

Diplôme Ingénieur ISAE-SUPAERO

INTERNSHIP REPORT

Skyline matching: absolute localisation

for planetary exploration rovers

VILLANUEVA ROURERA Emma

Company tutor: LE CABEC Loïc

Referent professor: PÉRENNOU Tanguy

Internship period: 04/04/2022 - 31/09/2022

Date of submiss ion: 06/09/2022

javascript:void(0)

2

Acknowledgements
Foremost, I would like to express my deepest gratitude to Loïc LE CABEC, for making this experience

possible. He eased my way into the project by introducing me to its different parts, he guided me through

all the internship, he was always there to help me overcome the difficulties and he listened and took my

opinion into account at all times.

I would like to continue by thanking my project leader, Thierry Germa, for welcoming me into the team

and making me feel integrated from the very start. He was quite busy conducting many different projects,

but he was always available to listen to my needs and give me some valuable advice. I am especially

grateful to him for giving me the opportunity to participate in a scouting trip in Bardenas, Spain, to

perform field acquisitions with the Magellium robot and generate data for my internship.

My s incere thanks go to the architect of the project, Vincent DELORT. He showed me the different

technologies used in the project and the good practices to perform. He also helped me solve several

technical problems that I encountered when s tarting the implementation in C++, and he did it with good

grace and making sure I understood the root cause and the right steps to take.

I would like to thank Philémon FIESCHI, another team member. He showed great interest in my work and

gave me good feedback during several project meetings. He contributed to the great ambience within the

team.

I would like to thank Thomas RISTORCELLI, the leader of the Imagery and Appl ications unit, for checking

on the progress of my internship and showing himself a vailable to listen to my needs.

I express my gratitude to all the Magellium workers for their kindness, availability and willingness to help.

Without them, this experience would not have been as remarkable. Special thanks go to the other interns,

who helped create a great ambience at work.

Finally, I am extremely grateful to my parents and my sister, for guiding me and supporting me through

all my decisions. Their trust and unconditional help have given me the confidence I needed to become the

person I am today.

3

Table of contents
Glossary ... 5

1 Introduction ... 6

2 The company .. 8

3 Internship mission ... 9

4 Methodology .. 10

5 State of the art .. 12

5.1 Skyline rendering ... 12

5.2 Skyline extraction... 12

5.3 Skyline rectification .. 13

5.4 Skyline matching .. 14

5.5 Position estimation .. 15

6 Scenarios.. 16

6.1 Use-case description .. 16

6.2 Lost in space.. 16

6.3 Continuous approach ... 16

7 System requirements ... 18

7.1 Functional requirements ... 18

7.2 Performance requirements.. 18

8 Tests.. 20

8.1 Test characteristics... 20

8.1.1 Robustness test parameters ... 20

8.1.2 Evaluation metrics... 21

8.2 List of considered image sets ... 21

9 Preliminary design ... 22

9.1 General architecture .. 24

9.1.1 Ground segment ... 24

9.1.2 Board segment ... 25

9.2 Subcomponent description.. 25

9.2.1 Subcomponent 1: Skyline generation .. 25

9.2.2 Subcomponent 2: Skyline storage ... 26

9.2.3 Subcomponent 3: Panorama building... 27

9.2.4 Subcomponent 4: Skyline detection ... 27

9.2.5 Subcomponent 5: Skyline transformation ... 29

9.2.6 Subcomponent 6: Pose estimation .. 29

10 Implementation process ... 31

4

10.1 Skyline rendering from a dem .. 31

10.2 Coding the algorithm .. 33

10.2.1 Panorama assembly .. 33

10.2.2 Skyline detection .. 34

10.2.3 Skyline transformation... 35

10.2.4 Pose estimation .. 36

11 Data acquisition .. 38

11.1 Bardenas field tests .. 38

11.1.1 Material... 38

11.1.2 Acquisitions ... 39

11.2 Simulated data generation .. 40

12 Results ... 41

12.1 Scenario 1: after landing ... 41

12.1.1 Test 1: Pyramidal approach, grid size determination .. 41

12.1.2 Test 2: Robustness to different horizon types and noise levels 43

12.1.3 Test 3: Robustness to pitch and roll ... 44

12.1.4 Test 4: Performance test .. 44

12.2 Scenario 2: end of trajectory.. 45

12.2.1 Test 5: Performance test .. 45

12.3 Scenario 3: along the traverse .. 45

12.3.1 Test 6: Performance test .. 46

13 Future work .. 47

14 Ethical aspects and sustainable development .. 48

15 Conclusion.. 49

16 Bibliography ... 50

17 Annexes ... 53

17.1 Annex 1: skyline extraction with different horizon types and noise levels 53

17.2 Annex 2: skyline extraction with pitch and roll errors .. 54

17.3 Annex 3: images and skyline extraction for the performance tests 55

17.4 Annex 4: Magellium’s test rover stereo-bench specifications .. 56

5

GLOSSARY
ALPER: Absolute Localisation for Planetary Exploration Rovers

CNIG: Centro Nacional de Información Geográfica

CNES: Centre national d'études spatiales

CNN: Convolutional Neural Network

DEM: Digital Elevation Model

DP: Dynamical Programming

ESA: European Space Agency

ETRS89: European Terrestrial Reference System 1989

FCN: Fully Convolutional Network

FoV: Field of View

GDAL: Geospatial Data Abstraction Library

GIS: Geographic information system

GPS: Global Positioning System

HOG: His togram of Oriented Gradients

IGN: Institut national de l'information géographique et forestière

ISO: International Organization for Standardization

OpenCV: Open Computer Vision

PDD: Preliminary Design Document

QGIS: Quantum Geographic Information System

ROI: Region Of Interest

SIFT: Scale-Invariant Feature Transform

SVM: Support Vector Machine

UAV: Unmanned Aerial Vehicle

6

1 INTRODUCTION
Absolute localisation in planetary exploration missions is crucial to allow navigating towards a certain

target, deposing or collecting georeferenced samples or path planning with obstacle. In current missions,

dead-reckoning techniques like inertial navigation, wheel odometry and Visual Odometry (VO) are used

to update the position of the rover during its traverse. However, these relative localisation techniques

present an error drift that grows with the distance travelled. Thus, absolute measurements are necessary

to recalibrate the position and orientation every few meters or to estimate the position when no prior

calculation is available. Furthermore, the communication delay makes it particularly difficult for effective

scientific data exchange during planetary missions, so autonomous navigation becomes crucial for an

effective long-range exploration.

The ALPER project is part of Magellium’s Imagery and Applications unit and falls within the domain of

space robotics. It seeks to explore absolute localisation techniques for rovers on planetary missions ,

particularly on Mars. It explores solutions like Tie Points Tracking, Constellation Matching and Dense

Image Co-registration. These techniques are based on comparing rover acquisitions with orbital images

and they all seek to correct available position and orientation estimates obtained through dead-reckoning

techniques. The two first approaches (Tie -Points Tracking and Constellation Matching) fall into the

“interest point matching” category since they are based on finding correspondences between visual/3D

landmarks. The third approach belongs to the “dense image/terrain matching” category where all the

radiometric information of the rover images is used during the matching process with the orbital images.

The firs t approach relies on constant operator intervention, while the s econd one depends on the

presence of particular features along the rover’s path and needs manual initialisation once per sol1. The

third method is fully autonomous but less mature.

Skyline matching is a technique for absolute localisation framed in the category of autonomous long-range

exploration. This is an area of active research, as it becomes crucial to recalibrate position during long

traverses (updating problem) or to estimate position with no a-priori information when external measures

are unavailable (drop-off problem). This is the case of planetary exploration, where no GPS infrastructure

exists and the magnetic field is practically non-existent, not allowing for compass measurements. Skyline

matching is also used for port security, shipment location or geo-location, as well as for augmented reality

applications.

The skyline can be defined as the boundary that separates the sky and non-sky regions (urban areas,

mountains, forests or seas). It is often used as the main source of information for geo -location and

navigation purposes as it is the most notorious and informative feature, especially for natural scenarios,

and it is particularly stable across time, climate and seasonal changes.

A skyline matching algorithm is based on comparing the skyline from an orbital image (usually rendered

from a Digital Elevation Map) and the skyline extracted from the rover’s imagery. It consists of several

dis tinguished parts: skyline rendering from DEM, skyline extraction, possible rectification, skyline

matching and position estimation.

1 A sol is a solar day on Mars

7

The main objective of my internship was to explore a solution for the lost-in-space problem, where the
rover needs to estimate its position with no prior information. In the context of autonomous navigation,
a different use-case was considered, where the algorithm is used in complement with the relative
localisation to correct the position or orientation drift. In total, three scenarios were considered: 1)
recalibrating position after landing, 2) correcting the position and orientation drift at the end of a 1 km
autonomous traverse and 3) continuous execution on-board of the rover to correct the attitude drift every
50m, admitting a rough position estimate is known via relative localization methods.

I joined the Imagery and Applications Unit at Magellium, where I worked as an intern for 6 months in the
space robotics team. I worked as a research and development engineer by exploring, implementing and
validating a skyline matching algorithm both on real and simulated data.

In this report, we will first have an overview of the enterprise and the project team. Then, I will present

my internship mission and its different work phases. We will review the s tate of the art on the different

parts of the algorithm. We will define the different scenarios, along with the system requirements, the

test parameters and the metrics to evaluate the algorithm. The general operation of the algorithm will be

represented and its architecture described. We will then have a look at the implementation phase, as well

as the means to obtain the data, including field tests in Bardenas, Spain. Finally, the results of the different

tests will be presented and we will extract a conclusion.

8

2 THE COMPANY
Magellium Artal Group is a French tech company of about 250 employees specialised in geoinformation

and image processing. Founded in Toulouse in 2003, the company was born to meet the needs of the

French National Centre for Space Studies (CNES), the French National Institute of Geography (IGN) and

Airbus Defence & Space. Since then, it has grown steadily consolidating its expertise in the geoinformation

field and getting heavily involved in the development of vision-based solutions for robotics applications.

Magellium offers include consulting, technical & scientific studies, software & IT system development and

software product distribution. The company has a recognized expertise in earth observation, geographic

information systems, mapping technologies and vision-based systems.

The Group is structured around two main entities:

- Artal: expert in industrial software systems (embedded systems, data processing, mobility,

software engineering & methods).

- Magellium: expert in imaging and geo-information (Earth observation, Geographic Information

System & cartography, geo-intelligence, computer vision & robotics).

Its technical and commercial teams are located in 2 different s ites: Toulouse (headquarters) and Paris

(Courbevoie). Magellium is primarily involved in activities related to Defence & Security, Space,

Transportation, Energy, Public and Environmental sectors. The company is ISO 9001:2008 certified on all

engineering activities.

The enterprise is organized into several units according to its different domains of expertise. The Imagery

and Applications (IA) unit develops vision and data processing systems in the fields of space robotics,

defense and industry. Its customers are the main industrial and institutional players in these sectors

(Airbus Defence and Space, CNES, ESA…).

The Absolute Localisation for Planetary Rovers (ALPER) project team is part of the IA unit and was initially

formed of 5 people including the project leader, the technical leader, the code architect, the scrum master

and a development engineer.

9

3 INTERNSHIP MISSION
The main goal of my internship was to explore existing solutions to solve the lost-in-space problem, in

which the position of a rover needs to be estimated with very rough prior knowledge, for a Martian-

analogue environment.

This goal can be divided into several missions or phases:

- State of the art of the existing methods based on the comparison of rover acquisitions and orbital

images.

- Prototyping the identified solutions in Python or C++.

- Participating in acquisition campaigns with Magellium’s robots and dron es on representative

terrains.

- Performance evaluation with the acquired data as well as with simulated data generated during

the internship.

The solution had to be autonomous, meaning it requires no operator intervention during its standard

operation. In addition, it had to be apt for implementation on-board of a rover. This meant that memory

and time optimization were taken into account in the process of finding a solution. The aim was to achieve

1 km/sol of autonomous navigation.

On a personal aspect, my personal goal was to learn as much as possible about space robotics, learn to

use new tools and programming languages and, more generally, learn about the workplace and agile

project organization. Overall, I wished to acquire important competences for the professional world while

fostering my professional integration.

10

4 METHODOLOGY
During my internship, I worked as a research and development engineer in the ALPER project. I worked in

parallel to my other co-workers, exploring possible solutions to the lost-in-space problem involving orbital

images and rover acquisitions, and finally focusing on skyline matching. The original aim was to estimate

the position and orientation of a rover from a very rough prior estimation. In the end, accounting for a

real usage, 3 real scenarios were considered, with different uncertainty areas and performance

requirements.

The ALPER project is managed in agile, particularly in scrum. The Agile methodology involves a set of

practices focused on an ongoing collaboration between autonomous and multidisciplinary teams,

continuous planning, improvement and early deliveries. It encourages flexibility, to support the team’s

ability to respond to changes. Scrum is a framework which implements the agile methodology. It is based

on an iterative method that focuses on regular deliveries, a set of roles and ceremonies. Sprints are the

heartbeat of scrum. They represent timeboxed iterations of a continuous development cycle, in which

particular tasks and objectives need to be accomplished. A sprint consists of at least a Sprint Planning,

Daily Scrums, a Sprint Review and a Sprint Retrospective. Sprints in the ALPER project usually last 4 weeks.

Figure 1. Scrum project life cycle [1]

As an intern, I participated in most of the project meetings, including a daily 15-minute meeting, monthly

2-hour internal reviews, reviews with the client (ESA), sprint retrospectives and sprint plannings. In

contrast with the rest of the team, my work was cadenced with 2-week sprints and additional weekly

meetings with my technical tutor were held to review the work done, define new objectives, and plan the

different tasks to perform for the next sprint. Each sprint had different objectives and milestones to reach.

A Jira Board (an agile tool) is used to keep track of all the tasks. All team members have their name on the

board and can create dedicated subtasks, update their status, add information or assign them to different

people. By clicking on the tasks, its information can be retrieved (description, release, topic, priority, etc.).

11

My internship was organised like an ESA project, with 4 distinguished phases, associated to different

deliverables:

1) System Engineering (System Requirements Review): This phase was mainly dedicated to review

the s tate of the art on the different existing methods to solve the lost-in-space or drop-off

problem, focusing on skyline matching. Additionally, the different scenarios were defined and the

system requirements were identified. The different tests to be performed were determined, with

the conditions and parameters to be tested, as the well as evaluation metrics and the necessary

material for the field acquisitions. The outputs of this phase were the System Requirements and

the Demonstration Scenario documents.

2) Requirements Engineering (Preliminary Design Review): The architecture of the algorithm was

defined. The different components and subcomponents composing the on-board and ground

segments were described in detail. Their subfunctions, inputs and outputs were explained and

represented. Two versions were defined: a basic mock-up version and an optimized final version.

An activity diagram defining the usage and potential errors of the algorithm w as generated.

During this phase, I took Blender (a 3D computer-graphics software) in hand to test and automate

the skyline rendering from a DEM through a Python script. The output of this phase was the

Preliminary Design Document.

3) Design Engineering (Critical Design Review): The different parts of the algorithm (panorama

assembly, skyline detection, skyline transformation and pose estimation) were coded in C++. A

demo executable was created and unitary tests were performed for all of the components, as well

as for the whole function. Simulated data was generated using Blender and QGIS (GIS software)

was used to prepare the DEM. The outputs of this phase were technical notes describing the

modifications made with respect to the Preliminary Design Document (PDD) and the future

improvements.

4) Validation and Acceptance (Qualification/Acceptance Review): The algorithm was tested using

real and simulated data, the results were analysed and potential improvements were identified.

12

5 STATE OF THE ART
In this section, the state of the art on the main parts of the skyline matching algorithm is reviewed, and

the method chosen is justified. The work present in this section is a summarized version of the technology

review document submitted during my internship.

5.1 SKYLINE RENDERING

The firs t s tep for the skyline matching algorithm is to render skylines from the DEM. That is, for every

pos ition in a 2D sampling grid, get the panoramic horizon line that would be seen according to the rover’s

camera characteristics and store it in a database along with its corresponding position.

In the literature, not much focus is put on this crucial s tep on the algorithm. Stein and Medioni introduced

in [2] the key idea of pre-compiling the horizons and their line segments off-line according to their chosen

skyline representation. This allows to speed up performance during on-board execution.

Some authors [3], [4], [5], [6] mention the use of a ray-tracing algorithm to extract the elevation profile

for every point in the grid. Babaoud et al. [7] talk about using ray-casting to render the s ilhouettes into a

2D cylindrical image. Tzeng et al. [6] and Pan et al. [8] propose an approach in which the full scene is

rendered at each sample point via overlapping images.

A different approach is taken in [10] by Rodin et al., who use the camera model to project the skyline

elements from the world coordinates to the image coordinates. Baatz et al. [11] render a cubemap of the

textureless DEM for every grid position and they extract the horizon by checking the rendered sky colour.

Several authors mention the use of OpenGL [12] and depth map extraction [13]. Nefian et al. [12] talk

about using a low coverage high-resolution DEM augmented by a high coverage low resolution DEM to

satisfy both the wide-coverage requirements for horizon rendering and the high-resolution requirements

for terrain matching while accommodating the memory constraints of a typical GPU.

In our algorithm, we reuse the idea of [10] of us ing a textureless DEM and image segmentation by colour

and the idea of using several sizes and resolutions [12]. This idea is simple to implement and the required

capacity is available at Magellium’s site.

5.2 SKYLINE EXTRACTION

Extracting the skyline from an image has been a topic of interest for several years, as it plays a decisive

role in vision-based navigation for UAVs or planetary rovers, mountainous geo-localisation, port security

and augmented reality applications. It consists in extracting the skyline from an image.

Related work on this area shows two classic approaches for solving this problem: region-based or contour-

based methods. Region-based solutions make use of image segmentation algorithms in order to

dis tinguish the sky from mountainous or urban areas. In edge-based approaches, the characteristics of

skylines are defined to select from candidates in an edge map.

13

Traditional region-based approaches perform a vertical-line search based on intensity thresholding. For

every column starting from the top of the image, the first pixel whose intensity is below a certain threshold

is selected as a skyline pixel [14], [3]. Both of these solutions have the downside of not being robust to

complex environments.

Lie et al. [15] set the base for edge-based methods with their Dynamic Programming approach. They

construct a multi-stage graph from an edge map. Links and costs are set based on adjacencies and vertical

pixel location, and a shortest path algorithm is used to find the minimal cost solution between two virtual

nodes. A gap filling step is performed using high-cost dummy nodes to allow for a certain tolerance gap.

Similar approaches can be found in [16], [17] and [18]. Woo et al. [19] use global energy minimization for

all available edge-pixel paths via contrast cost and homogeneity cost. Other approaches [20] include

hierarchical methods, in which non-horizon pixels are excluded step by step.

More recent works explore the use of Machine Learning to segment the image. As machine learning is not

used for space applications yet, our first choice is to use is to use traditional methods. However, a quick

review of these more recent methods has been made to check for key ideas in case results obtained with

traditional methods were not satisfactory.

 These approaches can be classified into supervised learning approaches and deep learning approaches.

The firs t ones use the extraction of explicit feature descriptors and classification or direct discrimination

based on pixel intensity [21], [22], [23], [24] while the latter are mainly based on CNN or on fine-tuning

existing general scene parsing deep networks [25], [26], [27], [28].

A focus is made on Ahmad et al.’s work in [22]. They use SVM and CNN classifiers trained with normalized

pixel intensities, they obtain a dense classification score map according to the likelihood of the pixels

belonging to the horizon line (horizon-ness) and they apply Dijktra’s shortest path algorithm to find the

horizon on a multi-stage graph. In [24], they additionally boost the score of edge pixels.

For the sake of robustness, we adapt the key idea of [22] and [24] of using a dense multi-stage graph with

the edge-ness inside the cost function. However, we redefine the horizon-ness on the basis of their edge-

based method [29] and other traditional edge-based methods.

5.3 SKYLINE RECTIFICATION

Transforming the skyline is a crucial step to allow matching skylines with different roll, pitch or yaw angles.

This step is not usually taken into account in the literature, as the camera is assumed to be levelled [32],

[3], or the angle small enough to not affect the algorithm [11]. Other approaches, like [21], search for a

skyline representation that is robust to rotations, by using normalized concavity features.

Some authors use vanishing point estimation in urban environments to get a pitch and roll estimate and

rectify the skyline [33] or the image [34] accordingly. However, this method is based on aligning lines that

are approximately upright to a common vertical orientation and thus, it is not adapted for mountainous

terrain.

Several approaches can be found in the literature that try to deal with the attitude without rectifying the

skyline. Some use a parameter range around the estimated pitch or roll angles in the quantized grid of

14

sampling points, while others include a full range of values for estimating the yaw value. This will be

further explained in the skyline matching section.

In [35], Grelsson et al. use Canny edge detection and Hough voting to get a rough estimate of the camera’s

pitch and roll angles and warp the image accordingly. In [5], they use a CNN instead. Nevertheless, both

their methods are designed to find the horizon at sea level, and are thus not applicable to planetary

environments.

5.4 SKYLINE MATCHING

Skyline matching is the next key step of the algorithm. It consists in evaluating the similarity between the

skyline extracted from the rover’s imagery and the skylines rendered from the DEM, in order to obtain

the best match and estimate the rover’s position.

Research on the field of skyline matching distinguishes 2 approaches to solve this problem: feature-based

or s ignal-based methods. Feature-based methods search for correspondences among features, like

natural landmarks (peaks or depressions), while s ignal-based algorithms use dense s tructures in the

image. Both techniques are highly dependent on the features and the method used to encode the skyline.

To our knowledge, Stein and Medioni [2] were the first ones to use the full skyline for their s ignal-based

matching algorithm. They extracted super segments, which they encoded into a table, and they retrieved

candidate hypothesis based on similarity.

VIPER (Visual Position Estimator for Rovers) [3] was the first algorithm specially created for planetary

rovers and extensively tested on both terrestrial and lunar environments. Their s ignal-based approach

considers Gaussian measurements and uses an evaluation function based on Bayesian statistics in order

to find the best match. They s tore the skylines as vectors of elevation angles indexed by azimuth value..

In [32], Furgale et al. made a more robust version of the algorithm by modifying the likelihood function.

A previous less accurate version of the VIPER system [36] used a feature-based approach based on peak

extraction and evaluation. A s imilar approach can be found on Wei et al.‘s work [37].

Other approaches include different encoding strategies. Several articles explore the idea of using contour

words to represent the skyline within a bag-of-words approach [21], [38], that is, dividing the skyline into

curvelets sampled at regular intervals. The disadvantage of this kind of approaches is its weak robustness

against any rotations in the curve, which makes it inadequate for s ituations where pitch and roll are

unknown.

In [6], Tzeng et al. use the concavity as a feature within a geometric hashing matching procedure, whereas

Pan et al. [8] propose a new method for locating hilly areas using lapel points as features. In [39], Nuchter

et al. reduce the skyline-matching problem to a s tring-matching problem. Their approaches have the

advantage of being robust to the effects of scales and in-plane rotations.

Some attempts for edge matching have been made on the basis of cross-correlation on the Fourier domain

[7], [5], [40]. However, these types of approaches are quite expensive computationally and are thus

unsuitable for real-time applications.

15

In the literature, most skyline matching techniques rely on the availability of an accurate measure of the

rover’s attitude. However, in the present work, an estimation of the orientation is sought along with the

pos ition. As stated before, some authors have enlarged the estimation procedure by including the yaw in

a 3D grid of sampling points [3], [41]. In [41], Chiodini et al. use a least square error metric for Martian

rover localisation and their algorithm achieves 50-meter accuracy. Other authors include a parameter

range around the estimated pitch or roll angles in the quantized grid of sampling points [38], [42].

Several approaches for correcting estimated pose and adjusting the azimuth have been studied within the

context of Augmented Reality [13], [33], [43], [9] They are mainly based on cross-similarity functions.

Our approach reuses the idea of encoding the skylines as a vectors of elevation values indexed by azimuth

[3] and evaluating the match with a s imple least square error metric [41]. A final version of the algorithm

would reuse the idea of using concavity features [6] to gain robustness to pitch and roll errors.

5.5 POSITION ESTIMATION

Pose estimation is the last key step of the algorithm. It consists in obtaining an estimate of position by

applying the skyline matching metric as well as any other methods that could optimise the procedure.

Most methods found in the literature assume a rough position estimate is available (reduced search area)

or they do a full-grid search [3], [37], [41]. The latter is computationally expensive but can be optimised

by precompiling and storing skyline features.

Other techniques can be found, particularly on approaches conceived to estimate orientation within the

context of Augmented Reality. Gupta et al. [44] use Random SAmple Grid Search (RSAGS) to select 4

random points to which apply their least sum of vertical distances metric. The same metric is then applied

to all points to evaluate the best candidates. In [43], Ayadi et al. use gradient descent with a distance

metric to find the best orientation estimate. Dumble and Gibbens [42] also use gradient descent to refine

an initial position estimate.

Others [21], [39] use a least accurate metric for all candidates and apply ICP to find the best estimate

among the resulting candidates. The disadvantage is that ICP is highly sensible to any rotations or scalings.

A two-step approach is also applied in [8], consisting of a coarse matcher based on skyline features

followed by a refined matcher based on Label Points.

A pyramidal approach is proposed in [5] by Grelsson et al. using the fact that the skyline does not vary

notoriously within few meters of dis tance. A larger grid-size is used at firs t to find a coarse position

estimate, and then the s ize of the grid is decreased around this position to refine the estimate.

Most of these approaches are not adapted for position estimation combined with orientation estimation,

due to lack of accuracy or high computational time. However, some of these ideas could be adapted to

avoid doing a full-grid search with the chosen metric and speed-up the execution of the algorithm.

16

6 SCENARIOS
Accounting for a real usage of the algorithm, different scenarios are considered. The s cenarios were

defined during a brainstorm with the client (ALPER’s project team at Magellium). My objective was to

verify whether skyline matching could respond to these needs.

6.1 USE-CASE DESCRIPTION

As s tated, 2 different use-cases are distinguished for the implementation of the skyline matching function.

The firs t one is the lost-in-space scenario, in which no a-priori information is known and position and

orientation need to be estimated from a full-grid of candidates.

The second use-case is conceived on account of autonomous rover navigation and is based on a

continuous approach in which the rover either refines a position estimate or estimates its orientation

from a certain pos ition estimate. This approach is used in complement with relative localisation

techniques to correct their drift every few meters of traverse.

In the next sections, real scenarios for planetary missions are defined for each of these use-cases, and the

system requirements for each of them are defined.

6.2 LOST IN SPACE

The lost in space scenario with no prior information is not considered to be realistic for an actual planetary

mission since a rough estimation of the rover’s localization will a lways be available in actual operational

conditions. However, the closest scenario would be found after the rover’s landing, where a non-trivial

ellipse of uncertainty exists. Recent methods have allowed to reduce the size of this ellipse significantly

over the last few years. As of the last Martian missions, Perseverance’s landing ellipse was 7,7 by 6,6

kilometres, compared to 7 by 20 km for Curiosity.

This first approach imposes less restrictions in terms of computational time, as it should only be done

once in the rover’s lifetime. Additionally, accuracy constraints as not as tight as in the other scenarios as

the initial uncertainty is a lot bigger, and the first obtained estimate can be further refined using other

absolute localisation techniques like Tie -Points Tracking, Constellation Matching, Dense Image Co-

Registration or the continuous version of the algorithm (refer to section 6.3Continuous approach).

6.3 CONTINUOUS APPROACH

The continuous approach could be used in 2 different scenarios on a planetary mission.

- End of autonomous traverse: In this scenario, the algorithm is used in complement with relative
localisation methods to correct the position drift at the end of a journey of autonomous traverse
(~1km).

17

- Along the traverse: In this scenario, the localisation function is used continuously in complement
with relative localisation methods to correct the orientation drift every few meters of traverse
(~50m).

This continuous approach is a lot more restrictive than the first one, as it should allow for continuous

autonomous rover exploration and, consequently, its execution time is crucial to avoid accumulating

errors. However, the available a priori is rather precise, which makes the task easier. Additionally, its aim

is to correct an initial estimate, so accuracy is particularly important. In the last scenario, orientation is

estimated but not position, so the algorithm might suffer finding the good orientation when the available

pos ition estimate is not precise enough. As the algorithm is executed along the traverse, low

computational times are essential and little accuracy translates to large error accumulation.

18

7 SYSTEM REQUIREMENTS

7.1 FUNCTIONAL REQUIREMENTS
The functional requirements concern the system behaviour and its capabilities. They are common for all

scenarios.

- On board execution: In the context of long-range autonomous rover exploration on planetary

missions, the skyline matching algorithm shall run online, on-board of the rover, with no operator

intervention.

- Input data: The Skyline Matching localisation function shall use ExoMars NavCam-like overlapping

images and HiRISE-like orbital maps, as well as 2 GPS for obtaining ground-truth position and

orientation data.

- Physical environment: The function shall run on a Martian-like environment, with a focus on

horizon lines and impacting environmental parameters. That is, mountainous areas, including

broad and irregular terrain, steep cliffs, valleys, ridges and a dusty environment.

- Function TRL 4: The skyline matching localisation function shall reach TR 4 at the end of the

activity. TRL 4 corresponds to a model demonstrating the critical functions of the element in

laboratory environment. By laboratory environment, we include a test campaign in an analogue

environment, but exclude the deployment on representative target processor.

- Measure of estimation confidence: The skyline matching algorithm shall provide an intrinsic

measure of the quality of the estimated position. This can be used to decide whether the position

or attitude is updated with the new estimate, a new estimate is computed or the old one is kept.

- Robustness: As pitch and roll are not part of the estimation function, the function is required to

be robust to small variations in these camera parameters . Particularly, the skyline matching

algorithm shall be robust to 10° errors in pitch or roll angle.

7.2 PERFORMANCE REQUIREMENTS
The performance requirements define a set of criteria which stipulate how well the system completes its

tasks under specific conditions. They vary depending on the scenario.

- Size of the search area: the s ize of the search area has been determined according to the

uncertainty present in each scenario.

o In accordance with recent advances on planetary missions, Perseverance landing ellipse

(7.7x6.6 km) is taken as a reference and the localisation algorithm is designed to consider

a search area of 7x7km for the after-landing scenario.

o For the end-of-trajectory scenario, this zone is reduced to 40x40m to account for a 2%

error in a 1km traverse. The 2% error has been estimated using Magellium’s internal

algorithms on representative data in the context of previous projects.

o For the along-the-traverse s ituation, a search are of -10º to +10º around the current

orientation estimate is considered, on the basis of a 10° uncertainty.

19

- Localisation accuracy:

o In the firs t scenario, the aim is to have enough precision to be able to s tart the mission.

The target is 5m, as the initial estimate can further be refined using the on-board version

of the algorithm.

o For the continuous approaches, the goal is to be able to fetch a sample localised on an

absolute reference, so the accuracy is set to 1m for the second scenario.

o The aim is set to 1º for the third scenario. This angular accuracy constraints the error in

pos ition to 1m considering execution every 50m.

- Execution time:

o The firs t scenario does not impose a big constraint in terms of execution time, as the

mission has not yet started. The aim is to have an estimate in less than 1 sol.

o The second scenario is performed at the end of the journey, so the goal is to have an

estimate by the s tart of the next journey. A 1-hour execution time is targeted.

o The third scenario is the most restrictive in terms of execution time, as the algorithm is

executed along the traverse. 5 minutes is the selected target value.

- Spatial frequency: due to the nature of the different scenarios, the function shall be executed

with different frequencies.

o Once in the rover’s lifetime for the first scenario.

o Once every kilometre for the second one.

o Once every 50m for the third one. In this case, as the pose is not estimated by the

algorithm, the orientation is computed from a position that is increasingly further from

the ground truth, so the objective is set to constraint the error within a 2 to 5% interval.

- RAM: The skyline matching localisation function shall be able to run on a 256 MB RAM. This target

is designed to allow for a realistic implementation taking into account rover characteristics for last

planetary missions. Perseverance computers2 for Mars 2020 are taken as a reference.

- Flash memory: The skyline matching function shall take less than 2 GB of flash memory. This

target is adapted to the Perseverance rover used on Mars 2020 and refers particularly to the

s torage of the skylines rendered from orbital data and their ground truth position.

2 https://mars.nasa.gov/mars2020/spacecraft/rover/brains/

20

8 TESTS
This section describes the different parameters to be tested, the evaluation metrics, the required entry

datasets and the diverse means to acquire the data, both for field tests and s imulated data.

8.1 TEST CHARACTERISTICS

Tests need to be performed to verify the system requirements for all 3 scenarios, as well as the general

system behaviour under different circumstances. The different parts of the function need to be evaluated

separately with an appropriate metric. Specifically, skyline extraction and pose/orientation estimation

need to be tested. The variety of rover acquisitions needs to be defined.

8.1.1 Robustness test parameters
In this section, the different parameters possibly impacting the algorithm’s performance are presented

along with their nominal and degraded modes.

 Horizon relief

o Nominal: the optimal relief consists of a distinct skyline with clearly identifiable and unique
features.

o Degraded: the degraded skyline would be a flat or unvarying skyline. Regular skylines contain
less distinctive features for the algorithm.

 Skyline completeness

o Nominal: the skyline is completely inside the camera view.

o Degraded: the skyline is partially or totally outside the ca mera’s field-of-view (caused by
extreme topography). Extracted skyline is not complete.

 Local relief (camera’s pitch and roll angles)

o Nominal: rover is on a flat surface and camera is levelled (pitch and roll angles are about 0°).

o Degraded: rover is on different types of relief (ascending and descending s lopes, craters,
mounds…). Pitch and roll are not 0°.

 Presence of clutters blurring the skyline

o Nominal: defined boundary between sky and non-sky areas, no clutters.

o Degraded: blurred skyline due to the presence of clutters like clouds, atmospheric dust,
sandstorms…

 Presence of elements close to the rover (partial occlusions):

o Nominal: no occluding elements close to the rover

o Degraded: presence of big elements (rocks, trees, hills…) close to the rover. Close elements
might occlude the distant horizon and cause any small deviations in the model to have a
s ignificant effect on the localisation result.

21

 Degraded acquisition conditions (weather, luminosity)
o Nominal: acquisitions taken with daylight and good weather (no rain, no fog, no shadows

occluding the skyline)
o Degraded: direct sunlight, sun glare, camera over exposition, fog, darkness…

8.1.2 Evaluation metrics
For evaluating the skyline extraction, the pixel-wise absolute distance between the extracted and the

ground-truth skyline is used as a metric. The ground-truth skyline will be manually extracted by an

operator for the field tests.

For evaluating the position estimation, the absolute distance between the estimated position and the

ground-truth GPS position is used.

For evaluating the orientation estimation, the absolute distance between the estimated orientation and

the ground-truth orientation obtained with 2 GPS is used.

8.2 L IST OF CONSIDERED IMAGE SETS

Different sets of images need to be taken with to evaluate the robustness of the algorithm to the different

impacting parameters independently.

Set ID
Horizon

relief

Skyline

completeness
Local relief

Presence of

clutters

Partial

occlus ions

Degraded

conditions

REF-SET Nominal Nominal Nominal Nominal Nominal Nominal

HREL-SET Degraded Nominal Nominal Nominal Nominal Nominal

SCOM-SET Nominal Degraded Nominal Nominal Nominal Nominal

LREL-SET Nominal Nominal Degraded Nominal Nominal Nominal

CLUT-SET Nominal Nominal Nominal Degraded Nominal Nominal

OCCL-SET Nominal Nominal Nominal Nominal Degraded Nominal

COND-SET Nominal Nominal Nominal Nominal Nominal Degraded

Table 1: Set of considered acquisitions

Some of these image sets are quite hard to obtain during field tests, especially those regarding the

presence of clutters, degraded acquisition conditions and potentially occlusions. Thus, available datasets

or s imulated data will be used instead to test the robustness of the skyline matching function for some of

the impacting parameters.

22

9 PRELIMINARY DESIGN
The Skyline Matching basic function is to estimate the pose of the rover by minimizing the errors between

the extracted skyline and the georeferenced rendered skylines for a c ertain search area. Its nominal

operation is briefly presented in this section.

The process is divided in two segments that are intended to run in two different contexts:

- Ground segment: its function is meant to run off-line once before running the board segment. It

consists on rendering and storing the skylines from a desired search area in a DEM in the form of

elevation vectors.

- Board segment: This component is mainly composed of the skyline extraction and pose

estimation functions, added to image assembly and transformation. It is meant to run

autonomously on-board of the rover until one of the following errors is raised:

o The latest estimated pose is too uncertain after a certain number of iterations
o Extraction failure

In both cases, operator intervention is requested either to manually extract the skyline or to move
the rover to a new position where the skyline is more distinct or appears more clearly inside the
camera’s Field of View. In the lost-in-space type of scenario, the function is meant to run once in
the rover’s lifetime. In the continuous approach, the function is supposed to run iteratively.

The preliminary version of the algorithm assumes that the rover’s camera is levelled (pitch and roll are 0°)

and that there are no tight constraints in terms of computational efficiency.

The overall Skyline Matching process for the continuous approach is presented on the activity diagram
below.

23

Figure 2 : Activity diagram of the skyline matching function

24

9.1 GENERAL ARCHITECTURE
The demonstration environment for skyline matching is composed of 3 main components:

- The ground segment with the user interfaces in case of unexpected behaviour and the tools for

rendering the skylines from the DEM.

- The board segment with the core functions for extracting skylines from the rover imagery,

matching them and estimating the rover’s pose and orientation.

- The demonstrator, which manages the communication between ground and board segment,

emulates the rover for the board segment and displays the product of the ground segment.

On the following pages only the board and ground segments are going to be considered as components,

as testing on representative environment is out of the scope of this document.

A scheme showing all subcomponents for this mock-up version is shown in Figure 3.

Figure 3: Subcomponent scheme for the mock-up version

9.1.1 Ground segment
The ground segment is constituted of one s ingle component:

- Skyline rendering: the DEM is quantized according to a certain grid resolution and a skyline is

extracted for every position of the grid and stored in a database. This step is done offline to allow

for faster execution at run-time.

o Inputs: DEM

o Outputs: database of skylines for every grid position

The skyline rendering component is composed of several functions:

Subcomponent Subcomponents Algorithm description
Skyline rendering Generation Panoramic skylines are generated for every sample

point in the DEM using image rendering and colour
segmentation techniques in Blender.

25

Storage Skylines are encoded as vectors of elevations indexed
by azimuth and s tored in a database with their
corresponding grid positions.

Table 2: Ground segment subcomponent descriptions

9.1.2 Board segment

The board segment is composed of 2 subcomponents:

- Skyline extraction: takes charge of assembling, extracting and encoding the skyline from a set of

rover’s images.

o Inputs: set of rover’s images

o Outputs: panoramic skyline

- Skyline matching: the extracted query skyline is matched against all the precompiled DEM

skylines and a position is estimated using a sum of squared errors metric.

o Inputs: query skyline, database of rendered DEM skylines

o Outputs: rover’s position

Subcomponent Subcomponents Algorithm description

Skyline extraction Panorama building Fus ion skylines taken at different orientations by
s titching based on key-point detection, SIFT feature
extraction, descriptor matching, homography matrix
calculation and image spherical warping.

Detection Graph-searching via Dynamical programming using
adjacencies, contrast cost and edge-ness.

Transformation The extracted skyline in image coordinates is
converted to 2D elevation-azimuth coordinates and
encoded into a vector of elevations indexed by
azimuth.

Skyline matching Pose estimation Full grid search based on the sum of squared pixel
differences for each possible azimuth

Table 3: Board segment subcomponent descriptions

9.2 SUBCOMPONENT DESCRIPTION

9.2.1 Subcomponent 1: Skyline generation

The skyline generation component consists in extracting synthetic skylines from the DEM according to a

desired sampling resolution.

Figure 4: General architecture of the skyline generation component

26

It is composed of several functions:

- DEM quantization: this step consists in sampling the DEM with QGIS to obtain a 2D regular grid

of possible candidate positions according to the desired resolution. This is done by using the GDAL

translate command on the desired input GeoTIFF to extract the XYZ coordinates in ASCII format.

o Inputs: DEM

o Outputs: template positions grid

- Panoramic image rendering: black and white panoramas are rendered with Blender’s

equirectangular panoramic camera according to the NavCam’s height and intrinsic parameters for

every point of the sampling grid. A python script is used to automate the procedure of positioning

the camera at the different points of the grid and rendering the panoramas.

o Inputs: template positions grid, DEM, NavCam’s height and focal length and vertical fov

o Outputs: set of rendered black and white scenes in image coordinates

- Colour segmentation: colour segmentation techniques are applied to extract the skyline from the

binary scenes.

o Inputs: set of rendered black and white scenes

o Outputs: set of rendered skylines in cylindrical coordinates

9.2.2 Subcomponent 2: Skyline storage
After generation, skylines need to be s tored in a database along with their corresponding DEM position.

Figure 5: General architecture of the skyline storage component

The skyline s torage component consists of several functions:

- Coordinate transformation: the generated skyline in image coordinates is converted to elevation-

azimuth coordinates by using the vertical and horizontal panoramic FoV. For every column j, the

elevation e j and the azimuth a j are calculated as follows:

𝑒𝑗 =
𝑒0−𝑦𝑗

ℎ
∙ 𝑣𝑓𝑜𝑣 𝑎𝑗 =

𝑗

𝑤
∙ ℎ𝑓𝑜𝑣

Where 𝑒0 is the panoramic image zero elevation line, 𝑦𝑗 is the skyline row associated to column j,

ℎ is the height of the panoramic image, 𝑤 is the width of the panoramic image, 𝑣𝑓𝑜𝑣 and ℎ𝑓𝑜𝑣

are respectively the vertical and horizontal Fields of View associated to the panoramic image and

expressed in [rad]. For the rendered skylines, ℎ𝑓𝑜𝑣 corresponds to 360 and 𝑣𝑓𝑜𝑣 depends on the

camera parameters. The resulting elevation vector ranges from −𝑣𝑓𝑜𝑣/2 to 𝑣𝑓𝑜𝑣/2 , while the

azimuth goes from 0 to ℎ𝑓𝑜𝑣. This azimuth is relative to the beginning of the image. However,

the 0-yaw position of the panoramic image is stored and used for absolute azimuth calculation.

o Inputs: set of generates skylines, vertical FoV, horizontal FoV

o Outputs: set of rendered skylines in cylindrical coordinates

27

- Skyline encoding: from the set of skylines in cylindrical coordinates, vectors of 360 elevations are

extracted by linear interpolation every 1°.

o Inputs: set of rendered skylines in cylindrical coordinates

o Outputs: set of rendered skylines as elevation vectors

- Skyline storage: the skylines are stored in a database as vectors of elevations indexed by azimuth,

along with their corresponding DEM position.

o Inputs: set of rendered skylines as elevation vectors, position

o Outputs: database of skyline vectors with their DEM position

9.2.3 Subcomponent 3: Panorama building
A panorama is built from the set of overlapping skylines obtained through the previous s tep.

Figure 6 : General architecture of the panorama building component

- Inputs: set of rover acquisitions obtained for a particular rover position, NavCam’s focal length

- Outputs: extracted panorama, panoramic image vertical and horizontal FoV, 0-yaw position

This s tep is performed us ing the OpenCV stitching function. It consists of a key-point detection step,

followed by a SIFT feature extraction, descriptor matching between input images, homography matrix

calculation, warping according to a spherical projection and final assembly. A preliminary function that

did not deform the image but only transformed its c oordinates was tested and found insufficient, as it did

not account for any errors in the camera calibration.

As this new function transforms the images, black regions surrounding the panorama appear in the

assembled image. A cropping step was performed to keep only the maximum inner rectangular region of

the panorama. This step was inspired from [45] and it includes binary thresholding, contour extraction,

bounding box computation of the largest contour and Region Of Interest (ROI) extraction. The horizontal

and vertical Fields of View of the panoramic image are adjusted accordingly after image cropping and the

0-yaw position in the image is saved.

9.2.4 Subcomponent 4: Skyline detection
The skyline detection component consists in extracting the skyline from the rover’s camera image. The

extraction algorithm is based on graph-searching via Dynamical programming, using adjacencies, edgne-

ness (whether a pixel is classified as edge or not by the detector) and contrast cost.

28

Figure 7: General architecture of the skyline detection component

It is composed of several functions:

- Pre-processing: the input image is converted to grayscale and Constrast Limited Adaptive

His togram Equalization (CLAHE) is applied. This method is use to improve contrast by equalizing

the histogram in small regions of the image called tiles.

o Inputs: extracted panorama

o Outputs: pre-processed panorama

- Edge detection: the pre-processed input image is filtered with a Gaussian Kernel to remove the

noise. Then, a Canny operator is applied to generate an edge map. The higher and lower

thresholds of the edge detector are computed via Otsu binarization. Otsu's method determines

an optimal global threshold value that separates pixels into 2 classes from the image histogram.

This threshold is determined by minimizing intra-class intensity variance.

o Inputs: pre-processed panorama

o Outputs: binary edge map

- Generation of gradient information: a Sobel filter is applied to the pre-processed input image

and the gradient’s magnitude is obtained for each pixel.

o Inputs: pre-processed panorama

o Outputs: gradient information for all image pixels

- Graph construction: a dense multi-stage graph 𝐺(𝑉, 𝐸, 𝜙) is constructed, where 𝑉 represents the

set of vertices, 𝐸 the set of edges and 𝜙 the cost function. It represents a weighted directed graph

in which all pixels are considered as nodes and divided into different stages, corresponding to the

columns. In this case, neighbours are considered at a maximum distance of 1 pixel either at the

same or the next stage, so each node is connected to 5 other nodes in total.

2 virtual nodes are added at the beginning and at end of the graph, connected to all nodes in the

firs t and last column respectively. The cost function is defined as:

𝜙(𝑢,𝑣) = 𝜔1 ∗ 𝑑∇(𝑢, 𝑣) + 𝜔2 ∗ (1 − ∇𝑣(𝑣)) + 𝜔3 ∗ 𝐵(𝑣) + 𝜔4 ∗ (1 − ℎ)

Where 𝑑∇(𝑢, 𝑣) is the gradient difference between nodes 𝑢 and 𝑣, ∇𝑣 is the absolute gradient

value of node 𝑣 , ℎ is the node height and 𝐵(𝑣) is the value of the binary map at the pixel

associated to node 𝑣:

𝐵(𝑣) = {
0 𝑖𝑓 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑒𝑑𝑔𝑒

1 𝑖𝑓 𝑣 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒

All values are normalized. After some tweaking, the weights were set to 0.3 for the gradient

difference, 0.05 for the absolute gradient, 0.3 for the edgne-ness and 0.35 for the height. The

function maximizes the edge-ness of a pixel, minimizes the gradient difference between

connected nodes, maximizes the height position in the image and maximizes in a small measure

29

the absolute gradient value. The gradient difference is prioritized compared to the absolute

gradient value so as to avoid taking high-gradient pixels that are high in the image but do not

belong to the skyline. Us ing the height inside the cost function could pose problems in common

scenarios where clouds are present. However, this is not a problem in Mars.

o Inputs: Binary edge map, gradient information for a ll image pixels

o Outputs: Multi-stage graph (vertex, edge points, cost function)

- Graph resolution via a shortest path algorithm (Dijkstra) between the starting (source) and end

(s ink) virtual nodes.

o Inputs: multi-stage graph

o Outputs: query skyline in image coordinates

9.2.5 Subcomponent 5: Skyline transformation
The extracted skyline in image coordinates, expressed in pixels, is converted to a 2D cylindrical coordinate

system. Elevation is expressed as a function of the azimuth.

Figure 8: General architecture of the skyline transformation component

The skyline transformation component consists of 2 functions:

- Coordinate transformation: the extracted skyline in image coordinates is converted to elevation-

azimuth coordinates by using the vertical and horizontal Fields of View of the panoramic skyline.

The formulas are identical to the ones used for skyline generation from the DEM. However, in this

case, the Fields of View need to be adjusted according to the panorama coverage and its posterior

cropping.

o Inputs: query skyline in image coordinates, panoramic image vertical and horizontal FoV

o Outputs: query skyline in cylindrical coordinates

- Skyline encoding: the skyline expressed as e levation-azimuth is sampled every 1° by linear

interpolation to obtain a vector of elevations indexed by azimuth.

o Inputs: query skyline in cylindrical coordinates, adjusted

o Outputs: vector of elevations for the query skyline

9.2.6 Subcomponent 6: Pose estimation
The pose estimation subcomponent consists in using a pyramidal approach over the space of position

candidates and evaluate the match between the corresponding skyline from the DEM and the extracted

query skyline. As images have been previously corrected us ing the proper camera’s calibration file, a

Bayesian approach which considers a Gaussian model for the measurements and uses a s tandard

deviation as an indicator of sensor quality does not seem appropriate. Thus, a s imple measure which

considers the sum of squared errors for each column is judged sufficient. For each extracted rover’s

skyline, the pixels are compared to the generated DEM skylines. All azimuths are evaluated. To make the

30

algorithm robust to errors in the camera height, the elevation difference with respect to the mean (for

the rover’s panoramic image horizontal FoV) is compared instead of the absolute elevation value. This

approach allows to compare partial panoramas, as the mean is computed every time for the

corresponding portion and the tested azimuth.

For the azimuth estimation, the position of the center of the image taken at 0 yaw angle is considered.

Figure 9: General architecture of the position estimation component

- Skyline matching: the matching score is computed for a candidate grid position to be the real

rover’s position. The matching score corresponds to the sum of squared elevation errors between

the measured skyline and the rendered skyline, considering the azimuth estimation that

minimizes the error. In consequence, a ll possible azimuth values are tested. If 𝑝 is the tested grid

pos ition, 𝑒𝑗 the elevation value corresponding to azimuth j for the extracted skyline, 𝑠𝑗 is the

elevation value corresponding to azimuth j for the rendered skyline, and 𝛼∗(𝑝) is the absolute

azimuth estimation that minimizes the score for the position 𝑝, the error score can be expressed

as follows:

𝜖 2(𝑝,𝛼∗(𝑝)) = ∑(𝑒𝑗 − 𝑠𝑗 (𝑝, 𝛼∗(𝑝)))2

𝑗

Where 𝛼∗(𝑝) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼 𝜖 2(𝑝, 𝛼).

o Inputs: rendered skyline, extracted query skyline (both expressed as vectors of elevations)

o Outputs: matching score, optimal azimuth estimation

- Pose estimation: a pyramidal approach is applied to estimate the position and compute a

measure of uncertainty from a set of matching scores and estimated azimuths. A first estimate is

obtained with a bigger search area and step size, which is then refined using a smaller search area

and smaller step s ize in a 3-step process. The best candidate location after each s tep is the one

that has the lowest error:

(𝑝∗, 𝛼∗(𝑝∗)) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑝,𝛼∗ (𝑝))𝜖 2(𝑝,𝛼∗(𝑝))

 The final estimate is the best candidate after the last step.

o Inputs: set of matching scores and azimuths

o Outputs: rover’s position, measure of estimation uncertainty

31

10 IMPLEMENTATION PROCESS

10.1 SKYLINE RENDERING FROM A DEM
The first part of the skyline matching algorithm is to render the skylines from a DEM. To start this process,

an appropriate DEM was needed. A Digital Elevation Model is a representation of the terrain’s elevation

at every point. It can be seen as a function 𝑧(𝑝) that provides an altitude value for every grid position

𝑝 = (𝑥, 𝑦) according to a certain resolution. For the sake of efficiency, the DEM had to serve to test the

algorithm on both real and simulated data, it had to be precise enough to allow 1º skyline resolution, and

big enough to allow testing the algorithm for the different scenarios. A DEM of Bardenas, Spain, was

acquired through the Spanish National Centre for Geographic Information (CNIG) website6. DEMs of all

the territory are available in 2, 5, 25 or 200m resolution. They are subdivided in many different tiles and

can be obtained in ASCII format, either by selecting a point or polygon or by searching a coordinate, a

parcel, an administrative division or the tile number.

A rectangular area of 110x95km with 2m resolution was selected around a chosen site in Bardenas. The

s ize of the area was roughly estimated by using the 3D view in Google Maps and Google Earth to get the

location of the farthest horizon from certain points and then trace the distance with the 2D view. A

compromise had to be made in terms of horizon inclusion since, from a certain distance, the horizon is

not clearly captured using real cameras and thus a skyline extraction algorithm cannot discern it either.

The ASCII tiles were fused together and transformed to GeoTIFF rasters using QGIS. QGIS is an open-source

Gegographic Information System (GIS) software that allows managing geospatial data via the GDAL library.

GDAL is a library used for reading and writing geospatial rasters and vectors. The GeoTIFF was loaded in

Blender, with the BlenderGIS plugin. Blender is a modelling, animation and 3D rendering software with a

powerful render engine and many different features like UV mapping, texturing, particle simulation, fluid

and smoke s imulation, sculpting or compositing. The BlenderGIS plugin helps import and manage

georeferenced data.

 At this point, many problems arose as the computer could not load the DEM due to being high-resolution

and very large. Thus, the resolution was decreased to 5m. Nevertheless, problems kept arising either

when loading or when trying to render images from the DEM. This led to think that the 5m resolution

zone had to be kept to a minimum, so a multi-resolution DEM was generated, adapting the idea of [12].

Several distances were defined from a chosen search area and their minimum resolution to obtain 1°

azimuth accuracy was calculated. 4 different DEMs (3x3km with 5m resolution, 5x5km with 26m

resolution, 14x14km with 44m resolution and the rest with 122m resolution) were finally generated via

QGIS and loaded into Blender. A python script was coded to subtract the overlapping areas from the lower

resolution DEMs, using GDAL’s translate, vrt transformation, calculation and warping functions.

6 https://centrodedescargas.cnig.es/CentroDescargas/busquedaSerie.do?codSerie=MDT05

https://centrodedescargas.cnig.es/CentroDescargas/busquedaSerie.do?codSerie=MDT05

32

Figure 10: Generated rasters using QGIS (not scaled)

A 7x7 km grid with 5m resolution was generated using QGIS and saved in a file to be used as search area.

The 4 DEMs were loaded in Blender, their material was modified so as to emit white light and the

background colour was set to black. This allowed to render binary images. The panoramic equirectangular

camera was added and its parameters were set according to the Magellium’s robot camera.

Figure 11: Blender interface and camera view

 A python script was coded inside Blender to automate the process of setting the good camera position

and orientation, rendering the panorama, extracting the skyline and saving the vector for every grid

pos ition. When starting the automated rendering process, the estimated rendering time was over 40 days.

Due to time limitations, the search area had to be reduced to 1x1km and modifications had to be made

to improve the rendering time, like reducing the samples, removing unnecessary options like denoise,

reflection or refraction, reducing the number of light bounces, etc.

In the end, the skylines could be rendered in about a week. However, as said, the testing area for the

after-landing scenario had to be changed to 1x1km and the maximum DEM resolution to 5m instead of 1

as previously specified. A rendered panorama and its extracted skyline are shown below.

33

Figure 12: Rendered panorama and extracted skyline

10.2 CODING THE ALGORITHM
To code the algorithm in C++, I had to learn Magellium’s practices and guidelines in terms of project

architecture, coding rules, dependencies, COTS, CI/CD, GIT and docker. I had to learn how to use the

internal libraries for thread management, log creation and configuration file management as well as the

creation of executables. It should be noted that I had very little experience in compiled programming

languages so this was an added challenge. Luckily, my team mates help me a lot during this phase that

s tarted with quite a few compilation errors. Next, the procedure for the different parts of the algorithm

is explained.

10.2.1 Panorama assembly

In terms of panorama assembly, a simple version was first implemented, with coordinate transformation

and blending based on overlapping FoV. This was thought to be enough as the images were rectified after

camera calibration. However, this was shown to be insufficient due to potential errors in camera

parameters. Thus, a new version using openCV’s s titching function for panoramas was used, with key-

point detection, SURF feature extraction, feature comparison between input images, spherical warping

and blending. As observed, this leads to an equirectangular panorama, like the one rendered in Blender.

Figure 13: Panorama assembled

At firs t, some problems appeared with this new approach as it seemed to work only with certain

panoramas or, in some cases, it missed some images. After extensive testing, this was solved by reducing

the confidence threshold for two images to be from the same panorama.

In the final version, when testing with s imulated data covering a 360° panorama with high overlap

between images, some cases were reported where the panoramas did not get assembled in the right

orientation, meaning that the images were not assembled in order. Even though the panoramas were still

well assembled and the good position was found, the orientation estimate was not correct. These cases

were very particular and were eliminated from the tests. However, correcting this is one of the main

priorities for future improvements. The most probable solution would be to perform the different

s titching steps separately, image by image, instead of using the s titching openCV function for panoramas.

34

10.2.2 Skyline detection
The skyline detection step was by far the hardest part of the C++ algorithm, as many different conditions

needed to be considered to ensure a good extraction (incomplete skyline, blurred skyline, occluded

skyline, high gradients close to the skyline like clouds or vegetation…). An approach robust to all these

possible perturbations was sought, and this is why a dense graph was adopted. This approach was inspired

from [22]. Since this method evaluates all pixels, and not just those that are edges, it can find the good

skyline even if it is incomplete or occluded in some parts (or if it does not s tart in the first column).

Moreover, seed selection and gap filling are not required, in opposition to edge-based methods.

Originally, the implemented resolution method consisted in finding all available paths from the nodes of

the first column to those of the last and to keep the minimum cost path. However, this approach was very

expensive computationally, so the image had to be degraded before the detection to allow faster speed.

Nevertheless, the results were not optimal. In the end, virtual nodes were added at the beginning and the

end of the graph, which acted as source and sink nodes for the Dijkstra shortest-path algorithm. This

drastically speeded up the algorithm and so the image could be kept at full resolution during all the

procedure.

At firs t, connections with neighbouring nodes were only allowed from a s tage to the next. With this

approach, high s lopes could not be detected, due to several skyline pixels being located in the same

column. Thus, connections were permitted also with nodes at the same stage.

At this point, although the algorithm was able to find the skyline in most cases, there were some occasions

in which some peaks were missed due to a very high gradient being too close to the peak. Tweaking the

graph parameters did not help much and, thus, a pre-processing step was added. Different things were

tried, like enhancing the contrast and applying morphological operations, but they did not help much.

Finally, CLAHE was applied and it made a big difference in these situations. The final algorithm is

represented in Figure 14.

Figure 14: Steps of the skyline detection algorithm

35

Figure 15: Image after clahe (row 1), Canny edge detection (row 2), gradient extraction (row 3) and skyline extraction (row 4)

Even though the final skyline extraction is quite satisfactory, the highest part of one of the peaks is not

accurately detected, as can be seen below. After intensive testing and tweaking, this was the best result

that could be obtained. As s tated before, the high gradient present at the upper part of the peak, created

by its natural form and texture, makes it hard for the algorithm to work properly. Additionally, in this case,

the gradient between the mountain and the sky is not high around this area.

Figure 16: Skyline detection at the peak

10.2.3 Skyline transformation

The skyline transformation component was the simplest to code, s ince it is based on a s imple coordinate

transformation followed by a linear interpolation. The resulting vector can be found below, next to the

complete ground truth vector in the same axis scale for the closest grid position (less than 1m away). The

extracted vector has been represented according to its ground-truth orientation for comparison purposes.

As can be seen, the shape is quite similar when considering the right portion of the plot. Nevertheless, it

can be seen that the main peaks have a lower value for the extracted skyline plot, probably because of

the detection imprecision stated before. However, the main difference lies in the area between the 2 main

peaks, which are much lower and more irregular in the ground-truth plot.

36

Figure 17: Encoded skyline vector (left) and ground truth full skyline vector (right)

10.2.4 Pose estimation
For the pose estimation component, a Bayesian approach was originally implemented. However, since

the images were rectified, implementing a measure of sensor quality and assuming Gaussian

measurements did not seem appropriate. Therefore, a simple sum of squared errors was adopted instead.

The main problem regarding this component was related to the pyramidal approach. Basically, the score

did not evolve as expected, making the pyramidal approach highly dependent on the starting position and

other “random” parameters. This makes it inadequate for evaluating skylines that are relatively close to

the camera. For that reason, it was not used in the end. For more details refer to the test in section 12.1.1.

A parameter was later added to the pose estimation function to allow testing the 3 rd scenario. If this

parameter is set to true, the pose estimation function only computes the orientation for a certain input

pos ition.

The score contour plot for the previous skyline is shown in Figure 18. For reminder, the tests have been

performed on real data, with the skyline extracted in the previous sections. The error in position is 4.52m

for x and 0.55m for y. The error is computed with regards to an imperfect GPS data, since the RTK base

did not converge during the field tests. The values are expressed in the UTM ETRS89 projection zone 30N.

Figure 18: Contour plot of the score function (left) and zoom on the ground-truth position area

37

For comparison purposes, the skylines for the closest and the estimated position are shown below. It can

be noted that, by sight, it is almost impossible to distinguish them. However, by looking at the va lues one

can see that the main peak values are lower for the estimated skyline while the m iddle region values are

higher.

Figure 19: DEM ground-truth skyline (1st row), estimated DEM skyline (2nd row) and extracted skyline (3rd row)

Below, the extracted skyline is overlapped to the ground truth skyline for the estimated orientation. The

most remarkable thing is that the extracted skyline is higher than the other two on all the peak areas, and

the middle peak has a greater slope. This is likely due to a slight pitch and roll variations in the acquisitions

with respect to the rendered skylines.

Figure 20. Extracted skyline overlapped to the ground-trut h rendered panorama

38

11 DATA ACQUISITION

11.1 BARDENAS FIELD TESTS
I was involved in a 3-day scouting trip to Bardenas, in Spain, with the project leader and another member

of the IA unit who was responsible of operating Magellium’s acquisition platform. The objective of this

trip was to test the robot on representative terrain, scout sites for a future testing trip and get acquisitions

to test my algorithm on real data. The trip took place between July 4 th and July 6 th.

The main requisite for the chosen site was that it had to be representative of real Mars fields. Its global

required characteristics were the following:

- Deserted land, with no prominent vegetation or artificial constructions.

- Mountainous irregular terrain (holes, mounds, flat areas, steep cliffs…).

- Ground made mainly of sand and rocks.

- Dusty environment.

In terms of s ize, the s ite had to be big enough to allow for a 7x7 km search area to test the after-landing

scenario. The main feature of interest was the relief, so different types of terrain were sought (flat, hills,

cliffs, holes…). The objective was to have different horizon types and to be able to set the rover on

different terrains.

The main constraint for the s ite was that it had to be easily accessible from Magellium’s headquarters, to

allow for easy equipment transportation and low-cost travel. Additionally, a precise enough DEM for the

s ite had to be available due to limited time, resources and authorizations.

11.1.1 Material
The material used for the field tests was the following:

- Magellium’s rover

o Stereo-bench type ExoMars/ Mars 2020 NavCam

o Steerable PTU with orientation values (1° accuracy)

o Sensors (IMU, wheel odometers) type ExoMars/ Mars 2020 rover

o Data s toring capacity

o 2 antennas GNSS-RTK

o Module GNSS

- Base GNSS

Magellium’s robot is shown in . Its s tereo-bench specifications, compared to ExoMars and Mars 2000

NavCams, can be found in Annex 4: Magellium’s test rover stereo-bench specifications

39

Figure 21: Magellium's test rover

11.1.2 Acquisitions
For each testing site, the robot, the GPS-RTK base and the computer had to be set up and connected. First,

a set of acquisitions was generated with a checkerboard covering different positions in the image for

posterior camera calibration. Then, a panorama was launched, in which the camera rotated and took

pictures according to the pre-set angles. 5 acquisitions were generated for each site, covering about 242°.

Full 360º panoramas could not be covered since the 2 GPS-RTK antennas would have been in the camera’s

field of view for larger panoramas.

Figure 22. Magellium test rover in Bardenas

Figure 23: Examples of acquisitions obtained in Bardenas

40

Several problems were encountered on-site. Mainly, one of the GPS was not working. As heading

computation was meant to be performed on the basis of 2 GPS antennas, orientation measures could not

be obtained. Additionally, with this method, pitch and roll could not be computed, which implies added

difficulties for the algorithm as images cannot be rectified accordingly. Finally, the IMU was not calibrated,

so a measure of the angle was not available. Another issue was that the GPS-RTK base did not converge

so the accuracy of the obtained position cannot be guaranteed.

After the data acquisition phase, the files had to be converted in order to extract the metadata (intrinsic

camera matrix, relative camera orientation, panorama id, frame, image characteristics…) and the ground-

truth GPS data in the right format.

11.2 S IMULATED DATA GENERATION
Due to the aforementioned issues, generating s imulated data was a crucial s tep to allow testing the

algorithm with different conditions and in different places.

This step of the algorithm was performed using Blender, with the same multiresolution DEM of Bardenas

described before. The camera was configured according to the real robot camera’s characteristics and

height. The DEM material was changed to make it more realistic and several features, such as rocks,

pebbles, stones or small plants were added so as to allow the panorama assembly s tep to work. The sky

was configured with a particular texture, and several parameters regarding the air, dust and ozone density

were changed, as well as the sun position and elevation. Different acquisitions were been performed by

rotating the camera over the same position within a Python script. 13 acquisitions with about 50% overlap

were generated for each position.

Figure 24: Generated simulated acquisitions

Even with the addition of features and the increase in overlap, the panorama assembly component

appeared to have a hard time for most sets of simulated acquisitions. Thus, simulated panoramas were

generated with Blender’s equirectangular panoramic camera. The aim was to test the detection,

transformation and pose estimation components. Several tests were executed using different levels of

noise (perfect, s lightly, or really blurred). The perfect data corresponds to the binary panorama, the

s lightly noised corresponds to the addition of particles like pebbles or rocks and even some vegetation.

Finally, the highest level of noise corresponds to a lens distortion and dispersion added to the image

through the addition of a compositing node.

41

12 RESULTS
Several tests were performed to evaluate the quality and the performance of the algorithm and its

different components. Due to limited time and resources, real acquisitions were used for only one testing

location. The rest of the tests were performed using simulated data.

In all the tests, the DEM used is the multiresolution DEM described in section 10.1. The resolution of the

DEM ins ide the search area is 5m. The grid s ize and the grid resolution are specified for each scenario.

Different tests were performed in order to evaluate all testing scenarios.. As a reminder, the projection

used to evaluate the error in position is the UTM ETRS89 zone 30N (EPSG:25830).

12.1 SCENARIO 1: AFTER LANDING
The lost-in-space type scenario was evaluated on a search area of 1x1 km with 5m DEM and grid

resolution. As mentioned before, the s ize and resolution of the search area were reduced due to

computational constraints. A real acquisition was used to test the performance of the whole algorithm

and several tests were performed using simulated panoramic images rendered via Blender. Different level

of noises and other parameter variations were introduced to test the robustness of the extraction,

transformation and pose estimation components.

12.1.1 Test 1: Pyramidal approach, grid size determination
Unitary tests were performed on the pose estimation component using ideal rover vectors extracted from

the DEM and a 1x1km search area with 5m resolution. This was done to observe the score evolution and

determine the appropriate grid size for each s tep of the pyramidal approach.

Figure 25: Pyramidal approach with 50, 25 and 5m step sizes (from left to right)

42

As observed, the scores don’t follow a global pattern and they exhibit a chaotic behaviour on a large-scale.

However, close to the appropriate skyline a descending parabolic-type of shape can be observed. This

leads to think that a certain s tep size can be chosen to make sure that at least one testing position will fall

ins ide the area where the score is lower than at any other local minimum. The objective was to determine

the s ize of this area.

After testing with several skylines, a problem was identified: although this reasoning seems to be valid for

relatively far skylines, skylines that are fairly close the camera change significantly within a few meters of

dis tance. For the tested skyline in question, the good position was only found with an initial step s ize of

10m. The graphics show that the scores vary notoriously with only 5m of distance.

Figure 26: Pyramidal approach with 10 and 5m step sizes

The same problem was found when testing the whole algorithm with a real acquisition. Only when setting

an initial 5m grid step, the position with the minimum error was found.

Overall, even though the pyramidal approach is highly appropriate for evaluating certain functions, it

might not be suitable for evaluating skylines, where the score is highly unpredictable and presents many

local minimums. Nevertheless, this approach can be very promising for speeding up the computational

time if modified accordingly. A modified pyramidal approach, where mean skylines are rendered from

several different zones of the grid, is contemplated for future improvement. The idea is that, for each

pyramidal level, a “mean” skyline vector represents a certain area of the grid and takes into account all of

the information of its subgrids present at the next pyramidal level. Another option would be to consider

several candidate positions after each step.

Since the pyramidal approach, as implemented currently, can lead to false global minimums, it is not going

to be used to test the performance of the algorithm in the rest of the tests.

43

12.1.2 Test 2: Robustness to different horizon types and noise levels
The goal of this test was to test the robustness of the extraction, transformation and pose estimation

components to different levels of noise and different horizon types (flat and distant, close and prominent

or highly irregular relief). To achieve this, 3 candidate positions and 3 levels of noises were chosen to

generate the simulated data. All candidate positions were located in between grid positions, as would

happen realistically.

The different levels of noise correspond to:

- 1: Perfect binary panorama

- 2: Realistic panorama, with rocky sand DEM texture, dusty sky texture, and added pebbles
and s tones that appear over the horizon line.

- 3: Realistic panorama with added lens distortion and dispersion, simulating real camera noise

or other deformations that could have potentially been introduced by the panorama assembly

part.

The different panorama ids correspond to:

- 1: flat and distant skyline

- 2: Prominent close skyline

- 3: Irregular fairly distant cliffs

 The panoramas used and the superimposed extracted skyline can be found in annex 1.

Id
Noise
level

Error
pose x

(m)

Error
pose y

(m)

Error
heading

(°)
Error score

1

1 1.5 3 0 1.1

2 1.5 2 0 9.61
3 1.5 13 12 50.04

2
1 0.75 2 0 206.65
2 0.75 2 0 191.51
3 19.2 28 8 339.95

3
1 1.5 2 0 25.93
2 1.5 2 0 27.63

3 3.5 13 0 534.31
Table 4: Results of the robustness to horizon types and noise levels

The fact that even the binary panoramas, considered as “ideal”, have some error in position is a result of

the data being rendered at positions that are not part of the quantized grid. As the grid resolution is 5m

and the error is less than 2.5m in all cases for the first and second levels of noise, this is the minimum

error that could have possibly been obtained.

For the second set of panoramas (id 2), the second level of noise presents a lower error than the first,

even though some rocks have been taken as part of the horizon. This is potentially due to the fact that, at

the closest grid position, the mountains are a bit closer to the camera than at the actual camera position

and, thus, they appear a bit higher in the image, even though the difference is very small.

44

In terms of localisation accuracy, the algorithm achieves its best possible results with the first 2 levels of

noise. However, the results show that noise, particularly camera noise or reflections, largely affect the

performance of the algorithm. In terms of extraction, the algorithm tends to be quite robust to elements

located over the horizon, like rocks.

For the strongest noise level, in terms of horizon type, the best results are unexpectedly obtained with

the flat and distant type. One could think that, as the skyline is not very distinct, the algorithm could have

found many different positions that are visually s imilar around the same area. The second best result is

obtained with the irregular fairly distant hills. This would have been intuitively the best-case scenario,

s ince the skyline is distinct but it does not change a lot over a very small camera displacements, allowing

for some errors. The results for these two panorama types are quite close. Clearly, the worst result when

noise is introduced is obtained with the skyline that is close to the camera. Since it changes significantly

over small distances, any errors in position or distortions can complicate the task for the algorithm.

12.1.3 Test 3: Robustness to pitch and roll

The objective of these tests is to evaluate the performance of the algorithm against pitch and roll

variations. These tests were performed us ing binary data and the extraction, transformation and

estimation components were tested. Pitch and roll variations were always 10° around the nominal

orientation. The panoramas used and the superimposed extracted skyline can be found in annex 2.

Id Parameter
Error pose

x (m)
Error pose

y (m)
Error

heading (°)
Error
score

4
Pitch 265 930 173 865.88
Roll 175 320 169 608.04

5
Pitch 365 270 154 828.15
Roll 565 610 119 1763.86

6
Pitch 320 420 0 1949.83
Roll 205 105 107 2280.25

Table 5: Results of the robustness to pitch and roll

The results show that the algorithm is not robust to pitch and roll variations. Thus, during on-board

operation, the rover should be able to control its pitch and roll to match the values used for skyline

rendering from the DEM. Otherwise, performance cannot be guaranteed. This is one of the main points

to be improved. Image warping from rough pitch and roll es timates are considered for future

improvement.

12.1.4 Test 4: Performance test
The whole algorithm has been evaluated us ing both real and s imulated data in order to test its

performance (precision, CPU time). The results for both acquisitions can be found in the table below. The

acquisitions used and the extracted skyline superimposed to the panoramas can be found in annex 3 .

Id Type
Error pose

x (m)
Error pose

y (m)
Error

heading (°)
Error
score

Time
(seconds)

7 Real 4.52 0.55 - 619.62 20.3
8 Simulated 0 0 0 16.91 36.61

Table 6: Performance results for the after-landing scenario

45

As can be observed, the error for the simulated data is the lowest it can be according to the chosen grid

resolution for rendering. The same applies for the y position of the real acquisition. Nevertheless, the x

pos ition maintains a low error but does not match the closest position. This could be due to elements like

vegetation or stones overlapping the skyline or most likely due to pitch and roll variations with respect to

the virtual camera used for rendering.

Regarding the computational time, the table shows the time used by a s tandard computer. On a

representative target processor, the time is estimated to be very approximately 30 times higher. In all

cases, the time is lower than 19 minutes. Nevertheless, the size of the search area is 49 times smaller than

originally planned. It is worth mentioning that most of the time taken by the algorithm is consumed by

the skyline extraction step and, even if we multiplied the resulting time by 49, the time largely respects

the 1-day constraint for this scenario.

A big difference in time can be observed between the real and the s imulated data. This is probably due to

the fact that there are a lot more images to assemble (13 vs. 5) and that the extraction is performed for a

whole 360º panorama, with a lot more pixels being part of the graph.

12.2 SCENARIO 2: END OF TRAJECTORY
To test this scenario, a search grid of 20x20m with 1m resolution was considered. Only one test was

performed due to the need to render new skylines for every tested position.

12.2.1 Test 5: Performance test
The whole algorithm was tested using real and s imulated data. The aim of this test was to test the

precision and the computational time of the algorithm. The images used and the extracted skyline

superimposed to the assembled panoramas can be found in annex 3.

Id Type
Error pose

x (m)
Error pose

y (m)
Error

heading (°)
Error
score

Time
(seconds)

7 Real 5.52 0.55 - 617.07 6.69

8 Simulated 0 0 0 16.91 18.45
Table 7: Performance results for the end-of-trajectory scenario

According to the results, the algorithm is quite precise, more than expected in view of the s tate-of-the

art. However, tests need to be performed with more data, as precision could change when the horizon is

very far from the camera due to the fact that the skyline is more stable over a certain distance.

In terms of computational time, the algorithm would be able to provide an estimate in a bit over 9

minutes, so the 1-hour constraint is largely respected.

12.3 SCENARIO 3: ALONG THE TRAVERSE
The whole algorithm was tested using the same data as for the other performance tests. In this case, the

normal operation of the algorithm was changed in accordance with the definition of the third scenario.

Here, the algorithm takes an estimate of position as input and outputs an estimate of the rover’s heading.

This is done to correct the orientation every few meters of traverse. A 50x50m search area with 1m grid

resolution was used.

46

12.3.1 Test 6: Performance test
The objective of this test was to test the precision and the computational time of the algorithm when
adding error to the initial estimate. In all cases, and according to the 10° uncertainty set as requirement,
the search area extends from –10 to +10° around the ground-truth orientation. As orientation was not
available for real data acquired during field tests, the heading estimate obtained when setting the ground-
truth position as the input of the algorithm was considered as the ground-truth orientation value (0°
error). The images used and the extracted skyline superimposed to the assembled panoramas can be
found in annex 3.
 In the table below, δx and δy represent the errors in the input x and y positions with respect to the
ground-truth, while the heading error is the output of the algorithm.

Id Type δx (m) δy (m)
Error

heading (°)
Error
score

Time
(seconds)

7 Real

0.48 0.55 0 876.71 5.39
2.48 2.55 0 1091.05 5.75
4.48 4.55 1 1607.06 5.65

6.48 6.55 1 2107.97 5.72
8.48 8.55 1 3073.03 5.89

10.48 10.55 1 4093.54 5.54
15.48 15.55 3 8771.46 5.38

20.48 20.55 4 15664.5 5.75

8 Simulated

0 0 0 16.91 17.5
2 2 0 86.47 17.98

4 4 1 351.29 17.59
6 6 1 646.59 17.5

8 8 1 1323.67 16.87
10 10 2 1983.05 16.96
 15 15 2 5574 18.44

20 20 2 11970.7 17.03
Table 8: Performance results for the along-the-traverse scenario

The tests were made up to 20m of error in position to account for a 2% error for a 1km traverse, as

described in the previous scenario. The results show that, with these conditions, the maximum 10º error

is never reached. In fact, for the simulated data, the maximum orientation error is 2º, which is quite low,

while for the real data the maximum is 4º. Even though this is 2 and 4 times the target value, it still seems

quite moderate for a 20m error difference in position. Intuitively, we could think that this would not be

the case with skylines that are closer to the camera, since they change a lot more with small camera

displacements. Further testing is needed on different skyline types to verify this hypothesis. The aimed 1°

error is only found with a maximum of 10m error in x and y for the real acquisition and 8m for the

s imulated one. However, for the real data, the values change rapidly to 3 and 4º (and we could guess that

this would be the tendency), while for the s imulated data they apparently change more slowly .

In terms of time, a big difference can again be observed between the real and the s imulated data. If we

multiply the results by 30 to account for a real demonstration scenario, the maximum is about 2.9 minutes

for the real acquisitions and under 12.5 minutes for s imulated data. In the second case, the result is quite

over the fixed 5-minute constraint. As shown during the different tests, partial panoramas seem to work

quite well in terms of performance, so this fact could be exploited to speed up the algorithm. More tests

could be made to determine the minimum panorama s ize for w hich the algorithm works well.

47

13 FUTURE WORK
The final version of the skyline matching algorithm must be robust to any rotations of the rover’s camera

or imprecision on the rover’s camera parameters and the whole algorithm must be optimized regarding

computational time and memory usage.

A measure of uncertainty shall be implemented and flash and RAM memory requirements shall be tested.

The skyline extraction component shall be evaluated using an appropriate metric.

The different priorities and tracks to be followed for each component are described next.

1) Panorama assembly:

- Implement the different sub-functions separately and iteratively for the different images to

maintain the desired image order after s titching.

- In case stitching fails for a certain pair of images, allow stitching for the rest of the images and

adjust field of view accordingly.

2) Skyline transformation: Warp the image according to pitch and roll estimates in order to add

robustness to pitch and roll variations with respect to the rendered skylines.

3) Pose estimation: Add a 10° pitch and roll range to the grid parameters to allow attitude

refinement and robustness to pitch and roll errors.

4) Pyramidal approach:

- Render skyline average for each area: for each pyramidal level and grid position, render a

skyline that contain all of the information of its subgrid positions present at the next level.

This approach might not be appropriate if the skyline is very close to the camera and changes

rapidly over small distances.

- Use several candidates after each step: after each pyramidal step, keep several of the best-

score candidates as starting grid points for the next step. This approach is definitely more

robust but it increases the computational time. Testing is needed to determine the optimal

number of candidates.

Directly discard candidates that are very different: If error score is over a certain number, stop

the algorithm for the particular grid position.

5) Skyline detection: Improve computational time and robustness

- Graph using only edges and gap filling via DP: try a more traditional edge-based approach

where only edge pixels are used to initialize the graph and gaps are filled using DP based on

contrast, adjacencies, homogeneity, height, etc. This would highly reduce the number of

pixels taken into account in the graph and thus increase computational time, though it might

highly decrease robustness.

- Reduced dense graph keeping only the 50 best scores in each column [22]. According to

Ahmad et al., keeping only the 50 best score pixels in each column as nodes can highly

improve computational time without degrading performance. This number could be modified

after testing depending on the camera characteristics.

48

ETHICAL ASPECTS AND SUSTAINABLE DEVELOPMENT

On an environmental aspect, the impact related to my internship derives mainly from the energy

consumption associated with the standard operation of a working office. On a daily basis, this includes

the use of a computer desktop with 2 screens 5 days a week from about 9h to 18h for the whole 6-month

internship. Outside this period, the computer was turned off. Other elements like lights, a ir conditioning

and water usage compute in the overall company assessment. Commuting to and from work was always

done by bike or on foot.

A particularly consuming procedure was the generation of skylines, which required the use of a special

shared computer with a very powerful graphics card (Nvidia GeForce RTX 3070 Ti), which uses up to 283W

at full power. The process took about 7 days at nearly full power.

The most remarkable activity in terms of CO2 emissions was the trip to Bardenas, in Spain. A van was used

to travel 1050 km round trip, in addition to several more kilometers to scout the sites inside the area. A

trip like this with such a heavy vehicle and heavy equipment transportation pollutes the environment

s ignificantly. In fact, vans are responsible for around 2.5% of total EU CO2 emissions, the actual target

being 147g CO2/km. However, Bardenas was the closest s ite to Magellium that met the required

characteristics to test my algorithm and anticipate future testing sessions for the ALPER project

algorithms.

On an ethical aspect, several questions arise around the topic of space exploration, mostly related to space

preservation, conservation and sustainability. As more money is invested in space and more people, as

well as objects, are able to travel to space, there are several risks that come with it. One, is the potential

to contaminate the ecosystems we visit, not only with the exploration itself but with the objects that are

left in orbit. Another one is the risks to the astronauts, whose bodies change drastically. Should we be

allowed to exploit and take unlimited resources from other planets or do we have some ethical obligations

to preserve them? Is space exploration a good in itself or is it only justified for scientific purposes? What

moral considerations should we apply if we discover life in another planet? This questions are hard to

answer, and that is why policies and protocols are needed to guide us through space exploration in a more

ethical and responsible way.

49

15 CONCLUSION
Globally, the objectives of the internship were reached: a skyline matching algorithm was studied,

designed, implemented and evaluated. The results show that, with current developments, this technique

for absolute localization can be very promising and largely surpass the precision of existing s tate-of-the-

art solutions. Additional testing on field acquisitions is required to further characterize the algorithm.

A preliminary version of the algorithm was implemented. Further developments are still required to reach

the planned final version of the algorithm. A measure of uncertainty has not yet been implemented, nor

has the robustness to pitch and roll errors and memory usage was not tested and could probably be

improved.

With regards to the computational time, the goal was reached for the first two scenarios but not for the

third one (orientation estimation along the rover’s traverse).

Many future improvements can be considered. The main priority would be to make the algorithm robust

to pitch and roll errors by increasing the grid dimensions. Another option would be to modify the skyline

encoding and pose estimation components and use, for instance, concavity features. For the skyline

detection subcomponent, intensive testing should be performed to adjust the weight of the graph costs

and set the parameters of the pre -processing s tep. For the pose estimation component, a pyramidal

approach that uses grid subdivision and mean skylines could be conceived, as well as keeping several

potential candidates after each s tep. A method to eliminate skylines that differ largely from the extracted

one could be contemplated to speed up the algorithm.

This internship was a highly pleasant experience which has taught me many valuable lessons both

technically and personally. I learned C++, a compiled programming language which is widely used in

today’s world, I got to use Blender, a 3D computer-graphics software with a powerful render engine. I

worked with Digital Elevation Maps and QGIS and I expanded my knowledge in geospatial data

management and image treatment.

I had the opportunity to be integrated in the ALPER project, a fascinating project for the ESA, and to work

along a very welcoming and highly competent team. I learned a lot about space robotics, not only through

my individual work but also from my co-workers. I acquired good working practices and learned agile

project organization. This allowed me to develop some important skills such as time-management,

prioritizing, teamwork, communication and adaptability, and it showed me the importance of team

collaboration and of knowing when to ask for help.

With regards to my internship organization, I got the opportunity to work through the different phases of

a typical ESA project, from the conception to the development, including the drafting of extensive

technical documentation through each phase. This has provided me with a very exhaustive vision of the

subject and it has greatly improved my understanding of a whole project life-cycle.

Overall, this internship has been a truly satisfying experience for me. It ha s provided me with the

opportunity to grow professionally, and I can safely say that my understanding of the job environment,

the enterprise organization and the spatial robotics industry has greatly increased. I am confident that

this experience will help me with any career paths that I choose to pursue in the future.

50

16 BIBLIOGRAPHY

[1] “SCRUM - ECLEE | European Center for Leadership and Entrepreneurship Education,” 22 01 2020.

[Online]. Available: https://www.eclee.com/training/scrum/. [Accessed 06 09 2022].

[2] F. a. M. G. Stein, «Map-Based Localization Using the Panoramic Horizon,» IEEE Transactions on

Robotics and Automation, vol. 11, n° %16, pp. 892 - 896, 1995.

[3] F. K. E. G. C. Cozman, «Outdoor Visual Position Estimation for Planetary Rovers,» Autonomous

Robots, vol. 9, n° %12, pp. 135-150, 2000.

[4] E. E. H. J. N. G. R. W. S. M. V. M. B. Palmer, «Mercator - Independent Rover Localization Using

Stereophotoclinometry and Panoramic,» Earth and Space Science, vol. 3, n° %112, pp. 488-509,

2016.

[5] B. R. A. F. M. K. F. Grelsson, «GPS-level accurate camera localization with HorizonNet,» Journal of

Field Robotics, vol. 37, n° %13, 2020.

[6] E. Z. A. C. M. R. T. Z. A. Tzeng, «User-Driven Geolocation of Untagged Desert Imagery Us ing Digital

Elevation,» chez 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops,

2013.

[7] L. Č. M. E. E. S. H. Baboud, «Automatic Photo-to-Terrain Alignment,» chez Baboud, L., Čadıḱ, M.,

Eisemann, E., Seidel, H., IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2011.

[8] Z. T. J. T. T. X. X. W. Z. Pan, «Camera Geolocation Using Digital Elevation Models,» Applied Sciences,

vol. 10, n° %119, 2020.

[9] B. Nagy, «A New Method of Improving the Azimuth in Mountainous Terrain,» PFG – Journal of

Photogrammetry, Remote Sensing and Geoinformation Science volume , vol. 88, pp. 121 - 131,

2020.

[10] C. D. J. T. A. a. S. A. Rodin, «Skyline Based Camera Attitude Estimation,» 2018 IEEE 15th

International Workshop on Advanced Motion Control (AMC), pp. 306-313, 2018.

[11] G. S. O. K. K. P. M. Baatz, «Large Scale Visual Geo-Localization of Images in Mountainous Terrain,»

chez Proceedings of the 12th European conference on Computer Vision - Volume Part II, 2012.

[12] A. V. B. X. E. L. K. T. H. E. R. J. D. M. B. G. F. T. Nefian, «Planetary rover localization within orbital

maps,» chez 2014 IEEE International Conference on Image Processing (ICIP), 2014.

[13] S. P. M. S. ,. M. ,. M. L. M. G. Zhu, «Skyline Matching: A robust registration method between Video

and GIS,» chez Usage, Usability, and Utility of 3D City Models, 2012.

[14] M. C. M.-Y. L. C.-C. S. A. Fang, «Skyline for video-based virtual rail for vehicle,» chez Proc. IEEE

International Sympos. On Intelligent Vehicles., 1993.

[15] W.-N. L. T. C.-I. L. T.-C. H. K.-S. Lie, «A robust dynamic programming algorithm to extract skyline in

images for navigation,» Pattern Recognition Letters, vol. 26, n° %12, pp. 221-230, 2005.

51

[16] B.-J. S. J.-J. N. H.-J. K. J.-S. Kim, «Skyline Extraction using a Multistage Edge Filtering,» World

Academy of Science, Engineering and Technology, International Journal of Electrical, Computer,

Energetic, Electronic and Communication Engineering, vol. 5, pp. 787-791, 2011.

[17] M. S. L. S. M. M. S. A. C. Ayadi, «Parametric Algorithm for Skyline Extraction,» chez Advanced

Concepts for Intelligent Vision Systems: 17th International Conference, 2016.

[18] S. K. I.-C. K. J. S. Yang, «Robust skyline extraction algorithm for mountainous images,» chez VISAPP

2007 - 2nd International Conference on Computer Vision Theory and Applications, 2007.

[19] J. K. S.-O. K. G. S. K. I.-C. Woo, «Robust Horizon and Peak Extraction for Vision-based Navigation,»

chez Proceedings of the IAPR Conference on Machine Vision Applications (IAPR MVA 2005), 2005.

[20] Y. -F. K. D. L. J. R. Z.-u. Shen, «A Hierarchical Horizon Detection Algorithm,» EEE Geoscience and

Remote Sensing Letters, vol. 10, n° %11, pp. 111-114, 2013.

[21] O. B. G. K. K. L. L. P. M. Saurer, «Image Based Geo-localization in the Alps,» International Journal of

Computer Vision, vol. 116, n° %13, pp. 213-225, 2015.

[22] T. B. G. N. M. N. N. A. V. F. T. Ahmad, «An Edge-Less Approach to Horizon Line Detection,» chez

14th International Conference on Machine Learning and Applications, 2015.

[23] T. B. G. R. E. N. A. V. Ahmad, «A Machine Learning Approach to Horizon Line Detection using Local

Features,» chez Proceedings of 9th International Symposium on Visual Computing (ISVC), 2013.

[24] T. B. G. N. M. N. N. A. V. F. T. Ahmad, «Horizon line detection using supervised learning and edge

cues,» Computer Vision and Image Understanding, vol. 191, n° %14, 2020.

[25] J. S. E. D. T. Long, «Fully Convolutional Networks for Semantic Segmentation,» chez 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[26] V. K. A. C. R. Badrinarayanan, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for

Image Segmentation,» IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,

n° %112, pp. 2481-2495, 2017.

[27] D. F. P. T. R. N. Frajberg, «Convolutional Neural Network for Pixel-Wise Skyline Detection,» chez

International Conference on Artificial Neural Networks, 2017.

[28] F. M. Y. T. J. H. Y. Z. L. Guo, «Robust and Automatic Skyline Detection Algorithm Based on MSSDN,»

Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 24, n° %16, pp.

750-762, 2020.

[29] T. B. G. R. E. N. A. V. F. T. Ahmad, «An Experimental Evaluation of Different Features and Nodal

Costs for Horizon Line Detection,» chez 10th International Symposium on Visual Computing (ISVC),

2014.

[30] T. C. P. Č. M. B. G. Ahmad, «Detection, Comparison of Semantic Segmentation Approaches for

Horizon/Sky Line,» chez 2017 International Joint Conference on Neural Networks (IJCNN), 2017.

[31] T. E. E. Č. M. B. G. Ahmad, «Resource Efficient Mountainous Skyline Extraction using Shallow

Learning,» chez 2021 International Joint Conference on Neural Networks (IJCNN), 2021.

52

[32] P. C. P. B. T. D. Furgale, «A Comparison of Global Localization Algorithms for Planetary

Exploration,» chez The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,

2010.

[33] S. M. L. P. M. M. G. Zhu, «Video/GIS registration system based on skyline matching method,» chez

IEEE International Conference on Image Processing, 2013.

[34] J. H. T. Ventura, «Structure and motion in urban environments using upright panoramas,» Virtual

Reality, vol. 17, n° %12, pp. 147-156, 2013.

[35] B. F. M. I. F. Grelsson, «Highly Accurate Attitude Estimation via Horizon,» Journal of Field Robotics,

vol. 33, n° %17, pp. 967-993, 2016.

[36] F. a. K. E. Cozman, «Automatic Mountain Detection and Pose Estimation for Teleoperation of Lunar

Rovers,» chez Proceedings of the 1997 IEEE International Conference on Robotics and Automation,

1997.

[37] L. L. S. Wei, «3D Peak Based Long Range Rover Localization,» chez 2016 7th International

Conference on Mechanical and Aerospace Engineering, 2016.

[38] Y. Q. G. G. K. G. H. S. K. C. Chen, «Camera geolocation from mountain images,» chez Proceedings of

the 18th International Conference on Information Fusion, 2015.

[39] A. E. J. B. D. Nuchter, «Skyline-based registration of 3D laser scans,» Geo-spatial Information

Science, vol. 14, n° %12, pp. 85-90, 2011.

[40] D. S. B. J. R. D. B. A. Y. Y. M. Bolme, «Visual object tracking using adaptive correlation filters,» chez

roceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.

[41] S. P. M. D. S. B. L. Chiodini, «Mars rovers localization by matching local horizon to surface digital

elevation models,» chez 2017 IEEE International Workshop on Metrology for AeroSpace , 2017.

[42] P. W. D. S. J. Gibbens, «Efficient Terrain-Aided Visual Horizon Based Attitude Estimation and

Localization,» Journal of Intelligent & Robotic Systems, vol. 78, n° %12, 2014.

[43] M. V. L. S. M. M. S. A. C. Ayadi, «The skyline as a marker for augmented reality in urban context,»

chez 13th International Symposium on Visual Computing, 2018.

[44] V. B. S. N. Gupta, «Terrain-based vehicle orientation estimation combining vision and inertial

measurements,» Journal of Field Robotics, vol. 25, n° %13, pp. 181-202, 2008.

[45] A. Rosebrook, “Image Stitching with OpenCV and Python,” PyImageSearch, 17 12 2018. [Online].

Available: https://pyimagesearch.com/2018/12/17/image-stitching-with-opencv-and-python/.

[Accessed 01 09 2022].

53

17 ANNEXES

17.1 ANNEX 1: SKYLINE EXTRACTION WITH DIFFERENT HORIZON TYPES AND

NOISE LEVELS

Figure 27: Extracted skyline on acquisition id 1, noise level 1, 2 and 3 (from top to bottom)

Figure 28: Extracted skyline on acquisition id 2, noise level 1, 2 and 3 (from top to bottom)

54

Figure 29: Extracted skyline on acquisition id 3, noise level 1, 2 and 3 (from top to bottom)

17.2 ANNEX 2: SKYLINE EXTRACTION WITH PITCH AND ROLL ERRORS

Figure 30: Extracted skyline on acquisition id 4, pitch (1st row), roll (2nd row) and panorama at 0 pitch and roll (3rd row)

Figure 31: Extracted skyline on acquisition id 5, pitch (1st row), roll (2nd row) and panorama at 0 pitch and roll (3rd row)

55

Figure 32: Extracted skyline on acquisition id 6, pitch (1st row), roll (2nd row) and panorama at 0 pitch and roll (3rd row)

17.3 ANNEX 3: IMAGES AND SKYLINE EXTRACTION FOR THE PERFORMANCE

TESTS

Figure 33: Acquisition id 7, images

Figure 34: Acquisition id 7, extracted skyline

Figure 35: Acquisition id 8, simulated acquisitions

56

Figure 36: Acquisition id 8, extracted skyline

17.4 ANNEX 4: MAGELLIUM’S TEST ROVER STEREO-BENCH SPECIFICATIONS

Table 9: Magellium's stereo-bench specifications

