suffer due to edge ambiguities and result into gaps e.g. due to clouds parts 

of horizon might be occluded and hence missed by the edge detector or otherwise 

non-horizon edges might be included into solution horizon due to bias induced 

towards specific solutions [3]. Machine learning based attempts mostly model sky 

and non-sky regions and are based on the faulty assumption that horizon is a linear 

boundary [6, 19]. Moreover the non-sky regions can vary a lot and it is very hard for 

machine learning algorithms to generalize well across all these variations in the test 

sets [4, 8]. For example a non-sky region could be comprised of water, mountains, 

plains or mixture of all i.e. significant color and texture changes. 

In this work, we have proposed two different machine learning based horizon line 

detection approaches; where instead of modeling sky and non-sky regions we model 

horizon and non-horizon regions. It is important to note that horizon boundary is 

more consistent as compared to non-sky regions, which is why methods trained on 

horizon generalize much better as compared to others trained on sky, non-sky 

regions. Moreover earlier methods are based on faulty assumptions e.g. horizon 

being a linear boundary [6, 19] or horizon being present in the upper half of the 

image [3] which is generally not the case. Our first proposed method relies on edge 

detection and classification whereas the second addresses the problem in a pure 

classification framework. Both approaches formulate the resultant edge/classification 

map as a multistage graph problem and find a shortest path using Dynamic 

Programming (DP) which conforms to the detected horizon in the given query image. 

For the first approach, given a query image; Canny edge detector is applied first 

with a range of thresholds to keep only those edges which survive over a wide range. 

The surviving edges are termed as Maximally Stable Extremal Edges (MSEEs). The 

number of edges is further reduced significantly by classifying the MSEEs into horizon 

and non-horizon edges using a trained classifier. Dynamic programming is then 

applied on horizon classified edges using any of the available nodal costs. We 
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investigate the suitability of various local texture features and their combinations as 

feature choices for the trained horizon classifier. Specifically, we explore SIFT [14], 

LBP[13], HOG[15] and their combinations SIFT-LBP, SIFT-HOG, LBP-HOG and SIFT-

LBPHOG as features to train an SVM [26] classifier. We evaluate various nodal costs 

for dynamic programming e.g. binary edge scores, normalized classification scores for 

horizon classified edges, gradient information and their combination. The proposed 

formulation is compared with an earlier prominent approach which relies only on 

edge information and is based on faulty assumption of horizon being present in the 

upper half of the image [3]. The results are reported for two challenging data sets 

(125 images in total) i.e. Basalt Hills data set (45 images) and Web data set (80 

images) comprised of mountainous images captured during an outdoor robot 

exploration and randomly chosen from the web with considerable viewpoint, scenic 

and weather changes. 

In the second proposed approach we use machine learning and Dynamic 

Programming to extract the horizon line from a classification map instead of an edge 

map. The key idea is assigning a classification score to each pixel, which can be 

interpreted as the likelihood of the pixel belonging to the horizon line, and 

representing the classification map as a multi-stage graph. Using DP, the horizon line 

can be extracted by finding the path that maximizes the sum of classification scores. 

In contrast to conventionally used edge maps which are typically binary (edge vs no-

edge) and contain gaps, classification maps are continuous and contain no gaps, 

yielding significantly better solutions. We use normalized intensity patches as feature 

choice for this method and train SVM [26] and CNN [27] classifiers. 

Both of our formulations allow us to remove certain assumptions which are 

common to earlier methods such as the horizon is close to the top of the image or 

that the horizon forms a straight line. The purpose of these assumptions is to either 

bias the DP solution or simplify the underlying segmentation problem but they fail to 

produce good results when not valid. We demonstrate our second approach on three 

different data sets (138 images in total) i.e. City Skyline data set (13 images), Basalt 

Hills data set (45 images) and Web data set (80 images) and again compare it with a 

prominent traditional approach based on edge maps [3]. For both approaches 

although our training set is comprised of a very small number of images from the 

same location, our results illustrate that our methods generalize well to images 

acquired under different conditions and geographical locations. 

Following this chapter we provide a brief literature review of earlier horizon 

detection methods and provide details about a prominent horizon line detection 

method by Lie et al.[3] relying solely on edge detection. In chapter 3 we present our 

first proposed approach which is based on edge detection and edge based 

classification. Chapter 4 gives the details about the second proposed approach using 

classification maps instead of edge maps. Chapter 5 provides the experimental details 
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and results for different data sets for both proposed methods and their comparisons 

against Lie et al. [3] formulation. Thesis is concluded in chapter 6 with concluding 

remarks about the presented methods and listing of the future work.  
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Chapter 2 

Previous Work 

2.1 Literature Review 
Horizon/Sky line detection or sky segmentation is the problem of finding a boundary 

between sky and non-sky regions (ground, water or mountains) given a gray scale or 

color image. Previous attempts to horizon line detection can be categorized into two 

major groups; methods modeling sky and non-sky regions either by some machine 

learning algorithms both supervised and unsupervised approaches [4, 5, 6, 7, 9, 19] 

and methods relying on edge detection as the essential pre-processing step [3, 21, 

28, 29]. Recently some attempts [1, 2] have been made to combine these two ideas 

to refine the edges by training classifiers but broadly these attempts also fall under 

the second category as they are not possible without edges being detected. Most of 

the earlier methods to horizon detection suffer from the assumption of horizon 

boundary being linear and hence are limited. Horizon line or sky segmentation has 

many applications e.g. smooth navigation of small unmanned aerial vehicles (UAVs) 

[4, 7, 8] and micro air vehicles (MAVs) [5, 6, 9], visual geo-localization of mountain 

images [17, 18, 28, 29], port security and ship detection [19, 20] and outdoor 

robot/vehicle localization [10, 11, 12] to name a few. 

McGee et al. [7] proposed a sky segmentation approach to find a linear boundary 

between sky and non-sky regions based on an SVM classifier trained only on the color 

information. They use sky segmentation as an obstacle detection tool for small scale 

UAVs. Their underlying assumption of horizon line being linear violates very often and 

probably is acceptable only for UAVs navigation. Ettinger et al. [6] proposed a flight 

stability and control system for micro air vehicles (MAVs) which relies on their 

horizon detection method. They model the sky and non-sky regions by Gaussian 

distributions and try to find an optimized boundary segmenting them. Their proposed 

model is based on two assumptions; horizon line is linear and horizon line separates 

the image into two regions of significantly different appearance i.e. sky and non-sky. 

So, their approach is also limited by the assumption of horizon being a linear 

boundary. Fefilatyev et al. [19] is also based on horizon being linear and uses color 

and texture features such as mean intensity, entropy, smoothness, uniformity etc. to 
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train various classifiers. Croon et al. [5] extend the features used by [19] by including 

corner-ness, grayness and Fisher discriminant features to train shallow decision trees. 

They train decision trees to make the sky segmentation fast for MAVs obstacle 

avoidance. This approach is able to detect non-linear horizon lines. 

Todorovic et al. [9] circumvent their assumption of horizon being linear in [6] by 

building priors for sky and non-sky regions based on color and texture features. 

Unlike their earlier work, they focused on both color (Hue, Intensity) and texture 

(Complex Wavelet Transform) features to model the priors due to great appearance 

variations in sky and non-sky regions. They trained a Hidden Markov Tree model 

based on these color and texture features which resulted in a robust horizon 

detection approach capable of detecting non-linear horizon boundaries. [22] have 

proposed a fusion based approach where they combine the outputs of NN classifier 

with k-means clustering. They use mean intensity and texture features similar to [5, 

19] to train their classifier. Although their approach demonstrates reasonable results 

but their system is based on various heuristics and parameters which would not 

generalize very well to other data sets under different conditions.In [4], Boroujeni et 

al. presented a clustering based horizon detection approach for robust UAV 

navigation. They assume the presence of a dominant light field between sky and 

ground region which they try to locate using intensity and k-means clustering. In 

general their assumption about the light field does not hold. They themselves 

identified cases where their proposed method needed modifications for cluster 

detection process. Thurrowgood et al. [8] used their horizon detection approach for 

attitude estimation of UAVs. Using training data they learn transformation from RGB 

space to a single dimension where an optimum threshold is searched to segment 

sky/non-sky regions based on histograms and priors about sky and non-sky region 

distributions. The proposed approach is limited only to UAV navigation due to their 

assumption of sky and ground pixels being equi-probable. 

Most prominent method belonging to second category is that of Lie et al. [3] 

where they address horizon detection as a graph problem. This method relies on 

edge detection and assumes an almost consistent edge boundary exists between sky 

and non-sky regions. The detected edge map is formulated as a multi-stage graph 

problem where each column of the image becomes a stage of the graph and each 

edge pixel becomes a node. A shortest path is then found extending from left most 

column to right most column by using Dynamic Programming (DP). The assumption of 

horizon being consistent edge boundary is seldom true due to environmental 

conditions e.g. clouds and results into edge gaps. To address this issue [3] use the δ 

and tolerance-of-gap(tog) as parameters to fill up the gaps which arise from edge 

detection to find a consistent horizon line. Also they assume horizon being present in 

the upper half of the image and induce bias to find a shortest path in this region. 
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2.2 Lie et al. [3] 
This section briefly details the approach by [3]. Since, we also formulate our 

approaches as a multi-stage graph problem it seems necessary to provide the details 

of original approach by [3] so that we can point out the problems with underlying 

assumptions by [3] and identify various similarities and differences of our proposed 

approaches. 

Lie et al. [3] formulate the horizon line detection problem as a multi-stage graph 

problem and then solve it by DP to find the shortest path extending from left to right. 

Their approach is based on the assumption that a full horizon line exists in the given 

image from left to right and lies in the upper half of the image. For a given query 

image of size M × N, edge detection is applied first to get a binary edge map I 

containing 1 as edges and 0 as non-edges. This edge map is used to formulate an M 

×N multi-stage graph G(V,E,Ψ,Φ) where each edge pixel from the edge map becomes 

a node with a constant lower cost l associated with it and each non-edge pixel has a 

higher cost typically ∞. 

. 

(2.1) 

where, Ψ(i,j) is the node cost associated with vertex i in stage j i.e. vij. The graph 

can be visualized as an N stage graph; where there are N stages (columns) and each 

stage has M nodes (rows) in it. As edge detection may cause gaps due to presence of 

clouds in the image or edges being ignored due to thresholding; they propose a gap 

filling approach to deal with these gaps. 

For a given node i in stage j its neighborhood in next stage j + 1 is defined by δ 

parameter i.e. number of nodes to which i could be connected in stage j + 1. The 

edges from i to its neighbors are associated with costs equal to the vertical absolute 

distances from it as shown in the equation below. 

 

If a node i in stage j is not able to be connected to any node in stage j + 1 with in δ 

neighborhood; a search window is defined by parameters δ and tolerance-of-gap 

(tog). Specifically an edge node is searched in this search window and once such an 

edge node is found the gap filling is performed by introducing dummy nodes in 
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between node i in stage j and node k found within the search window j+tog. They 

associate a high cost with these dummy nodes introduced by gap filling step. 

Once the gaps are filled with high cost dummy nodes; the nodes in stage 1 and N 

are assigned an increasing cost associated with the vertical positions of the nodes 

according to the equation below. 

 
This enforces the assumption of horizon line being present in the upper half of 

the image and hence biasing towards a shortest path present in the upper half. Next 

two nodes; a source s and a sink t are added to the left of the left most stage (i.e. 

stage 1) and to the right of the right most stage (i.e. stage N) respectively. A zero cost 

is associated with these two nodes. The s node is connected with all the nodes in 

stage 1 and all the nodes in stage N are connected to node t. The edges for these links 

are associated with zero costs. A shortest path is then found extending from node s 

to t by Dynamic Programming which conforms to the detected horizon boundary. 

Figure 2.1 shows a drawing depicting the steps of Lie et al. [3] for a sample small 

size image. An edge map is shown in 2.1-(a) where black and white rectangles 

represent edge and non-edge pixels. A search window is shown for the edge node in 

stage j = 5 for parameter choices δ = 1 and tog = 4 in figure 2.1-(b). With in the search 

window j+tog two edge nodes are discovered which are then connected to node j by 

introducing the dummy nodes highlighted in blue in figure 2.1-(c,d). The nodes in 

stage 1 and N are set to an increasing cost associated with their vertical position 

reflected by increasing intensity in figure 2.1-(e). Two nodes s and t would now be 

introduced as described above and DP would be applied on this graph. As clear from 

figure 2.1-(e) there exists two equal paths in the above sample graph (ignoring source 

(s) and sink (t) nodes); but DP formulation would find the upper path due to the 

assumption of horizon being present in the upper half and stages 1 and N being 

initialized with bias to this assumption. It is probable that the true horizon line was 

actually the lower one and the upper edge segment on the right was only due to 

some clouds. 
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Figure 2.1: Steps of Horizon Detection by Lie et al. [3] 

We would show various specific examples in the experiment section where this 

method failed to detect a portion of horizon due to this bias associated with the 

location of horizon. 
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Chapter 3 

Method 1: Edge-based Horizon 

Line Detection 

3.1 Learning the Horizon Line 
In the first approach we propose a machine learning based framework where number 

of edges are reduced considerably first by MSEE image and then by using a trained 

SVM classifier. Different components of our framework are presented next. 

3.1.1 Maximally Stable Extremal Edges (MSEEs) 

The idea of extracting MSEEs is inspired from extracting Maximally Stable Extremal 

Regions (MSER) [25]. Given a gray scale image, we compute the edge image using the 

Canny edge detector [30] with sigma (σ) parameter being fixed to a chosen value 

while varying the low and high thresholds. This results in the generation of N binary 

images assuming N combinations of parameter values, call them I1 to IN. An edge at 

pixel location (x,y) is considered stable if it is detected as an edge pixel for k 

consecutive threshold values. The image comprised of these stable edges is referred 

to as Maximally Stable Extremal Edge Image and denoted as E. Mathematically, 

 
In our experiments, we varied the high threshold of the Canny edge detector, Th, 

between 0.05 and 0.95 with a step of 0.05; the lower threshold Tl was set 0.4 × Th. It 

was found through experimentation that σ = 2 and k = 3 were optimal choices. The 

computation of MSEE Image reduces the number of edges considerably while not 

damaging important edges (i.e., horizon edges). Figure 3.1 shows a sample image, the 

output of the Canny edge detector and the MSEEs. As it can be observed, the number 
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of edges has remarkably been reduced in MSEE while maintaining the edges 

belonging to the horizon line. 

 

Figure 3.1: Effect of MSEE: Input Image (row1), Output of the Canny(row2), Discarded 

Edges by MSEE (row3) and survived edges (row4) i.e. MSEE Image. 

 

3.1.2 Ground Truth Labeling and Key Points Selection 

To train the SVM classifier, we manually label the horizon line pixels in the training 

images using the MSEEs. Since some portion of the true horizon line might not be 

detected as edges or the edge detector’s output might not match the true horizon 

line perfectly and there may be edges which are not horizon pixels but strong enough 

to survive different parameter choices; a careful manual labeling of horizon pixels is 

required. We use these manually labeled horizon pixel indices for comparing the 

detected horizons in experiment section. Figure 3.2 shows few images from Web 

data set with ground horizons marked as red. 
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Figure 3.2: Ground Truth Horizon Lines; highlighted in red. 

The positive and negative key points to train the classifier are chosen uniformly 

and randomly from the ground truth horizon location and MSEE non-horizon edge 

locations respectively for all the images in the training set. Figure 3.3 shows the 

locations of positive and negative key points for one of the training images from 

Basalt Hills data set. 

 

Figure 3.3: Positive (red) and negative (blue) key point locations for one of the 

training image. 

3.1.3 Texture Features and Classifier Training 

To train an SVM classifier we take a 16×16 window around each +ive/-ive key point 

and compute the chosen descriptor. We have investigated three texture descriptors 

as feature choices to train the SVM classifier namely Scale Invariant Feature 

Transform (SIFT) [14], Local Binary Patterns(LBP)[13] and Histogram of Oriented 

Gradients(HOG)[15]. We also explore their combinations with each other and then all 

of them combined as feature choices for our classifier. We use the implementation of 
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these descriptor available from vlfeat[16] which provides 128, 58 and 31 dimensional 

vectors for SIFT, LBP and HOG respectively. We investigate individual descriptors as 

well as their combinations as the feature choices to train the SVM classifier. The 

combinations are formed by mere concatenation of the descriptor vectors for each 

training and testing instance. The feature sizes for each combination: SIFT-LBP, SIFT-

HOG, LBP-HOG and SIFT-LBP-HOG are 186, 159, 89 and 217 respectively. We have 

found SIFT-HOG combination as the best choice when compared with individual 

descriptors and other combinations as described in the results section. 

Figure 3.4 shows a flow diagram for the training phase of our first proposed 

approach. 

Figure 3.4: Flow diagram for the training phase of the first proposed approach. 

3.2 Horizon Line Detection 
This section describes various steps involved for the detection of horizon line in a 

given query image. Figure 3.5 shows various steps of the test phase of our first 

proposed approach. 
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Figure 3.5: Flow diagram for the testing phase of the first proposed approach. 

 

3.2.1 Filtering MSEE Pixels 

On the testing side, MSEE image E(x,y) is generated for a given query image according 

to equation 3.1 . Each of the edge pixels in MSEE image is treated as a key point; the 

chosen descriptor around it is computed and then classified as horizon or non-

horizon by the trained classifier. The resultant edge image comprising of only horizon 

classified edges is named E+. If the classifier is assumed to be a binary function 

assigning 1/0 labels to the input edge pixel then mathematically E+ can be written as, 

 

where, D is the chosen descriptor (or concatenated descriptor) vector around the 

edge pixel from E(x,y). In addition to the reduction caused by MSEE as shown in figure 

3.1, horizon pixel classification further reduced the number of horizon candidate 

edges significantly. Figure 3.6 shows an example to highlight the significant reduction 

in number of horizon candidate edges for a query image. 
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Figure 3.6: A sample novel image (row1), corresponding MSEE (row2) and MSEE+ 

(row3) Images. Note the reduction in number of edges due to the classifier. 

3.2.2 Graph Formulation for Dynamic Programming 

To apply Dynamic Programming, instead of using the output of edge detector; we use 

this horizon classified edge image i.e. E+ to formulate the multi-stage graph 

G(V,E,Ψ,Φ). So, the equations 2.1 and 2.2 are modified accordingly. 

Since, the number of candidate horizon edges is reduced considerably due to the use 

of MSEE and the trained classifier; we do not enforce the bias towards horizon 
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solutions in the upper half so equivalent to equation 2.3 is skipped in our formulation. 

However, any kind of gaps are filled following the conventional method as explained 

in Chapter 2. Next two nodes i.e. a source and a sink are added, essential links 

between them and nodes in stages 1 and N are established with zero cost and DP is 

used to find the horizon line. 

3.3 Proposed Nodal Costs 

Lie et al. [3] proposed the use of edges where they use binary costs to encode the 

information in the multi-stage graph about a node being an edge pixel or not and 

then initialize the dummy nodes to high costs. Although we reduce the number of 

horizon candidate edges considerably by the use of MSEE and trained classifiers; 

using only the information about pixels being edge or non-edge is not enough to 

initialize the nodal costs as it is possible for DP to choose falsely classified horizon 

edges as part of the solution. We propose the use of various nodal costs that provide 

further evidence about the positively classified edges for being true horizon edges. 

Specifically, we have investigated the following nodal costs. 

3.3.1 Gradient Information 

We use the information due to gradient magnitudes and difference of gradient 

magnitudes to initialize the node costs of our multi-stage graph. Unlike Lie et al.[3] 

and others who formulate the multi-stage graph based only on edges we propose 

here to make a dense multi-stage graph where each pixel would be a node of the 

graph and be connected to it neighbors in the next stage. 

However, the nodes are initialized according to the gradient information. As gradient 

magnitudes are used as an intermediate part of edge detection the DP should find a 

solution where the sum of the gradient magnitude is maximized but for continuity we 

should also enforce that the difference between the gradient magnitudes of two 

adjacent neighbors should be minimized. We should also note that gradient based 

approach does not involve any kind of training and is presented here to establish that 

using just the constant low and high costs for edge and non-edge pixels (horizon 

classified edges in case of Ahmad et al. [1] and Hung et al. [2]) are not enough to find 

the accurate horizons. 

In gradient based approach; given a query image Q(x,y) the gradient magnitude 

for each pixel of the image is computed. Mathematically, 
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Where, Γ is the function which takes a gray scale image as an input and returns 

the corresponding gradient magnitude image ∇. Next, the difference of the gradient 

magnitude image is computed. Since, a node i in stage j can be connected to as many 

nodes as defined by the δ neighborhood; one should generate as many gradient 

difference images where the difference should be taken with the node in next stage 

to which the current node is being connected. The equation 3.6 below shows the 

making of difference of gradient mask for connections at the same level. 

 

Since, we want to maximize the gradient magnitude while minimizing the 

difference of gradient magnitude we normalize the magnitude and difference images 

between 0 and 1. The nodal costs Ψ(i,j) of the graph are then set as a weighted 

combination of these two images depending upon to which node in the next stage 

the current node is being connected; identified by the sub-script k in equation 3.7 

below.

 

 

where w is the weight assigned to the difference of magnitude and the gradient 

magnitude image; we use a value of 0.5 hence equally weighing both. Next, the links 

costs may be initialized the way in equation 3.4; however for our experiments we 

consider all the link weights to be equal and set them to zero since we are 

considering a small neighborhood i.e. δ = 1. 

3.3.2 Classified Binary Edges 

The 2nd formulation that we investigate is fairly similar to Lie et al. [3] and others [1, 

2] i.e. we use the binary edge information as the nodal cost. The only difference is 

that we apply the DP on the graph formulated by reduced number of edges due to 

MSEE and trained classifier. So eventually equations 3.2 through 3.4 are used to 

initialize the graph and set the node/link costs. We use SIFT-HOG classified edges as 

we would show in the result SIFT-HOG concatenation outperforms all other feature 

choices. 
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3.3.3 Classified Edge Score 

As described earlier using a fixed low cost for edge pixels provides only partial 

information and no confidence at all to compare two positively classified nodes 

where one might be misclassified. To enforce this knowledge in our dynamic 

programming formulation we propose a twofold use of the classifier; first to 

distinguish between horizon and non-horizon edges as realized by equation 3.2 and 

second to provide a confidence about and edge pixel of horizon-ness. We normalize 

the raw scores provided by the classifier between 0 and 1 without using any 

thresholding. The node costs are then initialized by the actual classification scores 

instead of initializing all positively classified edges to fixed low cost. The equation 3.3 

would be altered to reflect this information where Ω is realized as a classifier which 

returns a value between [0–1]. Since, we want to find a shortest path through DP we 

assume that the values have been reversed so a smaller value reflects an edge pixel is 

more probable to be a horizon pixel. 

 

3.3.4 Classified Edge Score + Gradient Information 

In this formulation we combine the classifier information with the gradient 

information. By fusing equations 3.7 and 3.8 we get a new initialization for the nodal 

costs; where, w2 is a scalar and we use 0.5 values to weight both the scores equally. 
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Chapter 4 

Method 2: Edge-less Horizon 

Line Detection 

Our second proposed approach applies DP on a classification map that associates 

with each pixel a classification score which can be interpreted as the confidence of 

the pixel being part of the horizon line. Most importantly, it does not rely on edge 

detection, therefore, it does not require performing gap filling or introducing dummy 

nodes as is required by Lie et al. [3] and also by our first proposed method. 

Moreover, again we do not force the nodes in stages 1 and N to be associated with 

their vertical positions since the assumption of the horizon line being present in the 

upper half of the image could be violated (e.g., due to the rover moving on a peak 

and looking towards the horizon). The resulting DCSI is used to form an M ×N multi-

stage graph without any node initialization. Once we have introduced the 

source/destination nodes s/t and decided on the value of δ, any shortest path finding 

algorithm can be used to find the path that maximizes the sum of classification 

scores. We will later show that the number of nodes per stage can be significantly 

reduced by only considering the pixels with the m highest classification scores where 

m is a parameter; we refer to this reduced map as mDCSI map. Using fewer nodes per 

stage does not affect accuracy while it speeds up computations considerably. Figure 

4.1 illustrates the main steps of our second proposed approach. 
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Figure 4.1: Main steps of the training/testing phases of second proposed horizon line 
detection approach. 

4.1 Pixel Classification 
For classification, we have experimented with two classifiers: SVM [26] and a CNN 

[27]. Each classifier is trained using horizon and non-horizon image patches from a set 

of training images where the horizon line has been extracted manually (ground truth) 

as detailed in section 3.1. Specifically, for each training image, we select N points 

uniformly from the ground truth; an equal number of points is randomly selected 

from non-horizon locations as shown in figure 3.3. We take a 16 × 16 normalized 

image patch around each sampled point and the resulted 256-D vector is used for 

training the classifiers. It should be mentioned that we are using pixel intensities as 

features here as compared to texture features that have been used for first method. 

The decision is partially biased due to the fact we are training a CNN classifier [27] 

which is expected to find features itself instead of hand crafted features. For a fair 

comparison between SVM and CNN classifiers, normalized pixel intensities are used 

as features for both. The pixel intensities are normalized between -1 and 1. For the 

CNN classifier, we use an architecture comprising of 2 Convolution(C)-Sub-sample(S) 

layers. The first C-S layer is comprised of 4 levels with a convolution(C) mask of 5 × 5 

and a sub-sampling(S) mask of 2×2. The second C-S layer is comprised of 8 levels with 

a C mask of 3×3 and an S mask of 2 × 2. For the SVM classifier, we use a linear kernel 

as it was found to be equally good as the RBF and polynomial kernels. We have only 

used 9 images for training the classifiers with 343 positive (horizon) and 343 negative 

(non-horizon) examples extracted from each image. Figure 3.3 shows an example of 
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horizon (red) and non-horizon (blue) training samples. It is important to note that for 

both approaches; same number of training images and same key points are used, the 

difference being the feature and classifier choices. 

4.2 Horizon Line Detection 

4.2.1 Dense Classifier Score Image (DCSI) 

Once the classifiers have been trained, the DCSI can be generated for a given test 

image. For each pixel location in the test image, a 16×16 patch of pixel intensities 

around the pixel is extracted. The normalized intensities are then used to form a 256-

D vector V (x,y), which is fed to the classifier. The classification score is then 

associated with that pixel location. Classification scores are normalized in the interval 

[0, 1]; the resultant scores form the DCSI which is denoted as D(x,y). In essence, 

D(x,y) can be interpreted as a probability map which reflects the likelihood of a pixel 

belonging to the horizon line. Figure 4.2 shows the DCSIs for two sample images. 

 

4.2.2 Reduced Dense Classifier Score Image (mDCSI) 

Although the full DCSI can be used for horizon line detection, we have found that 

keeping only the m highest classification scores in each column does not compromise 

accuracy while reducing computations. This is because the highest classification 

scores are typically concentrated within a small band around the horizon line. We 

refer to the reduced DCSI as mDCSI. The multi-stage graph corresponding to the 

mDCSI contains fewer vertexes; as a result, fewer paths need to be considered when 

searching for the shortest path which results in considerable speedups. In our 

experiments, we have found that by keeping the highest 50 classification scores 

yields accurate horizon line detections. 
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Figure 4.2: Sample test images (row1), respective DCSIs (row2), mDCSIs (row3), 
shortest path solutions (row4, highlighted in red), and detected horizon lines (row5, 

highlighted in red). 

From an implementation point of view, the mDCSI is computed as follows: 

 

where, mD corresponds to the mDCSI and D corresponds to the DCSI. If the x-th 

pixel (node) in column (stage) y belongs to the list L(m)y of indices corresponding to 

the highest m classification scores, the classification score from D(x,y) is used; 

otherwise, the score is set to a low score l where l is smaller than the smallest score 

returned by the classifier. Figure 4.2 shows examples of the respective mDCSIs. 

4.2.3 Horizon Line Detection as a Shortest Path 

Problem 

In earlier approaches e.g. [1, 2, 3], the edge map (or classified edge map) was used to 

form the multi-stage graph; in these approaches, gap filling is an essential step in 
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extracting the horizon line. Since this approach does not rely on edge maps, we do 

not need to worry about gap filling. In our approach, the mDCSI is used to create an 

M × N graph G(V,E,Ψ,Φ) with node costs initialized to mD(x,y). So, equation 2.1 can 

directly transform into, 

 

Since the resulted graph is a dense graph, each node i in stage(column) j is 

connected to three nodes i, i − 1 and i + 1 in stage(column) j + 1 (i.e., δ = 1). These 

connections are considered as edges with zero costs similar to first approach. This is 

in contrast to conventional approaches ([3]) where the absolute difference between 

the positions of nodes in two stages is  

 

Since, the horizon line might not always appear in the upper half of the image, we 

do not set the nodes in stages 1 and N proportional to their vertical position. Two 

dummy nodes, s and t, are introduced to the left of stage 1 and to the right of stage N 

respectively. The edge weights from s to every node in stage 1 and from every node 

in stage N to node t are set to zero. The shortest path in this graph can be found using 

DP. 
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Chapter 5 

Experimental Details 

5.1 Data Sets and Quantitative Evaluation 
To evaluate the performance of our proposed approaches, we have experimented 

with three different data sets: the City data set, the Basalt Hills data set and Web 

data set. The City data set consists of 13 images of a small city (Reno) surrounded by 

mountains. The Basalt Hills data set is a subset of a data set which was generated by 

placing cameras on an autonomous robot navigating through Basalt Hills [23]. We 

have chosen 45 images from this data set with considerable viewpoint and scene 

changes. The most challenging of our data sets is the Web data set which consists of 

80 mountainous images that have been randomly collected from the web. This data 

set includes various viewpoints, geographical and seasonal variations. Our training set 

in both approaches consists of only 9 images from Basalt Hills data set. The resolution 

of all images in our data sets is 519×1388. In both proposed approaches same 343 

positive and 343 negative key points are chosen from each training image. The 

positive key points are chosen uniformly from the ground truth horizons whereas the 

negative key points are chosen randomly from the non-horizon edge locations 

belonging to both sky (edges due to clouds etc.) or non-sky regions. 

To quantitatively evaluate the performance of the proposed approaches, we have 

manually extracted the horizon line (ground truth) in all the images of our data sets. 

To evaluate the proposed approaches, the detected and true horizon lines are 

compared by calculating a pixel-wise absolute distance S between them. For each 

column, the absolute distance between the detected and ground truth pixels is 

computed and summed over the entire number of columns in the image. The 

resultant distance is normalized by the number of columns in the image, yielding the 

average absolute error of the detected horizon line from ground truth. Since nodes in 

a particular stage are not allowed to be connected to nodes in the same stage, the 

true and detected horizon lines are bound to have the same number of 

columns/stages in the image/graph. Hence, there is a one-to-one correspondence 

between the pixel locations in the true and detected horizon pixel locations: 
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where Pd(j) and Pg(j) are the positions (rows) of the detected and true horizon 

pixels in column j and N is the number of columns in the test image. We have 

evaluated our first proposed approach on the Basalt Hill and Web data sets whereas 

the second method is tested over all three data sets. Both methods are compared for 

all the images against the tradition edge based approach of Lie et al. [3] 

5.2 Results for Method1 

5.2.1 Effect of MSEE 

As a first step to our proposed approach we compute Maximally Stable Extremal Edge 

(MSEE) Images for all the images in our data set. We compare the number of edges 

survived after MSEE with the number of edges found by Canny edge detector [30] of 

Matlab and see considerable reduction in the number of candidate horizon edges 

which are further reduced by the classifier. Table 5.1 shows the average percentage 

reduction for each image of both data sets used for this approach. 

Table 5.1: Importance of MSEE 

Data Set Average % Reduction 

Basalt Hills 66.37 

Web 43.45 

 

5.2.2 Reduction in Horizon Candidate Edges due to 

Different Features 

We investigate various texture descriptors and their combinations as the feature 

choices to train our SVM classifier. We perform a 5-fold validation on the Basalt Hills 

data set where for each fold the data set is divided into non-overlapping train (9 

images) and test sets (36 images). Since, we have the ground truth horizons at our 

disposal we know which edges belong to true horizon and which do not. Table 5.2 
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shows the percentage false positive and false negative errors averaged over the five 

folds of training and the respective standard deviations. Figure 5.2.2 shows a 

graphical view of the same information. Since, false negative error is of more 

importance we choose the classifier based on SIFT-HOG combination for further 

evaluation, highlighted in table 5.2 . 

 

Table 5.2: % FP and %FN Errors due to Various Features 

Feature 

%FN %FP 

Mean Std. Dev. Mean Std. Dev. 

SIFT 1.0224 0.7890 17.8090 5.6089 

LBP 5.0332 8.3747 10.6366 8.0770 

HOG 2.3285 2.3498 11.2331 5.6616 

SIFT+LBP 0.6915 1.1827 10.6065 5.8949 

SIFT+HOG 0.6624 0.7436 11.0801 5.1797 

LBP+HOG 3.3647 3.6415 10.0737 6.394 

SIFT+LBP+HOG 7.1887 8.1177 4.8302 4.0438 

 

5.2.3 Best Nodal Cost 

We compare our proposed formulations 3 against the state of the art horizon 

detection method based on edges and DP i.e. Lie et al. To compare the detected 

horizon lines found by each method with the ground truth horizons, 
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Figure 5.1: Mean of % False Positive and False Negative Errors when various Features 
and their combinations used for training the SVM Classifier. 

We compute an average pixel wise absolute error using 5.1. Since, in all of our 

formulations we do not allow nodes to be connected within the same stage, there 

exists a one-to-one mapping between the pixels of the detected (d) horizon and the 

ground (g) truth horizon. For each of our formulation and Lie at al. [3] we compute 

the average and standard deviation over all images in the data set listed in the table 

5.3. Clearly, SIFT+HOG Scores outperforms all others strengthen our understanding 

that using only edge information is not enough for the nodal costs. 

5.3 Results for Method2 

5.3.1 Quantitative Evaluation 

For the second proposed method the results have been computed for all three data 

sets mentioned earlier and same absolute average error is computed as listed in 

equation 5.1. Table 5.4 shows the average absolute error for all the images in each 

data set, both for the SVM and CNN classifiers. For comparison purposes, we also 

provide results based on the method of Lie et al. [3]. It is interesting to note that 

although our methods were trained using a very small number of images from the 
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same data set, they generalize very well to images from other data sets, such as the 

Web data set which is very different from the training data set. 

Table 5.3: Approach1: Average Absolute Errors 

Nodal Costs 

Basalt Hills Web 

µ σ µ σ 

Lie et al. [3] (Edges) 5.5548 9.4599 9.1500 17.9195 

Gradient Info. 3.9908 6.3530 11.8641 26.8084 

SIFT+HOG Edges 0.5783 1.0227 0.8698 1.0366 

SIFT+HOG Scores 0.4124 0.8120 0.9704 1.5698 

SIFT+HOG Scores + Gradient 0.4358 0.8124 1.3016 3.9814 

 

 

 

 

Table 5.4: Approach2: Average Absolute Errors 

Data Set 

Proposed Approach 

Lie et al. [3] SVM-mDCSI CNN-mDCSI 

µ σ µ σ µ σ 

City 0.7244 0.1777 1.2129 2.3597 6.2342 10.8206 

Basalt Hills 1.0101 0.2887 0.7573 0.2295 5.5548 9.4600 

Web 1.2854 1.1988 1.4121 1.4860 9.1500 17.9196 

 

5.3.2 Comparing Classifiers 

Comparing the two classifiers used in our experiments for second approach, the CNN 

classifier outperforms the SVM classifier for the Basalt Hills data set while SVM 

outperforms CNN on the other two data sets. This indicates that the features found 
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by the CNN classifier might not generalize well to different data sets. Figure 5.2 

shows some representative DCSI results using the SVM and CNN classifiers. It is worth 

noting that the CNN classifier provides a crispier DCSI, having a narrower band 

around the true horizon line as compared to the DCSI produced by SVM. It might be 

possible to further improve our best results by combining the SVM and CNN 

classifiers but we have not experimented with this idea. 

 

 

Figure 5.2: Test images (column1), corresponding SVM-DCSIs (column2) and 
corresponding CNN-DCSIs (column3). 

5.4 Discussion and Some Visual Results 

5.4.1 Failure of Lie et al. [3] 

Our experimental results illustrate that the proposed approaches outperform the 

traditional approach of [3] based on edge maps. In particular, both the average error 

and standard deviation of the traditional approach are much higher than the 

proposed approaches based on SVM or on both SVM and CNN classifiers in second 

approach. To better illustrate the performance of the traditional approach, we have 

identified specific examples where it fails to detect the true horizon line or it misses 

parts of it. The main reason for this is due to the presence of big gaps in the edge 

map. This might happen due to different reasons, for example, horizon edges might 

not be strong enough or stronger edges might exist close to the horizon line due to 

various environmental effects such as clouds. Although Lie et al. have proposed a gap 

filling approach by introducing dummy nodes with high costs, this does not always 

work well, for example, when gaps are long and edges from clouds are close to the 
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horizon line. In these cases, it is likely that the DP approach might find a low cost path 

by taking an alternative path. Figure 5.3 (row 1) shows two examples where the 

method of Lie et al. has failed to find a good solution due to edge gaps and the 

presence of clouds; the proposed method (approach2) was able to find the true 

horizon line with high accuracy in both cases (row 2). Figure 5.4 shows zoomed sub-

images of the left column images of 5.3 (i.e., Lie et al.) for better visualization. 

 

Figure 5.3: Examples illustrating: [row 1] missing the horizon line or parts of it due to 
edge gaps (Lie et al.), and [row 2] detecting the true horizon line using our approach 

2 (SVM). 

 

Figure 5.4: Zoomed sub-images of the left column images of Figure 5.3 

Another reason affecting the performance of Lie et al. is the underlying 

assumption of the horizon boundary is close to the top of the image. When clouds are 

present in an image, a portion of the true horizon may be missed if the true horizon 

line is below the clouds due to the bias introduced towards solutions closer to the top 

of the image. Figure 5.5 shows some examples where the approach of Lie et al. has 
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found solutions consisting of both horizon line segments as well as cloud edge 

segments. Our approach, on the other hand, was able to find the correct solution for 

these cases as it does not make such assumptions. 

 

Figure 5.5: Examples illustrating: [row 1] missing parts of the horizon line due to 

the assumption that the horizon line is close to the top of the image (Lie et al.), 

and [row 2] detecting the true horizon line using the proposed approach 2 

(SVM). 

5.4.2 Failure of Proposed Approaches 

Attempting to better understand why the proposed approach (approach2) 

sometimes finds poor solutions, we have identified two main reasons. First, 

disallowing nodes in some stage to connect with nodes in the same stage but only 

with nodes in the next stage. In the multi-stage graph formulation of Lie et al., a node 

at stage j is only allowed to be connected to nodes at stage j+1 which is problematic 

when the horizon line has high slope (i.e., steep peaks). Figure 5.6 (row 1) shows an 

example due to this issue. This issue can be easily rectified by allowing the nodes in 

some stage to be connected both with nodes in the next stage as well as nodes in the 

same stage. Figure 5.6 (row 2) shows the solution obtained by allowing connections 

within the same stage. Allowing connections within the same level will of course 

increase time requirements as it increases the number of paths that need to be 

explored. 



31 
 

 

 

Figure 5.6: [row 1] effect of not allowing node connections within the same stage; 
[row 2] solution obtained by allowing node connections within the same stage. 

 

The second most important reason affecting the performance of the proposed 

approach is due to using a very small set of training images (i.e., only 9 images from 

the same data set). Figure 5.7 shows examples where our method has failed to find 

good solutions.This is due to the fact that our second approach totally relies on the 

classification whereas the first one uses edges or gradient information along with 

classification evidence. This issue of generalization can be addressed by increasing 

the train set and making it more versatile. By carefully analyzing our results on the 

Web data set, our second approach failed to find a good solution in 9 out of the 80 

images due to using a small training set. Removing these images from the data set 

improves the average error of our approach using the SVM classifier from 1.2854 to 

0.9227 and reduces the variance from 1.1988 to 0.3637. 
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Figure 5.7: Examples illustrating the inability of the proposed method to find a good 
solution due to the lack of sufficient training data. 

Figure 5.8 shows some representative results of our horizon detection approach 

(approach2) using images from all three data sets. 

 

Figure 5.8: Sample results illustrating our horizon line detection approach: City data 
set(row1), Basalt Hills data set (row2) and Web data set (row 3 through 5). Detected 

horizon lines are highlighted in red/green. 
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Chapter 6 

Conclusions 

In this thesis we have proposed two novel horizon detection approaches based on 

supervised machine learning. The first approach relies on edge detection but unlike 

conventional methods uses trained classifier to reduce the number of horizon 

candidate edges considerably. Further classifier is used to provide evidence about the 

likelihood of an edge being horizon or non-horizon. We have investigated various 

texture features and nodal costs in the framework of our proposed method. Our 

second proposed approach does not rely on edge detection as a pre-processing step. 

The key idea is classifying each pixel as horizon or non-horizon and applying DP on 

the classification map to extract the horizon line. 

Both proposed approaches do not make any assumptions about the horizon 

being a straight line or being close to the top of the image which are common in 

conventional methods. The proposed approaches use a very small number of images 

to train the horizon classifiers and outperform traditional approaches based on edge 

maps on three challenging data sets. For future work, we plan to investigate the 

suitability of the proposed horizon detection methods for pose estimation and 

localization of planetary rovers and UAVs. 
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