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G LOSSARY

ALPER: Absolute Localisation for Planetary Exploration Rovers
CNIG: Centro Nacional de Informacion Geogrdfica
CNES: Centre national d'études spatiales
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1 INTRODUCTION

Absolute localisation in planetary exploration missions is crucial to allow navigating towards a certain
target,deposingor collecting georeferenced samples or path planningwith obstacle. In current missions,
dead-reckoning techniques like inertial navigation, wheel odometry and Visual Odometry (VO) are used
to update the position of the rover duringits traverse. However, these relative localisation techniques
present an error drift that growswiththe distancetravelled. Thus, absolute measurements are necessary
to recalibrate the position and orientation every few meters or to estimate the position when no prior
calculation is available. Furthermore, the communication delay makes it particularly difficult for effective
scientific data exchange during planetary missions, so autonomous navigation becomes crucial for an
effective long-range exploration.

The ALPER project is part of Magellium’s Imagery and Applications unit and falls within the domain of
space robotics. It seeksto explore absolute localisation techniques for rovers on planetary missions,
particularly on Mars. It explores solutions like Tie Points Tracking, Constellation Matching and Dense
Image Co-registration. These techniques are based on comparing rover acquisitions with orbital images
and they all seekto correct available positionand orientation estimat es obtained through dead-reckoning
techniques. The two first approaches (Tie-Points Tracking and Constellation Matching) fall into the
“interest point matching” category since they are based on finding correspondences between visual/3D
landmarks. The third approach belongs to the “dense image/terrain matching” category where all the
radiometricinformation ofthe roverimagesis used during the matching process with the orbitalimages.
The first approach relies on constant operator intervention, while the s econd one depends on the
presence of particular features along the rover's path and needs manual initialisation once per sol'. The
third methodis fullyautonomous butless mature.

Skyline matching is a technique for absolute localisation framedin the category of autonomouslong-range
exploration. Thisis an area of active research, as it becomes crucial to recalibrate position during long
traverses (updating problem) orto estimate position with no a-prioriinformation when external measures
are unavailable (drop-off problem). Thisis the case of planetary exploration, where no GPS infrastructure
exists and the magneticfieldis practically non-existent, notallowingfor compass measurements. Skyline
matchingis alsoused forport security, shipmentlocation or geo-location, aswell as for augmented reality
applications.

The skyline can be defined as the boundary thatseparates the sky and non-sky regions (urban areas,
mountains, forests or seas). Itis often used as the main source of information for geo-location and
navigation purposes asitis the most notorious andinformative feature, especially for natural scenarios,
anditis particularly stable acrosstime, climate and seasonal changes.

A skyline matching algorithm is based on comparing the skyline froman orbital image (usually rendered
from a Digital Elevation Map) and the skyline extracted from the rover's imagery. It consists of several
distinguished parts: skyline rendering from DEM, skyline extraction, possible rectification, skyline
matchingand position estimation.

! Asolisasolarday on Mars



The main objective of my internship was to explore a solution for the lost-in-space problem, where the
roverneeds to estimate its position with no priorinformation.In the context of autonomous navigation,
a different use-case was considered, where the algorithm is used in complement with the relative
localisation to correct the position or orientation drift. In total, three scenarios were considered: 1)
recalibrating position afterlanding, 2) correcting the position and orientation drift at the end of a 1 km
autonomous traverseand 3) continuous execution on-board of the rover to correct the attitude drift every
50m, admitting a rough position estimate is known via relative localization methods.

| joined the Imageryand Applications Unit at Magellium, where | worked as an intern for 6 months in the
spaceroboticsteam. | worked as a research and development engineer by exploring, implementingand
validatinga skyline matching algorithm both on real and simulated data.

In this report, we will first have anoverview ofthe enterprise andthe project team. Then, | will present
my internship mission and its different work phases. We will review the state ofthe art on the different
parts of the algorithm. We will define the different scenarios, along with the system requirements, the
testparameters andthe metrics to evaluate the algorithm. The general operation of the algorithm will be
represented andits architecture described. We will then have a look atthe implementation phase, as well
as the meansto obtainthe data, includingfield tests in Bardenas, Spain. Finally, the results of the different
tests willbe presented and we will extracta conclusion.



2 THE COMPANY

Magellium Artal Groupis a Frenchtech companyofabout 250 employees specialised in geoinformation
and image processing. Founded in Toulouse in 2003, the company was born to meet the needs of the
French National Centre for Space Studies (CNES), the French National Instit ute of Geography (IGN) and
Airbus Defence & Space.Since then, ithas grown steadily consolidating its expertiseinthe geoinformation
field and getting heavily involvedin the development of vision-based s olutions for robotics a pplications.

Magellium offers include consulting, technical & scientific studies, software & IT system developmentand
software product distribution. The company hasa recognized expertise in earth observation, geographic
information systems, mapping technologies andvision-based systems.

The Groupis structured around two main entities:

- Artal: expert in industrial software systems (embedded systems, data processing, mobility,
software engineering & methods).

- Magellium: expert in imaging and geo-information (Earth observation, Geographic Information
System & cartography, geo-intelligence, computer vision & robotics).

Its technical and commercial teams are located in 2 different sites: Toulouse (headquarters) and Paris
(Courbevoie). Magellium is primarily involved in activities related to Defence & Security, Space,
Transportation, Energy, Publicand Environmental sectors. The companyis ISO9001:2008 certified on all
engineeringactivities.

The enterpriseis organizedinto several units according to its different domains of expertise. The Imagery
and Applications (IA) unit develops vision and data processing systemsin the fields of s pace robotics,
defense and industry. Its customers are the mainindustrial and institutional players in these sectors
(Airbus DefenceandSpace, CNES, ESA...).

The Absolute Localisationfor Planetary Rovers (ALPER) project team is partofthe IAunit and was initially
formedof5 peopleincluding the projectleader, the technical leader, the code architect, thescrummaster
and a developmentengineer.



3 INTERNSHIP MISSION

The main goal of my internship was to explore existing solutions to solve the lost-in-space problem, in
which the position of a rover needs to be estimated with very rough prior knowledge, for a Martian-
analogue environment.

This goalcanbedividedinto several missions or phases:

- Stateoftheart ofthe existing methods based on the comparison of rover acquisitions and orbital
images.

- Prototyping theidentified solutionsin Pythonor C++.

- Participating in acquisition campaigns with Magellium’s robots and drones on representative
terrains.

- Performance evaluation with the acquired data as well as with simulated data generated during
the internship.

The solution had to be autonomous, meaning it requires no operator intervention during its standard
operation. In addition, it had to be apt forimplementation on-board of a rover. This meant that memory
and time optimization were takenintoaccountinthe process of finding a solution. The aimwasto achieve
1 km/sol of autonomous navigation.

On a personal aspect, my personal goal was to learn as much as possible about space robotics, learn to
use new tools and programming languages and, more generally, learn about the workplace and agile
project organization. Overall, | wished to acquire importantcompetences forthe professional worldwhile
fostering my professionalintegration.



4 METHODOLOGY

Duringmyinternship, | worked as a research and development engineerin the ALPER project. | worked in
parallelto myother co-workers, exploring possible solutions to the lost-inspace problem involving orbital
images androver acquisitions, andfinallyfocusingon skyline matching. The original aim was to estimate
the position and orientation of a rover from a very rough prior estimation. In the end, accounting for a
real usage, 3 real scenarios were considered, with different uncertainty areas and performance
requirements.

The ALPER project is managed in agile, particularly in scrum. The Agile methodology involves a set of
practices focused on an ongoing collaboration between autonomous and multidisciplinary teams,
continuous planning, improvement and early deliveries. It encourages flexibility, to support the team’s
abilityto respondto changes. Scrumis a framework which implements the agile methodology. It is based
on an iterative method that focuses on regular deliveries, a set of roles and ceremonies. Sprints are the
heartbeat of scrum. They represent timeboxed iterations of a continuous development cycle, in which
particular tasks and objectives need to be accomplished. A sprint consists of at least a Sprint Planning,
Daily Scrums, a SprintReviewand a SprintRetrospective.Sprints inthe ALPER project usually last4 weeks.
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Figure 1. Scrum project life cycle [1]

As anintern,| participated inmostofthe projectmeetings, including a daily 15-minute meeting, monthly
2-hour internal reviews, reviews with the client (ESA), sprint retrospectives and sprint plannings. In
contrast with the rest of the team, my work was cadenced with 2-week sprints and additional weekly
meetings with mytechnical tutor were heldto reviewthe work done, define new objectives, and planthe
different tasks to perform for the next sprint. Each sprinthad differentobjectives and milestones to reach.
Alira Board (anagiletool)is usedto keep track ofall the tasks. Allteam members have their name on the
boardandcancreate dedicated subtasks, update their status, add information or assignthemto different
people.Byclickingonthetasks,its information can be retrieved (description, release, topic, priority, etc.).
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My internship was organised like an ESA project, with 4 distinguished phases, associated to different
deliverables:

1)

2)

3)

4)

System Engineering (System Requirements Review): This phase was mainly dedicated to review
the state of the art on the different existing methods to solve the lost-in-space or drop-off
problem, focusing on skyline matching. Additionally, the differentscenarios were defined and the
system requirements were identified. The different tests tobe performed were determined, with
the conditions and parameters to be tested, as the well as evaluation metrics and the necessary
material forthe field acquisitions. The outputs ofthis phase were the System Requirements and
the Demonstration Scenariodocuments.

Requirements Engineering (Preliminary Design Review): The architecture of the algorithm was
defined. The different components and subcomponents composing the on-board and ground
segments were described in detail. Their subfunctions, inputs and outputs were explained and
represented. Twoversionswere defined: a basic mock-up version and an optimized final version.
An activity diagram defining the usage and potential errors of the algorithm w as generated.
Duringthisphase, | took Blender (a 3D computer-graphics software) in hand to test and automate
the skyline rendering from a DEM through a Python script. The output of this phase was the

Preliminary Design Document.

Design Engineering (Critical Design Review): The different parts of the algorithm (panorama
assembly, skyline detection, skyline transformation and pose estimation) were coded in C++. A
demoexecutable wascreated and unitary tests were performed forall of the components, aswell
as forthe whole function. Simulated data was generated using Blender and QGIS (GIS s oftware)
was used to prepare the DEM. The outputs of this phase were technical notes describing the
modifications made with respect to the Preliminary Design Document (PDD) and the future

improvements.

Validation and Acceptance (Qualification/Acceptance Review): The algorithm was tested using
realand simulated data, the results were analysed and potentialimprovements were identified.

11



5 STATEOFTHEART

In this section, the state ofthe art on the main parts ofthe skyline matching algorithm is reviewed, and
the methodchosenis justified. The work presentinthissectionis a summarized version of the technology
review document submitted during myinternship.

5.1 SKYLINE RENDERING

The firststep for the skyline matching algorithm is to render skylines from the DEM. Thatis, for every
positionina 2Dsamplinggrid, get the panoramic horizonline thatwouldbe seenaccordingto the rover's
camera characteristicsand storeitin a database alongwithits corresponding position.

In the literature, not muchfocus is put onthiscrucial step onthe algorithm.Stein and Medioni introduced
in [2]the keyidea of pre-compilingthe horizonsandtheir line segments off-line accordingto theirchosen
skyline representation. This allowsto s peed up performance d uringon-board execution.

Some authors [3], [4], [5], [6] mention the use of a ray-tracing algorithm to extract the elevation profile
foreverypointinthegrid.Babaoudetal. [7] talkabout using ray-casting to render the silhouettesintoa
2D cylindrical image. Tzenget al. [6] and Panet al. [8] propose an approach in which the full scene is
rendered at each sample point via overlapping images.

A different approach is takenin [10] by Rodin et al., who use the camera model to project the skyline
elements fromthe world coordinatesto the image coordinates.Baatzetal.[11] rendera cubemap of the
textureless DEMforeverygrid positionandtheyextract the horizon by checkingthe rendered s ky colour.
Several authors mention the use of OpenGL [12] and depth map extraction [13]. Nefian et al. [12] talk
about using a low coverage high-resolution DEM augmented by a high coverage low resolution DEM to
satisfy boththe wide-coverage requirements for horizonrendering and the high-resolution requirements
forterrainmatching whileaccommodatingthe memory constraints ofa typical GPU.

Inouralgorithm, we reusetheidea of [10] of using a textureless DEM and image segmentation by colour
andtheideaofusingseveralsizesandresolutions[12]. Thisideais simple toimplementand the required
capacityis available at Magellium’s site.

5.2 SKYLINE EXTRACTION

Extracting the skyline from animage has been a topic of interest for several years, as it plays a decisive
role in vision-based navigationfor UAVs or planetaryrovers, mountainous geo-localisation, port security
and augmented reality applications. It consists in extracting the skyline fromanimage.

Related workonthisareashowstwo classic approachesfor solvingthis problem: region-based or contour-
based methods. Region-based solutions make use of image segmentation algorithms in order to
distinguish the sky from mountainous or urban areas. In edge-based approaches, the characteristics of
skylines are defined to select from candidates inanedge map.

12



Traditional region-based approaches perform a vertical-line search based on intensity thresholding. For
everycolumnstartingfrom the top of the image, the first pixel whose intensity is below a certain threshold
is selected as a skyline pixel [14], [3]. Both of these solutions have the downside of not being robust to
complex environments.

Lie et al. [15] set the base for edge-based methods with their Dynamic Programming approach. They
construct a multistage graphfroman edge map. Linksand costs are set based on adjacenciesand vertical
pixellocation, and a shortest pathalgorithmis used to findthe minimal cost s olution between two virtual
nodes. Agap filling stepis performed using high-cost dummy nodes to allow for a certain tolerance gap.
Similarapproachescanbefoundin [16],[17]and[18]. Woo etal.[19] useglobal energy minimization for
all available edge-pixel paths via contrast costand homogeneity cost. Other approaches [20] include
hierarchical methods,in whichnon-horizon pixelsare excludedstep by step.

More recentworks explore the use of Machine Learning to segment the image. As machine leamingis not
used forspace applications yet, our first choice is to use is to use traditional methods. However, a quick
review ofthese more recentmethods hasbeen made to check forkeyideas in case results obtained with
traditional methods were not satisfactory.

These approaches can be classified into supervised learning approaches and deep learning approaches.
The first ones use the extraction of explicit feature descriptors and classification or direct discrimination
based on pixel intensity [21], [22], [23], [24] while the latter are mainly based on CNN or on fine-tuning
existing general scene parsing deep networks [25], [26],[27],[28].

AfocusismadeonAhmadetal.’s workin[22]. Theyuse SVM and CNN classifiers trained with normalized
pixel intensities, they obtain a dense classification score map according to the likelihood of the pixels
belonging to the horizon line (horizon-ness) and they a pply Dijktra’s shortest path algorithm to find the
horizonon a multi-stage graph. In [24], they additionallyboost the score of edge pixels.

Forthe sake of robustness, we adaptthe keyidea of[22] and [24] of usinga dense multi-stage graph with
the edge-nessinside the cost function. However, we redefine the horizon-ness onthe basis of theiredge-
based method [29] and other traditional edge-based methods.

5.3 SKYLINE RECTIFICATION

Transforming the skylineis a crucial step to allow matching skylines with different roll, pitch or yawangles.
This stepis not usually takeninto accountin the literature, as the camerais assumed to be levelled [32],
[3], or the angle small enough to not affect the algorithm [11]. Other approaches, like [21], search for a
skyline representation thatis robust to rotations, by using normalized concavity features.

Some authors use vanishing point estimationin urbanenvironments to get a pitchand roll estimate and
rectify the skyline [33] ortheimage [34] accordingly. However, this methodis based onaligninglines that
are approximately upright to a common vertical orientationand thus, itis not adapted for mountainous
terrain.

Severalapproaches can befoundin theliterature thattry to deal withthe attitude without rectifyingthe
skyline. Some use a parameter range around the estimated pitch or roll angles in the quantized grid of

13



sampling points, while others include a full range of values for estimating the yaw value. This will be
furtherexplainedin the skyline matching section.

In[35], Grelssonetal.use Canny edge detectionand Hough voting to get a rough estimate of thecamera’s
pitch and roll angles and warp the image accordingly. In [5], they use a CNNinstead. Nevertheless, both
their methods are designed to find the horizon at sealevel, and are thus not applicable to planetary
environments.

5.4 SKYLINE MATCHING

Skyline matchingis the nextkey step ofthe algorithm. It consists in evaluating the similarity between the
skyline extracted from the rover’s imagery and the skylines rendered from the DEM, in order to obtain
the best matchandestimate the rover’s position.

Researchonthefield of skyline matchingdistinguishes 2 approachesto solve this problem: feature-based
or signal-based methods. Feature-based methods search for correspondences among features, like
natural landmarks (peaks or depressions), while signal-based algorithms use dense structures in the
image. Bothtechniquesare highly dependent onthe features and the method usedto encode the skyline.

Toourknowledge, Stein and Medioni [2] were the first ones to use the full skyline for their signal-based
matchingalgorithm. They extracted supersegments, whichthey encodedintoa table, andthey retrieved
candidate hypothesis based on similarity.

VIPER (Visual Position Estimator for Rovers) [3] was the first algorithm s pecially created for planetary
rovers and extensively tested on both terrestrial and lunar environments. Their signal-based approach
considers Gaussian measurements and uses an evaluation function based on Bayesian statistics in order
to find the best match. They store the skylines as vectors of elevation angles indexed by azimuth value..
In [32], Furgaleetal. made a more robust version of the algorithm by modifying the likelihood function.
A previous less accurate versionofthe VIPER system [36] used a feature-based approach based on peak
extractionandevaluation. Asimilarapproach canbe foundonWei etal.’swork [37].

Otherapproachesinclude different encodingstrategies. Several articles explore the ideaof using contour
words torepresent the skyline withina bag-of-wordsapproach [21], [38], that is, dividing the skyline into
curvelets sampledatregularintervals. The disadvantage of thiskind of approaches is its weak robustness
against any rotations in the curve, which makes it inadequate for situations where pitch and roll are
unknown.

In[6], Tzengetal.usethe concavity as a feature within a geometric hashing matching procedure, whereas
Panetal.[8] proposea new methodforlocatinghillyareasusinglapel points as features. In [39], Nuchter
et al. reduce the skyline-matching problem to a string-matching problem. Their approaches have the
advantage of being robust to the effects of scalesandin-plane rotations.

Some attempts for edge matching have been made onthe basis of cross-correlation onthe Fourier domain
[7], [5], [40]. However, these types of approaches are quite expensive computationally and are thus
unsuitable for real-time applications.
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Inthe literature, most skyline matching techniques rely on the availability of an accurate measure of the
rover’s attitude. However, in the present work, an estimation of the orientation is sought along with the
position. As stated before, someauthors have enlarged the estimation procedure by includingthe yaw in
a 3D grid of sampling points [3], [41]. In [41], Chiodini et al. use a least square error metric for Martian
rover localisation and their algorithm achieves 50-meter accuracy. Other authors include a parameter
rangearoundthe estimated pitch orrollanglesin the quantized grid of sampling points [38],[42].

Severalapproachesfor correcting estimated pose and adjustingthe azimuth have been studied within the
contextof Augmented Reality [13],[33],[43],[9] Theyare mainly based on cross-similarity functions.

Ourapproach reuses the idea of encoding the skylines as a vectors of elevation values indexed by azimuth
[3]and evaluatingthe matchwith a simple least square error metric [41]. Afinalversionofthe algorithm
would reusetheidea of using concavity features [6] to gain robustness to pitchandroll errors.

5.5 POSITION ESTIMATION

Pose estimation is the last key step of the algorithm. It consists in obtaining an estimate of position by
applyingthe skyline matching metricas wellas any other methods that could o ptimise the procedure.

Most methodsfoundinthe literature assumea rough position estimate is available (reduced search area)
ortheydo a full-grid search [3], [37], [41]. The latteris computationally expensive but can be optimised
by precompiling andstoringskyline features.

Othertechniques can be found, particularly on approaches conceived to estimate orientation withinthe
context of Augmented Reality. Gupta et al. [44] use Random SAmple Grid Search (RSAGS) to select 4
random points towhich apply their least sum of vertical distances metric. The same metricis then applied
to all points to evaluate the best candidates. In [43], Ayadi et al. use gradient descent with a distance
metricto findthe best orientation estimate. Dumble and Gibbens [42] also use gradient descent to refine
aninitial position estimate.

Others [21], [39] use a least accurate metric for all candidates and apply ICP to find the best estimate
among theresultingcandidates. The disadvantage is that ICP is highly sensible to any rotations or scalings.
A two-step approachis also appliedin [8], consisting of a coarse matcher based on skyline features
followed by a refined matcher based on Label Points.

A pyramidal approach is proposedin [5] by Grelsson etal. using the fact that the skyline does not vary
notoriously within few meters of distance. A larger gridsize is used at first tofind a coarse position
estimate, and then the size ofthe gridis decreased aroundthis positionto refine the estimate.

Most ofthese approachesare not adaptedfor position estimation combined with orientation estimation,
due to lack of accuracy or high computational time. However, some of these ideas could be adapted to
avoid doing a full-grid search withthe chosen metricand speed-up the execution of the algorithm.
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6 SCENARIOS

Accounting for a real usage of the algorithm, different scenarios are considered. The scenarios were
defined during a brainstorm with the client (ALPER’s project team at Magellium). My objective was to
verify whether skyline matching could respondto these needs.

6.1 USE-CASE DESCRIPTION

As stated, 2 different use-cases are distinguished for the implementation of the skyline matching function.
The first one is the lost-in-space scenario, in which no a-priori information is known and position and
orientation needto be estimated froma full-grid of candidates.

The second use-case is conceived on account of autonomous rover navigation and is based on a
continuous approach in which the rover either refines a position estimate or estimates its orientation
from a certain position estimate. This approach is used in complement with relative localisation
techniques to correct their driftevery few meters of traverse.

In the next sections, real scenarios for planetary missions are defined for each of these use-cases, and the
system requirements for eachofthem are defined.

6.2 LOSTINSPACE

The lostin space scenario with no prior information is notconsidered to be realistic foran actual planetary
mission since a rough estimation of the rover’s localization will always be available in actual operational
conditions. However, the closest scenario would be found after the rover’s landing, where a non-trivial
ellipse of uncertainty exists. Recent methods have allowed to reduce the size of this ellipse significantly
over the last few years. As of the last Martian missions, Perseverance’s landing ellipse was 7,7 by 6,6
kilometres, compared to 7 by 20km for Curiosity.

This first approach imposes less restrictions in terms of computational time, as it should only be done
once intherover’s lifetime. Additionally, accuracy constraints as not as tight as in the other scenarios as
the initial uncertainty is a lot bigger, and the first obtained estimate can be further refined using other
absolute localisation techniques like Tie-Points Tracking, Constellation Matching, Dense Image Co-
Registration or the continuous version ofthe algorithm (referto s ection 6.3Continuous approach).

6.3 CONTINUOUS APPROACH

The continuousapproach couldbe usedin 2 different scenarios on a planetary mission.

- End of autonomoustraverse: In this scenario, the algorithmis usedin complement with relative
localisation methods to correct the positiondrift at the end ofa journey of autonomous traverse
(~1km).
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- Alongthetraverse: In this scenario, the localisation functionis used continuously in complement

with relative localisation methods to correct the orientation drift every few meters of traverse
(~*50m).

This continuous approach is a lot more restrictive than the first one, as it should allow for continuous
autonomous rover exploration and, consequently, its execution time is crucial to avoid accumulating
errors.However,the available a prioriis rather precise, which makes the task easier. Additionally, its aim
is to correctan initial estimate, so accuracy is particularly important. In the last scenario, orientation is
estimated butnotposition, sothe algorithm mights uffer finding the good orientation when the available
position estimate is not precise enough. As the algorithm is executed along the traverse, low
computational times are essential and little accuracytranslatesto large error accumulation.
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7 SYSTEM REQUIREMENTS

7.1 FUNCTIONAL REQUIREMENTS

The functional requirements concern the system behaviour and its capabilities. They are common for all
scenarios.

- On board execution: In the context of long-range autonomous rover exploration on planetary
missions, the skyline matching algorithm shallrun online, on-board of the rover, with no operator
intervention.

- Inputdata: The Skyline Matching localisation function shall use ExoMars NavCam-like overlapping
images and HiRISE-like orbital maps, as well as 2 GPS for obtaining ground-truth position and
orientation data.

- Physical environment: The function shall run on a Martian-like environment, with a focus on
horizon lines and impacting environmental parameters. That is, mountainous areas, including
broadandirregularterrain, steep cliffs, valleys, ridgesand a dusty environment.

- Function TRL 4: The skyline matching localisation function shallreach TR 4 at the end of the
activity. TRL 4 corresponds to a model demonstrating the critical functions of the element in
laboratory environment. By laboratory environment, we include a test campaignin an analogue
environment, but exclude the deployment onrepresentative target processor.

- Measure of estimation confidence: The skyline matching algorithm shall provide an intrinsic
measure ofthe quality of the estimated position. This canbe used to decide whetherthe position
orattitudeis updated with the new estimate, a new estimate is computed orthe oldone s kept.

- Robustness: As pitchand rollare not part ofthe estimation function, the function is required to
be robust to small variations in these camera parameters. Particularly, the skyline matching
algorithmshallberobustto 10°errorsin pitchorroll angle.

7.2 PERFORMANCE REQUIREMENTS

The performance requirements define a set of criteriawhich stipulate how wellthe systemcompletes its
tasksunder specific conditions. Theyvary depending onthe scenario.

- Size of the search area: the size of the search area has been determined according to the
uncertainty presentin eachscenario.

o Inaccordance with recent advances on planetary missions, Perseverance landing ellipse
(7.7x6.6 km)is takenas areferenceandthelocalisation algorithm is designed to consider
a searchareaof7x7kmfor the after-landing scenario.

o Forthe end-of-trajectory scenario, this zone is reduced to 40x40m to account for a 2%
errorina 1km traverse. The 2% error has been estimated using Magellium’s internal
algorithms onrepresentative data in the context of previous projects.

o Forthe along-the-traverse situation, a search are of -102 to +102 around the current
orientation estimate is considered, onthe basis ofa 10° uncertainty.
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Localisation accuracy:

o Inthefirstscenario, the aimis to have enough precision to be able to start the mission.
The targetis 5m, as the initial estimate canfurther be refined using the on-board version
of the algorithm.

o Forthe continuous approaches, the goal is to be able to fetch a sample localised on an

absolute reference,so theaccuracy is setto 1mforthe second scenario.

o The aimis set to 12 for the third scenario. This angularaccuracy constraints the error in

positionto 1mconsidering execution every 50m.
- Execution time:

o The first scenario does notimpose a big constraint in terms of execution time, as the
mission has not yet started. Theaimisto havean estimateinlessthan1sol.

o The second scenario is performed at the end of the journey, so the goal is to have an
estimate by the start ofthe next journey. A1-hour executiontimeis targeted.

o The third scenario is the most restrictive in terms of execution time, as the algorithm is
executedalongthetraverse. 5 minutesis the selected target value.

- Spatial frequency: due to the nature of the different scenarios, the function shall be executed
with different frequencies.

o Onceintherover’s lifetime forthefirst scenario.

o Once everykilometreforthesecond one.

o Once every 50m for the third one. In this case, as the pose is not estimated by the
algorithm, the orientation is computed from a position that is increasingly further from
the groundtruth, so the objective is set toconstraintthe error withina 2 to 5% interval.

- RAM: The skyline matching localisation functionshallbe able to run on a 256 MB RAM. This target
is designedto allow for a realisticimplementation taking intoaccount rover characteristics for last
planetary missions. Perseverance computers? for Mars 2020 are taken as a reference.

- Flash memory: The skyline matching function shall take less than 2 GB of flash memory. This
target is adapted to the Perseverance rover used on Mars 2020 and refers particularly to the
storage ofthe skylinesrenderedfrom orbital dataandtheir groundtruth position.

2 https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
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8 TESTS

This section describes the different parameters to be tested, the evaluation metrics, the required entry
datasets andthe diverse means to acquire the data, both for field tests and simulated data.

8.1 TEST CHARACTERISTICS

Tests need to be performed to verify the system requirements for all 3 scenarios, as well as the general
system behaviour under different circumstances. The different parts of the function needto be evaluated
separately with an appropriate metric. Specifically, skyline extraction and pose/orientation estimation
needto betested.Thevarietyofroveracquisitions needsto be defined.

8.1.1 Robustness test parameters
In this section, the different parameters possibly impacting the algorithm’s performance are presented
along with theirnominaland degraded modes.

e Horizon relief

o Nominal: the optimal relief consists of a distinct skyline with clearly identifiable and unique
features.

o Degraded: the degradedskyline wouldbe a flat or unvarying skyline. Regular skylines contain
less distinctive features for the algorithm.

e Skyline completeness
o Nominal:theskylineis completelyinside the camera view.

o Degraded: the skyline is partially or totally outside the ca mera’s field-of-view (caused by
extreme topography). Extracted skyline is not complete.

e Localrelief (camera’s pitchandroll angles)
o Nominal:roverisona flat surface and camerais levelled (pitchandrollanglesare about 0°).

o Degraded: roveris on different types of relief (ascending and descending slopes, craters,
mounds...). Pitchand rollarenot 0°.

e Presence of clutters blurringthe skyline
o Nominal: definedboundary betweenskyandnon-skyareas, noclutters.

o Degraded: blurred skyline due to the presence of clutters like clouds, atmospheric dust,
sandstorms...

e Presence of elements close to therover (partial occlusions):
o Nominal: no occuding elements close to the rover

o Degraded: presence of big elements (rocks, trees, hills...) close to the rover. Close elements
mightocclude the distant horizon and causeany small deviations in the model to have a
significant effect onthelocalisationresult.
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¢ Degraded acquisition conditions (weather, luminosity)
o Nominal: acquisitions taken with daylight and good weather (no rain, no fog, no shadows
occludingthe skyline)
o Degraded: direct sunlight, sun glare, camera over exposition, fog, darkness...

8.1.2 Evaluation metrics
For evaluating the skyline extraction, the pixel-wise absolute distance between the extracted and the
ground-truth skyline is used as a metric. The ground-truth skyline will be manually extracted by an
operatorforthe field tests.

For evaluating the position estimation, the absolute distance between the estimated position and the
ground-truth GPSposition is used.

Forevaluating the orientation estimation, the absolute distance between the estimated orientationand
the ground-truth orientation obtained with 2 GPSis used.

8.2 LISTOFCONSIDERED IMAGE SETS

Differentsets ofimages needto be taken with to evaluate the robustness ofthe algorithm to the different
impacting parameters independently.

Set D Hori'zon Skyline Local relief Presence of Parti.al Degr?.cled
relief completeness clutters occlusions | conditions

REF-SET Nominal Nominal Nominal Nominal Nominal Nominal
HREL-SET | Degraded Nominal Nominal Nominal Nominal Nominal
SCOM-SET | Nominal Degraded Nominal Nominal Nominal Nominal
LREL-SET Nominal Nominal Degraded Nominal Nominal Nominal
CLUT-SET Nominal Nominal Nominal Degraded Nominal Nominal
OCCL-SET Nominal Nominal Nominal Nominal Degraded Nominal
COND-SET | Nominal Nominal Nominal Nominal Nominal Degraded

Table 1: Set of considered acquisitions

Some of these image sets are quite hard to obtain during field tests, especially those regarding the
presence of clutters, degraded acquisition conditions and potentially occlusions. Thus, available datasets
orsimulateddatawillbe usedinsteadto testthe robustnessofthe skyline matchingfunction for some of

the impacting parameters.
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9 PRELIMINARY DESIGN

The Skyline Matching basic function is to estimate the pose of the rover by minimizing the e rrors between
the extracted skyline and the georeferenced rendered skylines for a certain search area. Its nominal
operationis briefly presentedin thissection.

The processis dividedin two segments that are intended to run intwo differentcontexts:

- Ground segment: its function is meant to run off-line once before running the board segment. It
consists on rendering and storing the skylinesfrom a desiredsearch areaina DEMinthe form of
elevationvectors.

- Board segment: This component is mainly composed of the skyline extraction and pose
estimation functions, added to image assembly and transformation. It is meant to run
autonomouslyon-boardofthe rover untilone of the following errors is raised:

o Thelatest estimated poseistoouncertain aftera certain number ofiterations
o Extraction failure

In both cases, operatorintervention is requested either to manually extractthe skyline or tomove
the roverto a new positionwhere the skyline is more distinct or appears more clearly inside the
camera’s Field of View. In the lost-in-space type of scenario, the function is meant to runoncein
the rover’s lifetime. In the continuous a pproach, the functionis supposedto run iteratively.

The preliminary version of the algorithm assumes thatthe rover’'scamerais levelled (pitchandroll are 0°)
andthatthere are no tight constraints interms of computational efficiency.

The overall Skyline Matching process for the continuous approach is presented on the activity diagram
below.
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Activity Diagram of the Skyline matching function
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Figure 2 : Activity diagram of the skyline matching function
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9.1 GENERAL ARCHITECTURE

The demonstration environment for skyline matchingis composed of 3 maincomponents:

- The ground segment with the userinterfacesin case of unexpected behaviour and the tools for
rendering the skylinesfrom the DEM.

- The board segment with the core functions for extracting skylines from the rover imagery,
matchingthemandestimatingthe rover’s pose and orientation.

- The demonstrator, which manages the communication between ground and board segment,
emulates the rover forthe board segmentanddisplays the product of the ground segment.

On the following pages only the boardand ground segments are going to be considered as components,
as testingon representative environmentis outofthe scope ofthis document.

A scheme showing all subcomponents for this mock-up versionis shownin Figure 3.

Ground segment Board segment

Skyline rendering ) ) o - - =
Skyline extraction { Skyline matching

Skyline generation
Panorama building Pose estimation
Skyline storage —_—

Skyline detection

Skyline
transformation

Figure 3: Subcomponent scheme for the mock-up version

9.1.1 Ground segment
The ground segment is constituted of one single component:

- Skyline rendering: the DEM is quantized according to a certain grid resolution and a skyline is
extractedforeverypositionofthe gridandstoredina database. This stepis done offline to allow
forfasterexecutionatrun-time.

o Inputs: DEM
o Outputs: database of skylines for every grid position

The skyline rendering componentis composed of several functions:

Subcomponent Subcomponents Algorithm description

Skylinerendering | Generation Panoramic skylines are generated for every sample
pointin the DEM using image rendering and colour
segmentationtechniques in Blender.
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Storage Skylines are encoded asvectors of elevations indexed
by azimuth and stored in a database with their
corresponding grid positions.

Table 2: Ground segment subcomponent descriptions

9.1.2 Boardsegment
The boardsegment is composed of 2 subcomponents:

- Skyline extraction: takescharge of assembling, extracting and encoding the skyline from a set of
rover’simages.
o Inputs:setofrover’'simages
o Outputs: panoramic skyline
- Skyline matching: the extracted query skyline is matched against all the precompiled DEM
skylines and a positionis estimated usinga sum of squared errors metric.
o Inputs: queryskyline,database of rendered DEM skylines
o Outputs:rover’s position

Subcomponent Subcomponents Algorithm description

Skyline extraction | Panoramabuilding Fusion skylines taken at different orientations by
stitching based on key-point detection, SIFT feature
extraction, descriptor matching, homography matrix
calculation and image spherical warping.

Detection Graph-searching via Dynamical programming using
adjacencies, contrast cost and edge-ness.
Transformation The extracted skyline in image coordinates is

converted to 2D elevation-azimuth coordinates and
encoded into a vector of elevations indexed by
azimuth.

Skyline matching Pose estimation Full grid search based on the sum of squared pixel

differences for each possible azimuth
Table 3: Board segment subcomponent descriptions

9.2 SUBCOMPONENT DESCRIPTION

9.2.1 Subcomponent 1: Skyline generation
The skyline generation component consists in extracting synthetic skylines fromthe DEM according to a
desired sampling resolution.

‘MavCarm's focal length:

---------------------------- Skyline generation | ——.J, in image coordinates—w Rendered skylines

h

DEM

Figure 4: General architecture of the skyline generation component
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Itis composed ofseveralfunctions:

- DEM quantization: this step consists in sampling the DEM with QGIS to obtain a 2D regular grid
of possible candidate positions according tothe desired resolution. Thisis done by usingthe GDAL
translate commandon the desiredinput GeoTIFFto extractthe XYZ coordinates in ASCIl format.

o Inputs:DEM
o Outputs: template positions grid

- Panoramic image rendering: black and white panoramas are rendered with Blender’s
equirectangular panoramic camera according tothe NavCam’s heightandintrinsic parameters for
everypoint ofthe sampling grid. Apython scriptis used toautomate the procedure of positioning
the camera at the different points of the grid and rendering the panoramas.

o Inputs:template positions grid, DEM, NavCam’s heightand focal length and vertical fov
o Outputs: setofrendered black and white scenesin image coordinates

- Coloursegmentation: colour segmentationtechniquesare applied to extract the skyline from the

binaryscenes.
o Inputs:setofrenderedblackand white scenes
o Outputs: set ofrendered skylinesin cylindrical coordinates

9.2.2 Subcomponent 2: Skyline storage
Aftergeneration, skylines needto be storedin a database alongwith their corresponding DEM position.

T

Rendered skylines ) inimage coordinates—»|  Skyline storage  —as elevation vectors——— Database of
-------- rendered skyline and
:DEM pl:usml:ln: CEM positions

~_ v

Figure 5: General architecture of the skyline storage component
The skyline storage component consists of several functions:

- Coordinate transformation: the generated skyline inimage coordinates is converted to elevation-
azimuth coordinates by using the verticaland horizontal panoramic FoV. Foreverycolumnj, the
elevatione;jandtheazimutha;are calculated as follows:

e

e = ohy]
Where e, is the panoramicimage zeroelevation line, yjis the skyline row associated to column j,
h is the height ofthe panoramic image, w is the width ofthe panoramicimage, vfovandhfov
are respectivelythe verticaland horizontal Fields of View associated to the panoramicimage and
expressedin [rad]. For the rendered skylines, hf ov corresponds to 360 and vfov depends on the
camera parameters. The resulting elevation vector ranges from —vfov/2tovfov/2, while the
azimuth goes from 0 to hf ov. This azimuth is relative to the beginning of the image. However,
the 0-yaw position ofthe panoramicimageis stored and used for absolute azimuth calculation.

-vfov aj = J;-hfov

o Inputs:set of generatesskylines, vertical FoV, horizontal FoV
o Outputs: setofrendered skylinesin cylindrical coordinates
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- Skylineencoding:from the set of skylines in cylindrical coordinates, vectors of 360 elevations are
extracted by linearinterpolationevery 1°.
o Inputs:setofrenderedskylinesincylindrical coordinates
o Outputs:set ofrendered skylinesas elevationvectors
- Skyline storage: the skylines are storedina database as vectors of elevationsindexed by azimuth,
along with theircorresponding DEM position.
o Inputs:setofrenderedskylinesas elevationvectors, position
o Outputs: database of skyline vectors with their DEM position

9.2.3 Subcomponent 3: Panorama building
A panoramais built fromthe set of overlappingskylinesobtained throughthe previous step.

Partial <
panarama

S

R . Panorama
i Relative grientation /0 — p— 3 Panorama huilding ——

-

Figure 6 : General architecture of the panorama building component

- Inputs: set of rover acquisitions obtained for a particular rover position, NavCam'’s focal length
- Outputs: extracted panorama, panoramicimage vertical and horizontal FoV, 0-yaw position

This stepis performed usingthe OpenCV stitching function. It consists of a key-point detection step,
followed by a SIFT feature extraction, descriptor matching between input images, homography matrix
calculation, warping according to a spherical projection and final assembly. A preliminary function that
did not deformthe image but onlytransformedits c oordinates was tested and found insufficient, as it did
notaccountforanyerrorsinthe cameracalibration.

As this new function transforms the images, black regions surrounding the panorama appear in the
assembled image. A cropping step was performedto keeponlythe maximuminnerrectangular region of
the panorama. This step was inspired from [45] and it includes binary thresholding, contour extraction,
boundingbox computation ofthe largest contour and Region Of Interest (ROI) extraction. The horizontal
and vertical Fields of View of the panoramicimage are adjusted a ccordingly afterimage croppingand the
0-yaw positionin the image is saved.

9.2.4 Subcomponent 4: Skyline detection

The skyline detection component consists in extracting the skyline from the rover's camera image. The
extractionalgorithm is based ongraph-searching via Dynamical programming, using adjacencies, edgne-
ness (whether a pixel is classified as edge ornotby the detector) and contrastcost.
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Figure 7: General architecture of the skyline detection component

Itis composed ofseveralfunctions:

Pre-processing: the input image is converted to grayscale and Constrast Limited Adaptive
Histogram Equalization (CLAHE)is applied. This method is use to improve contrast by equalizing
the histogramin smallregionsofthe image called tiles.

o Inputs: extracted panorama

o Outputs: pre-processed panorama
Edge detection: the pre-processed input image is filtered with a Gaussian Kernel to remove the
noise. Then, a Canny operator is applied to generate an edge map. The higher and lower
thresholds of the edge detector are computed via Otsu binarization. Otsu's method determines
anoptimal global threshold value that separates pixels into 2 classes fromthe image histogram.
This thresholdis determined by minimizingintra-classintensity variance.

o Inputs: pre-processed panorama

o Outputs: binaryedge map
Generation of gradient information: a Sobel filter is applied to the pre-processed input image
and the gradient’s magnitudeis obtained for each pixel.

o Inputs: pre-processed panorama

o Outputs: gradientinformation for allimage pixels
Graph construction: a densemulti-stage graph G(V, E, ¢) is constructed, where I re presents the
setofvertices, E the set of edges and ¢ the cost function. Itrepresents a weighted directedgraph
in whichallpixels are considered as nodesand divided into different stages, corresponding to the
columns. In this case, neighbours are considered ata maximum distance of 1 pixel either at the
sameorthenextstage, so eachnodeis connected to 5 othernodesin total.
2 virtualnodes are added atthe beginningandat end ofthe graph, connected to all nodes inthe
firstandlastcolumnrespectively. The cost functionis defined as:

d,v) = wy* dV(u,v) + wy * (1 — Vo)) + ws * B() + w,* (1 — h)
Where dV(u,v)is the gradient difference between nodesu and v, Vv is the absolute gradient
value of node v, h is the node height and B(v) is the value of the binary map at the pixel
associatedto node v:
B(v) = {0 if.v is .not anedge
lif visanedge

All values are normalized. After some tweaking, the weights were setto 0.3 for the gradient
difference, 0.05 for the absolute gradient, 0.3 for the edgne-ness and 0.35 for the height. The
function maximizes the edge-ness of a pixel, minimizes the gradient difference between
connected nodes, maximizes the height position in the image and maximizes in a small measure
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the absolute gradient value. The gradient difference is prioritized compared to the absolute
gradient value so as to avoid taking high-gradient pixels that are high in the image but do not
belongto theskyline. Using the height inside the cost function could pose problems in common
scenarios where cloudsare present. However, thisis nota probleminMars.

o Inputs:Binaryedge map, gradientinformationforallimage pixels

o Outputs: Multi-stage graph (vertex, edge points, cost function)

- Graph resolution via a shortest path algorithm (Dijkstra) between the starting (source) and end

(sink) virtual nodes.

o Inputs: multi-stage graph

o Outputs: query skylineinimage coordinates

9.2.5 Subcomponent 5: Skyline transformation
The extracted skylineinimage coordinates, expressedin pixels, is converted toa 2D cylindrical coordinate
system. Elevationis expressed as a function of the azimuth.

Gluery skyline
-------- == pom=-----oy —— inimage coordinates——3
lPanoramlcfw: Mertical fow)

Skyline

. 1, & vector of elevations——®
transformation Cluery skyling

Figure 8: General architecture of the skyline transformation compone nt
The skyline transformation component consists of 2 functions:

- Coordinate transformation: the extracted skylineinimage coordinatesis converted to elevation-
azimuthcoordinates by usingthe vertical and horizontal Fields of View of the panoramic skyline.
The formulasare identical to the ones used for skyline generation from the DEM. However, in this
case, the Fields of View need to be adjusted according to the panoramacoverage andits posterior
cropping.

o Inputs: queryskylineinimage coordinates, panoramicimage verticaland horizontal FoV
o Outputs: query skylineincylindrical coordinates

- Skyline encoding: the skyline expressed as elevation-azimuth is sampled every 1° by linear

interpolationto obtaina vector of elevations indexed by azimuth.
o Inputs: queryskylineincylindrical coordinates, adjusted
o Outputs: vector ofelevations for the queryskyline

9.2.6 Subcomponent 6: Pose estimation

The pose estimation subcomponent consists in using a pyramidal approach over the space of position
candidates and evaluate the match between the corresponding s kyline from the DEM and the extracted
qguery skyline. As images have been previously corrected using the proper camera’s calibration file, a
Bayesian approach which considers a Gaussian model for the measurements and uses a standard
deviation as anindicator of sensor quality does not seem appropriate. Thus, a simple measure which
considers the sum of squared errors for each column is judged s ufficient. For each extracted rover’s
skyline, the pixels are compared to the generated DEM skylines. Allazimuths are evaluated. To make the
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algorithm robust to errors in the camera height, the elevation difference with respect to the mean (for
the rover’s panoramic image horizontal FoV) is compared instead of the absolute elevation value. This
approach allows to compare partial panoramas, as the mean is computed every time for the
corresponding portionand the tested azimuth.

Forthe azimuth estimation, the positionofthe center oftheimage taken at 0 yaw angleis considered.

______________________

Rendered skylines .
.............. —asz vectors of elevations

______________________

______________________

______________________

______________________

______________________

—as vector of elevations

Fanoramic query
skyline

Figure 9: General architecture of the position estimation component

- Skyline matching: the matching score is computed for a candidate grid position to be the real
rover’s position. The matchingscore corresponds tothe sum of squared elevation errors between
the measured skyline and the rendered skyline, considering the azimuth estimation that
minimizesthe error.In consequence, all possible azimuthvaluesare tested. Ifp is the tested grid
position, e; the elevation value corresponding to azimuth j for the extracted skyline, s; is the
elevation value corresponding to azimuth j for the rendered skyline, and a* (p) is the absolute
azimuth estimationthat minimizes the score for the position p, the error score can be expressed
as follows:

pa @)= ) (¢ 5(a @))
J
Where a*(p) = argmin, €?(p, a).
o Inputs: renderedskyline, extracted query skyline (both expressed asvectors of elevations)
o Outputs: matchingscore, optimalazimuth estimation

- Pose estimation: a pyramidal approach is applied to estimate the position and compute a
measure of uncertainty froma set of matching scoresand estimated azimuths. Afirstestimate is
obtained with a bigger searcharea and stepsize, whichis then refined usinga smaller search area
and smaller step size ina 3-step process. The best candidate location after each step is the one
thathasthelowesterror:

(p*,a* (p") = argming,q pye® @, (p))
The finalestimateis the best candidate afterthe last step.

o Inputs:setofmatching scoresandazimuths
o Outputs: rover’s position, measure of estimation uncertainty
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10 IMPLEMENTATION PROCESS

10.1 SKYLINE RENDERING FROM A DEM

The first part of the skyline matchingalgorithmis torender the skylines froma DEM. To start this process,
anappropriate DEM was needed. A Digital Elevation Model is a representation ofthe terrain’s elevation
at every point. It can be seen as a function z(p)that provides an altitude value for every grid position
p = (x,vy) accordingto a certain resolution. For the sake of efficiency, the DEM had to serve to testthe
algorithmon bothrealandsimulateddata, ithad to be precise enoughto allow 12 skyline resolution, and
big enough to allow testing the algorithm for the different scenarios. A DEM of Bardenas, Spain, was
acquired through the Spanish National Centre for Geographic Information (CNIG) website®. DEMs of all
the territory are availablein 2,5, 25 or 200m resolution. They are subdivided in many different tiles and
can be obtained in ASCIl format, either by selectinga point or polygon or by searching a coordinate, a
parcel, anadministrative divisionor the tile number.

A rectangulararea of 110x95kmwith 2m resolution was selected around a chosen site in Bardenas. The
size ofthe area was roughly estimated by using the 3Dviewin Google Mapsand Google Earth to get the
location of the farthest horizon from certain points and then trace the distance with the 2D view. A
compromise had to be made in terms of horizon inclusion since, from a certain distance, the horizon is
not clearly captured using real camerasand thus a skyline extractionalgorithm cannot discern it either.

The ASCIl tileswere fused together and transformed to GeoTIFF rasters using QGIS. QGIS isan open-source
GegographicInformation System (GIS) software that allows managing geospatial data via the GDAL library.
GDAL is a library used for reading and writing geospatial rasters andvectors. The GeoTIFF was loaded in
Blender,withthe BlenderGIS plugin. Blender is a modelling, animationand 3D rendering software with a
powerful render engine and many differentfeatures like UV mapping, texturing, particle simulation, fluid
and smoke simulation, sculpting or compositing. The BlenderGIS plugin helps import and manage
georeferenced data.

At this point, many problemsarose asthe computer could not load the DEM due to beinghigh-resolution
and verylarge. Thus, the resolution was decreased to 5m. Nevertheless, problems ke pt arising either
when loading or when trying to render images from the DEM. This led to think that the 5m resolution
zone hadto bekepttoa minimum,so a multi-resolution DEM was generated, adapting the idea of [12].

Several distances were defined from a chosen search area and their minimum resolution to obtain 1°
azimuth accuracy was calculated. 4 different DEMs (3x3km with 5m resolution, 5x5km with 26m
resolution, 14x14km with 44m resolution and the rest with 122m resolution) were finally generated via
QGIS andloadedintoBlender. A pythonscript was codedtosubtract the overlapping areas fromthe lower
resolutionDEMs, using GDAL's translate, vrttransformation, calculationand warping functions.

6 https://centrodedescargas.cnig.es/CentroDescargas/busquedaSerie.do?codSerie=MDT05
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Figure 10: Generated rasters using QGIS (not scaled)

A7x7 kmgridwith5mresolutionwasgenerated usingQGIS andsavedin a fileto be used as search area.
The 4 DEMs were loaded in Blender, their material was modified so as to emit white light and the
background colour was setto black. This allowed torender binary images. The panoramic equirectangular
camera was added andits parameters were s etaccording to the Magellium’s robot camera.

Figure 11: Blender interface and camera view

A python script was coded inside Blender to automate the process of setting the good camera position
and orientation, rendering the panorama, extracting the skyline and savingthe vector for every grid
position. When starting the automated rendering process, the estimated rendering time was over40 days.
Due to time limitations, the search area had to be reduced to 1x1km and modifications had to be made
to improve the rendering time, like reducing the samples, removing unnecessary options like denoise,
reflectionor refraction, reducing the number oflightbounces, etc.

In the end, the skylines could be rendered in about a week. However, as said, the testing area for the
after-landingscenario had to be changed to 1x1km andthe maximum DEM resolutionto 5minstead of 1
as previously specified. Arendered panoramaandits extracted skyline are shown below.
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Figure 12: Rendered panorama and extracted skyline

10.2 CODING THEALGORITHM

To code the algorithmin C++, | had to learn Magellium’s practices and guidelines in terms of project
architecture, coding rules, dependencies, COTS, CI/CD, GIT and docker.1 had to learn how to use the
internal libraries for thread management, log creation and configuration file management as well as the
creation of executables. It should be noted that | had very little experience in compiled programming
languages so this was an added challenge. Luckily, my team mates help me a lot during this phase that
started with quite a few compilation errors. Next, the procedure for the different parts ofthe algorithm
is explained.

10.2.1 Panorama assembly

In terms of panorama assembly, a simple version was first implemented, with coordinate transformation
and blendingbased on overlapping FoV.This wasthought tobe enough as the images were rectified after
camera calibration. However, this was shown to be insufficient due to potential errors in camera
parameters. Thus, a new version using openCV’s stitching function for panoramas was used, with key-
pointdetection, SURF feature extraction, feature comparison between input images, spherical warping
and blending. As observed, thisleads to an equirectangular panorama, like the one rendered in Blender.

Figure 13: Panorama assembled

At first, some problems appeared with this new approach as it seemed to work only with certain
panoramas or,in some cases, it missed some images. Afterextensive testing, this was solved by reducing
the confidencethresholdfortwoimages to befromthe same panorama.

In the final version, when testing with simulated data covering a 360° panorama with high overlap
between images, some cases were reported where the panoramas did not get assembled in the right
orientation, meaningthatthe images were not assembledin order. Eventhough the panoramas were still
well assembled andthe good position was found, the orientation estimate was not correct. Thesecases
were very particular and were eliminated from the tests. However, correcting this is one of the main
priorities for future improvements. The most probable solution would be to perform the different
stitching steps separately,image by image, instead of using the stitching openCVfunction for panoramas.
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10.2.2 Skyline detection

The skyline detectionstepwasby farthe hardest part of the C++ algorithm, as many different conditions
needed to be considered to ensure a good extraction (incomplete skyline, blurred skyline, occluded
skyline, high gradients close to the skyline like clouds or vegetation...). An approach robust to all these
possible perturbations was sought, and this is why a dense graph wasadopted. Thisapproachwas inspired
from [22]. Since this method evaluates all pixels, and not just those that are edges, it can find the good
skyline evenifit is incomplete or occluded in some parts (or if it does not start in the first column).
Moreover, seed selectionandgap fillingare not required, in opposition to edge-based methods.

Originally, the implemented resolution method consistedin finding all available paths fromthe nodes of
the first columnto those ofthe last and to keep the minimum cost path. However, this a pproach wasvery
expensive computationally, so theimage hadto be degraded before the detectionto allow faster speed.
Nevertheless, the results were not optimal.In the end, virtual nodes were added at the beginning and the
end of the graph, which acted as source and sink nodes for the Dijkstra shortest-path algorithm. This
drastically speeded up the algorithm and so the image could be kept at full resolution during all the
procedure.

At first, connections with neighbouring nodes were only allowed from a stage to the next. With this
approach, high slopes could not be detected, due to several skyline pixels beinglocated in the same
column.Thus, connections were permittedalsowithnodesatthe same stage.

At this point, although the algorithm was able tofind the skyline in most cases, there were some occasions
in which some peaks were missed dueto a very high gradient being too close to the peak. Tweaking the
graph parameters did not help much and, thus, a pre-processing step was added. Different things were
tried, like enhancing the contrast and applying morphological operations, but they did not help much.
Finally, CLAHE was applied and it made a big difference in these situations. The final algorithm is

represented inFigure 14.
Sobel filter

Canny edge
detection

Figure 14: Steps of the skyline detection algorithm
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Figure 15: Image after clahe (row 1), Canny edge detection (row 2), gradient extraction (row 3)and skyline extraction (row 4)

Even though the final skyline extraction is quite satisfactory, the highest part of one of the peaks is not
accurately detected, ascanbe seenbelow. After intensive testing and tweaking, this wasthe best result
thatcould be obtained.As stated before, the high gradientpresentatthe upper partofthe peak, created
by its natural form and texture, makesithardforthe algorithm towork properly. Additionally, in thiscase,
the gradient betweenthe mountainand the skyis not high around thisarea.

Figure 16: Skyline detection at the peak

10.2.3 Skyline transformation

The skyline transformation component was the simplestto code,sinceit is based on a simple coordinate
transformation followed by a linear interpolation. The resulting vector can be found below, next to the
complete groundtruthvectorinthe same axis scale for the closest grid position (less than 1maway). The
extracted vector has beenrepresented accordingtoits ground-truth orientationfor comparison purposes.
As can beseen, theshapeis quite similar when consideringthe right portion of the plot. Nevertheless, it
can be seen thatthe main peaks have a lower value for the extracted skyline plot, probably because of
the detection imprecision stated before. However, the main difference liesin the areabetweenthe 2 main
peaks, whichare muchlowerandmoreirregularinthe ground-truth plot.
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Figure 17: Encoded skyline vector (left) and ground truth full skyline vector (right)

10.2.4 Pose estimation

For the pose estimation component, a Bayesian approach was originally implemented. However, since
the images were rectified, implementing a measure of sensor quality and assuming Gaussian
measurements did notseem appropriate. Therefore, a simple sum of squared errors was adopted instead.

The mainproblemregarding this component wasrelated to the pyramidal approach. Basically, the score
did notevolve as expected, makingthe pyramidal approach highly dependenton the starting positionand
other “random” parameters. This makes itinadequate for evaluating s kylines that are relatively close to
the camera.Forthatreason,it wasnot usedinthe end. For more detailsrefer to the testinsection 12.1.1.

A parameter was later added to the pose estimation function to allow testing the 3 scenario. If this
parameter is set to true, the pose estimation function only computes the orientation for a certain input
position.

The score contour plot forthe previous skyline is shown in Figure 18. For reminder, the tests have been
performedon realdata, withthe skyline extractedin the previoussections. The errorin positionis 4.52m
forx and 0.55m for y. The error is computed with regards to an imperfect GPS data, since the RTK base
did not converge during the field tests. The values are expressedinthe UTM ETRS89 projection zone 30N.

Pyramidal approach step 1
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Figure 18: Contour plot of the score function (left) and zoom on the ground-truth position area
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For comparison purposes, the skylinesforthe closest andthe estimated positionare shown below. It can
be notedthat, bysight,itis almostimpossible to distinguishthem. However, by lookingat the values one
canseethatthe mainpeak valuesare lowerforthe estimated skyline while the middle region values are
higher.

[t - el

Figure 19: DEM ground-truth s ADEM skyline (2nd row) and extracted skyline (3rd row)

Below,the extracted skylineis overlapped to the ground truth skyline for the estimated orientation. The
mostremarkable thing is that the extracted skylineis higherthanthe other twoon allthe peak areas, and
the middle peak hasa greaterslope.Thisis likely due to a slight pitchand roll variations in the acquisitions
with respecttotherenderedskylines.

Figure 20. Extracted skyline overlapped to the ground-truth rendered panorama
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11 DATAACQUISITION

11.1 BARDENAS FIELD TESTS

Iwasinvolvedin a 3-day scouting tripto Bardenas, inSpain, withthe projectleader and anothermember
of the IA unit who was responsible of operating Magellium’s acquisition platform. The objective of this
trip wasto test the robotonrepresentative terrain, scout sites fora future testing trip and getacquisitions
totestmy algorithmon realdata. The trip took place between July4thandJuly 6.

The main requisite for the chosen site was that it had to be representative of real Mars fields. Its global
required characteristics were the following:

- Desertedland, with no prominent vegetation or artificial constructions.
- Mountainous irregularterrain (holes, mounds, flat areas, steep cliffs...).
- Groundmade mainly of sand androcks.

- Dustyenvironment.

Interms ofsize,thesite hadto be big enough to allow fora 7x7 km search area to test the afterdanding
scenario. The main feature ofinterest was the relief, so different types of terrain were sought (flat, hills,
cliffs, holes...). The objective was to have different horizon types and to be able to set the rover on
different terrains.

The mainconstraintforthe site wasthatit had to be easily accessible from Magellium’s headquarters, to
allow for easy equipment transportation and low-cost travel. Additionally, a precise enough DEM for the
sitehadto beavailable due to limited time, resources and a uthorizations.

11.1.1 Material
The material used forthe fieldtests wasthe following:

- Magellium’s rover
o Stereo-benchtype ExoMars/Mars 2020 NavCam
o Steerable PTUwithorientation values(1°accuracy)
o Sensors (IMU, wheel odometers) type ExoMars/Mars 2020 rover
o Datastoringcapacity
o 2antennas GNSS-RTK
o Module GNSS
- BaseGNSS

Magellium’s robot is shown in . Its stereo-bench s pecifications, compared to ExoMars and Mars 2000
NavCams,canbefoundinAnnex4: Magellium’stest rover stereo-bench s pecifications
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Figure 21: Magellium's test rover

11.1.2 Acquisitions

Foreachtestingsite, therobot, the GPS-RTK base andthe computer had tobe setup and connected. First,
a set of acquisitions was generated with a checkerboard covering different positions in the image for
posterior camera calibration. Then, a panoramawas launched, in which the camera rotated and took
picturesaccordingto the presetangles. 5acquisitionswere generated for eachsite, covering about242°.
Full 3602 panoramascould notbe covered since the 2 GPS-RTKantennas would have been in the camera’s
field of view for largerpanoramas.

e e R
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Figure 22. Magellium test rover in Bardenas

Figure 23: Examples of acquisitions obtained in Bardenas
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Several problems were encountered on-site. Mainly, one of the GPS was not working. As heading
computationwas meant tobe performed on the basis of 2 GPSantennas, orientation measures could not
be obtained. Additionally, with this method, pitch and roll could not be computed, which implies added
difficulties for the algorithm asimagescannotbe rectified accordingly. Finally, the IMU was not calibrated,
so a measure ofthe angle was not available. Another issue was that the GPS-RTK base did not converge
sothe accuracy ofthe obtained position cannot be guaranteed.

Afterthe dataacquisition phase, thefileshad to be convertedin order to extract the metadata (intrinsic
camera matrix, relative camera orientation, panoramaid, frame, image characteristics...) and the ground-
truth GPS dataintheright format.

11.2 SIMULATED DATA GENERATION

Due to the aforementioned issues, generating simulated data was a crucial step to allow testing the
algorithmwith differentconditions andindifferent places.

This step ofthe algorithm was performed using Blender, with the same multiresolution DEM of Bardenas
described before. The camera was configured according to the real robot camera’s characteristics and
height. The DEM material was changed to make it more realistic and several features, such as rocks,
pebbles, stones or small plants were added so as to allow the panorama assembly step to work. The sky
was configured with a particulartexture, and several parameters regardingthe air, dust and ozone density
were changed, as wellas the sun position and elevation. Different acquisitions were been performed by
rotating the camera over the same position withina Python script. 13 acquisitions with about 50% overlap
were generated for each position.

Figure 24: Generated simulated acquisitions

Even with the addition of featuresand the increase in overlap, the panorama assembly component
appeared to have a hard time for most sets of simulated acquisitions. Thus, simulated panoramas were
generated with Blender’s equirectangular panoramic camera. The aim was to test the detection,
transformation and pose estimation components. Several tests were executed using different levels of
noise (perfect, slightly, or really blurred). The perfect data corresponds to the binary panorama, the
slightly noised corresponds to the addition of particles like pebbles or rocks and even some vegetation.
Finally, the highestlevel of noise corresponds to a lens distortion and dispersion added to the image
throughthe addition ofa compositingnode.
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12 RESULTS

Several tests were performed to evaluate the quality and the performance of the algorithm and its
different components. Due tolimited time and resources, realacquisitions were used for only one testing
location. Therestofthe tests were performed using simulated data.

Inallthetests, the DEM used is the multiresolution DEM described in section 10.1. The resolution of the
DEMinsidethesearch areais 5m. Thegridsizeandthe gridresolutionare s pecified for each scenario.

Differenttests were performed in order to evaluate all testing scenarios.. As a reminder, the projection
used to evaluatetheerrorin positionis the UTM ETRS89 zone 30N (EPSG:25830).

12.1 SCENARIO 1: AFTER LANDING

The lost-inspace type scenario was evaluated on a search area of 1x1 km with 5m DEM and grid
resolution. As mentioned before, the size and resolution of the search area were reduced due to
computational constraints. A real acquisition was used to test the performance of the whole algorithm
and severaltests were performed using simulated panoramicimages rendered via Blender. Different level
of noises and other parameter variations were introduced to test the robustness of the extraction,
transformation and pose estimation components.

12.1.1 Test 1: Pyramidal approach, grid size determination

Unitarytests were performed on the pose estimation component using ideal rover vectors extracted from
the DEM anda 1x1km searchareawith 5m resolution.This was done to observe the score evolutionand
determine the appropriate grid size for each step of the pyramidal approach.

Pyramidal approach step 1 Pyramidal approach step 2 Pyramidal approach step 3
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Figure 25: Pyramidal approach with 50, 25 and 5m step sizes (from left to right)
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As observed, the scoresdon’t follow a global pattern and they exhibit a chaotic behaviour onalarge-scale.
However, close to the appropriate skyline a descending parabolic-type of shape can be observed. This
leadsto thinkthat a certainstepsize canbe chosento make sure that atleast one testing position will fall
insidethe area wherethescoreis lowerthan atanyotherlocal minimum. The objective wasto determine
the size ofthis area.

Aftertestingwith several skylines, a problem was identified: although thisreasoningseemsto be valid for
relatively far skylines, skylinesthat are fairly close the camera change significantly within a few meters of
distance. Forthe tested skyline in question, the good position was onlyfound with an initial step size of
10m. The graphicsshow that the scoresvarynotoriously with only 5m of distance.
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Figure 26: Pyramidal approach with 10 and 5m step sizes

The same problem wasfound when testing the whole algorithm with a real acquisition. Only when setting
aninitial 5mgridstep, the position with the minimum error was found.

Overall, even though the pyramidal approach is highly appropriate for evaluating certain functions, it
might not be suitable for evaluating skylines, where the score is highly unpredictable and presents many
local minimums. Nevertheless, this approach can be very promising for speeding up the computational
time if modified accordingly. A modified pyramidal approach, where mean skylines are rendered from
several different zones of the grid, is contemplated for future improvement. The idea is that, for each
pyramidallevel,a “mean” skyline vector represents a certain areaofthe gridand takesinto account all of
the information of its subgrids present at the next pyramidal level. Another option would be to consider
several candidate positions after each step.

Since the pyramidal approach, asimplemented currently, canlead tofalse global minimumes, itis not going
tobe usedto testthe performance ofthealgorithm intherest ofthe tests.
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12.1.2 Test 2: Robustness to different horizon types and noise levels

The goal of this test was to test the robustness of the extraction, transformation and pose estimation
components to different levelsof noise and differenthorizon types (flatand distant, close and prominent
or highlyirregular relief). To achieve this, 3 candidate positions and 3 levels of noises were chosen to
generate the simulated data. All candidate positions were located in between grid positions, as would
happenrealistically.

The different levels of noise correspondto:

- 1:Perfectbinarypanorama

- 2:Realistic panorama, with rocky sand DEM texture, dusty sky texture, and added pebbles
and stones that appearoverthe horizonline.

- 3:Realistic panorama withadded lensdistortionand dispersion, simulating real camera noise
or other deformations thatcould have potentially beenintroduced by the panoramaassembly
part.

The different panoramaids correspond to:

- 1:flatand distantskyline
- 2:Prominent close skyline
- 3:lrregularfairly distant cliffs

The panoramas used and the superimposed extracted s kyline canbe foundinannex1.

1 1.5 3 0 1.1

2 1.5 2 0 9.61

3 1.5 13 12 50.04
1 0.75 2 0 206.65
2 0.75 2 0 191.51
3 19.2 28 8 339.95
1 1.5 2 0 25.93
2 1.5 2 0 27.63
3 3.5 13 0 534.31

Table 4: Results of the robustness to horizon types and noise levels

IM

The factthat even the binarypanoramas, considered as “ideal”, have some errorin position is a result of
the data being rendered at positions that are not part ofthe quantized grid. As the grid resolution is 5m
and the erroris less than 2.5min all cases for the first and second levels of noise, this is the minimum
errorthat could have possibly been obtained.

For the second set of panoramas (id 2), the second level of noise presents a lower error than the first,
eventhoughsomerocks have been takenas partofthe horizon. Thisis potentially due to the factthat, at
the closest grid position, the mountains area bitcloserto the camera thanatthe actual camera position
and, thus, they appear a bit higherintheimage, even though the differenceis very small.
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Interms oflocalisation accuracy, the algorithmachieves its best possible results with the first 2 levels of
noise. However, the results show that noise, particularly camera noise or reflections, largely affect the
performance ofthealgorithm. In terms of extraction, the algorithmtends to be quite robust to elements
located over the horizon, like rocks.

For the strongest noise level, in terms of horizon type, the best results are unexpectedly obtained with
the flatand distant type.One could thinkthat, as the skyline is notverydistinct, the algorithm could have
found many different positions that are visually similararound the same area. The second best result is
obtained with the irregular fairly distant hills. This would have been intuitively the best-case scenario,
sincethe skylineis distinct but it doesnot change a lot over a very smallcamera displacements, allowing
forsomeerrors.Theresults for these two panorama typesare quite close. Clearly, the worst result when
noiseisintroducedis obtained withthe skylinethatis close to the camera. Since it changes significantly
oversmall distances,anyerrors in position or distortions can complicate the task for the algorithm.

12.1.3 Test 3: Robustness to pitch and roll

The objective of these tests is to evaluate the performance of the algorithm against pitch and roll
variations. These tests were performed using binary data and the extraction, transformation and
estimation components were tested. Pitch and roll variations were always 10° around the nominal
orientation.The panoramas used and the superimposed extracted skyline can be foundin annex2.

Pitch 265 930 173 865.88
Roll 175 320 169 608.04
Pitch 365 270 154 828.15
Roll 565 610 119 1763.86
Pitch 320 420 0 1949.83
Roll 205 105 107 2280.25

Table 5: Results of the robustness to pitch and roll

The results show thatthe algorithmis not robust to pitch and roll variations. Thus, during on-board
operation, the rover should be able to control its pitch and roll to match the values used for skyline
rendering from the DEM. Otherwise, performance cannot be guaranteed. This is one of the main points
to be improved. Image warping from rough pitch and roll estimates are considered for future
improvement.

12.1.4 Test4: Performance test

The whole algorithm has been evaluated using both real and simulated data in orderto testits
performance (precision, CPU time). The results for both acquisitionscanbe foundinthe table below. The
acquisitionsusedandthe extracted skyline superimposed to the panoramas can be foundinannex3.

Real 4.52 0.55 = 619.62 20.3
Simulated 0 0 0 16.91 36.61

Table 6: Performance results for the after-landing scenario
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As canbeobserved, theerror forthe simulateddata is the lowest it can be according to the chosen grid
resolution for rendering. The same applies for the y position of the real acquisition. Nevertheless, the x
position maintains a low error but does not match the closest position. Thiscould be due to elements like
vegetationorstonesoverlapping the skyline or most likely due to pitch and roll variations with respectto
the virtual camera usedforrendering.

Regarding the computational time, the table shows the time used by a standard computer. On a
representative target processor, the time is estimated to be very approximately 30 times higher. In all
cases,thetimeis lowerthan 19 minutes. Nevertheless, the size of the search area is 49 timessmaller than
originally planned. It is worth mentioning that most of the time taken by the algorithm is consumed by
the skyline extraction step and, even if we multiplied the resulting time by 49, the time largely respects
the 1-dayconstraint for this scenario.

Abigdifferenceintimecanbe observed betweentherealand the simulated data. Thisis probably due to
the factthattherearea lot moreimagesto assemble (13 vs. 5)andthat the extractionis performedfor a
whole 3602 panorama, witha lot more pixels being part ofthe graph.

12.2 SCENARIO 2: END OF TRAJECTORY

To testthis scenario, a search grid of 20x20m with 1 m resolution was considered. Only one test was
performedduetothe need torendernew skylinesforevery tested position.

12.2.1 Test5: Performance test

The whole algorithm was tested using real and simulated data. The aim of this test was to test the
precision and the computational time of the algorithm. The images used and the extracted skyline
superimposed to the assembled panoramas can befoundinannex 3.

Real 5.52 0.55 = 617.07 6.69
Simulated 0 0 0 16.91 18.45

Table 7: Performance results for the end-of-trajectory scenario

According to the results, the algorithm is quite precise, more than expected in view of the state-ofthe
art. However, tests need to be performed with more data, as precision could change whenthe horizonis
very farfromthe camera dueto thefactthatthe skylineis more stable over a certaindistance.

In terms of computational time, the algorithm would be able to provide an estimate in a bit over 9
minutes, so the 1-hour constraintis largely respected.

12.3 SCENARIO 3: ALONG THE TRAVERSE

The whole algorithm was tested using the same data as for the otherperformance tests. In this case, the
normal operation of the algorithm was changed in accordance with the definition of the third scenario.
Here,the algorithm takesanestimate of positionasinput and outputs anestimate of the rover’s heading.
This is done to correct the orientation every few meters of traverse. A50x50m s earch area with 1 m grid
resolutionwas used.
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12.3.1 Test 6: Performance test

The objective of this test was to test the precision and the computational time of the algorithm when
addingerrorto theinitial estimate. In allcases, andaccording to the 10° uncertainty set as requirement,
the search area extends from —10 to +10° around the ground-truth orientation. As orientation was not
available for real data acquired during field tests, the heading estimate obtained when setting the ground-
truth position as the input of the algorithm was considered as the ground-truth orientation value (0°
error). The images used and the extracted skyline superimposed to the assembled panoramas can be
foundinannex3.

In the table below, 6x and 6y representthe errors in the input x and y positions with respect to the
ground-truth, while the headingerroris the output of the algorithm.

0.48 0.55 0 876.71 5.39
2.48 2.55 0 1091.05  5.75

4.48 4.55 1 1607.06  5.65

| 6.48 6.55 1 2107.97  5.72

Rea 8.48 8.55 1 3073.03  5.89
10.48 10.55 1 4093.54  5.54

15.48 15.55 3 8771.46  5.38

20.48 20.55 4 15664.5  5.75

0 0 0 16.91 17.5

2 2 0 86.47 17.98

4 4 1 351.29  17.59

Sirmulated 6 6 1 646.59 17.5
imulate 8 8 1 1323.67  16.87
10 10 2 1983.05  16.96

15 15 2 5574 18.44

20 20 2 11970.7  17.03

Table 8: Performance results for the along-the-traverse scenario

The tests were made up to 20m of error in position to account fora 2% error for a 1km traverse, as
described inthe previous scenario. The results show that, with these conditions, the maximum 102 error
is neverreached. In fact, for the simulated data, the maximum orientationerroris 22, whichis quite low,
whilefortherealdatathe maximumis 42.Eventhoughthisis 2 and4 timesthe targetvalue, itstillseems
guite moderate for a 20m error difference in position. Intuitively, we could think that this would not be
the case with skylines that are closer to the camera, since they change a lot more with small camera
displacements. Further testing is needed on different skyline types to verify this hypothesis. The aimed 1°
erroris only found with a maximum of 10m errorin x and y for the real acquisitionand 8m for the
simulated one. However, for the real data, the values change rapidly to 3 and 42 (and we could guess that
this would be the tendency), while for the simulated data they apparently change more slowly .

Intermsoftime, a big difference can again be observed between the realand the simulated data. If we
multiply the results by 30to account fora real demonstration scenario, the maximum is about2.9minutes
forthe realacquisitionsand under 12.5 minutesfor simulated data. In the second case, the result is quite
overthefixed 5-minute constraint. As shown during the different tests, partial panoramasseem to work
quitewellin terms of performance, so this fact could be exploitedto s peed up the algorithm. More tests
could be made to determine the minimum panoramasize for w hichthe algorithm works well.
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13

FUTURE WORK

The finalversion of the skyline matching algorithm must be robustto anyrotationsofthe rover's camera
or imprecision on the rover's camera parameters and the whole algorithm must be optimized regarding
computational timeand memory usage.

A measure of uncertainty s hall be implemented and flashand RAM memory requirements shall be tested.
The skyline extraction component shall be evaluated usinganappropriate metric.

The different priorities and tracks to be followed for each component are described next.

1)

2)

3)

4)

5)

Panoramaassembly:

- Implement the different sub-functions separately and iteratively for the different images to
maintain the desiredimage order after stitching.

- Incasestitchingfails for a certain pair ofimages, allow stitching for the rest of the images and
adjustfield of viewaccordingly.

Skyline transformation: Warp the image according to pitch and roll estimates in order to add

robustnessto pitch and roll variations with respect to the rendered skylines.

Pose estimation: Add a 10° pitch and roll range to the grid parameters to allow attitude

refinement androbustnessto pitchand rollerrors.

Pyramidalapproach:

- Render skyline average for each area: for each pyramidal level and grid position, render a
skyline that contain all of the information of its subgrid positions present at the next level.
This approachmightnotbe appropriateifthe skylineis very close to the camera and changes
rapidlyover smalldistances.

- Use several candidates after each step: after each pyramidal step, keep several of the best-
score candidates as starting grid points for the next step. This approach is definitely more
robustbutit increases the computational time. Testing is needed to determine the optimal
number of candidates.

Directlydiscard candidatesthatare verydifferent: Iferrorscore is over a certainnumber, stop
the algorithm for the particular grid position.

Skyline detection: Improve computational time and robustness

- Graph using only edges and gap filling via DP: try a more traditional edge-based approach
whereonlyedge pixels are usedto initialize the graph and gaps are filled using DP based on
contrast, adjacencies, homogeneity, height, etc. This would highly reduce the number of
pixels takeninto accountin the graphandthus increase computational time, though it might
highly decrease robustness.

- Reduced dense graph keeping only the 50 best scoresin each column [22]. According to
Ahmadetal., keepingonly the 50 best score pixels in each columnas nodes can highly
improve computational time without degrading performance. This number could be modified
aftertesting depending on the camera characteristics.
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ETHICAL ASPECTS AND SUSTAINABLE DEVELOPMENT

On an environmental aspect, the impact related to my internship derives mainly from the energy
consumption associated with the standard operation of a working office. On a daily basis, this includes
the use ofa computer desktopwith 2 screens 5 daysa week fromabout 9h to 18h for the whole 6-month
internship. Outside this period, the computer was turned off. Other elements like lights, air conditioning
and water usage compute in the overallcompany assessment. Commuting to and from work was always
done bybikeoron foot.

A particularly consuming procedure was the generation of skylines, which required the use of a special
shared computerwith a very powerful graphicscard (NvidiaGeForce RTX 3070Ti), which uses up to 283W
atfull power. The processtook about 7 daysat nearly fullpower.

The most remarkable activityinterms of CO, emissionswas the tripto Bardenas, inSpain. Avanwas used
totravel 1050 kmround trip, in addition to several more kilometers to scout the sitesinside the area. A
trip like this with such a heavy vehicle and heavy equipment transportation pollutes the environment
significantly. In fact, vans are responsible for around 2.5% of total EU CO, emissions, the actual target
being 147g CO2/km. However, Bardenas was the closest site to Magellium that met the required
characteristics to test my algorithm and anticipate future testing sessions for the ALPER project
algorithms.

On an ethical aspect, several questionsarisearound the topic of spaceexploration, mostlyrelated to space
preservation, conservation and sustainability. As more money is invested in space and more people, as
wellas objects, are able to travel to space, there are several risks that come withit. One, is the potential
to contaminate the ecosystems we visit, not onlywiththe explorationitselfbut with the objects that are
left in orbit. Another one is the risks to the astronauts, whose bodies change drastically. Should we be
allowedto exploit and take unlimited resources from other planets or do we have some ethicalobligations
to preservethem? Is space explorationa good in itselforis it only justified for s cientific purposes? What
moral considerations should we apply if we discover life in another planet? This questions are hard to
answer,and thatis why policies and protocols are needed to guide us through space explorationina more
ethicaland responsible way.
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15 CONCLUSION

Globally, the objectives of the internship were reached: a skyline matching algorithm was studied,
designed, implemented and evaluated. The results show that, with currentdevelopments, this technique
for absolute localizationcan be very promising and largely surpassthe precision of existing s tate -of-the-
artsolutions. Additional testingon field acquisitions is required to furthercharacterize the algorithm.

A preliminaryversion of the algorithm wasimplemented. Further developments are still required to reach
the planned final version of the algorithm. A measure of uncertainty has not yet been impleme nted, nor
has the robustness to pitch and roll errors and memory usage was nottested and could probably be
improved.

With regards to the computational time, the goal was reached for the first two scenarios but not for the
third one (orientation estimationalongthe rover’s traverse).

Many future improvements canbe considered. The main priority would be to make the algorithm robust
to pitchand roll errors by increasing the grid dimensions. Another option would be to modify the skyline
encodingand pose estimation components and use, for instance, concavity features. For the skyline
detection subcomponent, intensive testing should be performed to adjust the weight of the graph costs
and set the parameters of the pre-processing step. For the pose estimation component, a pyramidal
approach that uses grid subdivision and mean skylines could be conceived, as well as keeping several
potential candidatesafter each step. Amethodto eliminate skylinesthat differ largely fromthe extracted
one couldbe contemplatedto speed up the algorithm.

This internship was a highly pleasant experience which has taught me many valuable lessons both
technically and personally. | learned C++, a compiled programming language which is widely used in
today’s world, | got to use Blender, a 3D computer-graphics software with a powerful render engine. |
worked with Digital Elevation Maps and QGIS and | expanded my knowledge in geospatial data
managementand image treatment.

I had the opportunityto beintegratedinthe ALPER project, a fascinating project for the ESA, and to work
alongavery welcomingand highly competent team. | learned a lot aboutspace robotics, not only through
my individual work but also from my co-workers. | acquired good working practices and learned agile
project organization. This allowed me to develop some important skills such as time-management,
prioritizing, teamwork, communication and adaptability, and it showed me the importance of team
collaborationand ofknowingwhen to askfor help.

With regardsto myinternship organization, | got the opportunity to work through the different phases of
a typical ESA project, from the conception to the development, including the drafting of extensive
technical documentation through each phase. This has provided me with a very exhaustive vision of the
subjectand ithas greatly improved my understanding ofa whole project life-cycle.

Overall, this internship has been a truly satisfying experience for me. It has provided me with the
opportunity to grow professionally, and | can safely say that my understanding of the job environment,
the enterprise organization and the spatial robotics industry has greatly increased. | am confident that
this experience will help me withany career paths that | choose to pursuein the future.
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17 ANNEXES

17.1 ANNEX 1: SKYLINE EXTRACTION WITH DIFFERENT HORIZON TYPES AND
NOISE LEVELS

Figure 27: Extracted skyline on acquisition id 1, noise level 1, 2 and 3 (from top to bottom)

Figure 28: Extracted skyline on acquisition id 2, noise level 1, 2 and 3 (from top to bottom)
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Figure 29: Extracted skyline on acquisition id 3, noise level 1, 2 and 3 (from top to bottom)

17.2 ANNEX 2: SKYLINE EXTRACTION WITH PITCH AND ROLL ERRORS

Figure 30: Extracted skyline on acquisition id 4, pitch (1st row), roll (2nd row) and panorama at O pitch and roll (3rd row)

Figure 31: Extracted skyline on acquisition id 5, pitch (1st row), roll (2nd row) and panorama at O pitch and roll (3rd row)



Figure 32: Extracted skyline on acquisition id 6, pitch (1st row), roll (2nd row) and panorama at O pitch and roll (3rd row)

17.3 ANNEX 3: IMAGES AND SKYLINE EXTRACTION FOR THE PERFORMANCE
TESTS

s = p
33: Acquisition id 7, images

Figure 34: Acquisition id 7, extracted skyline

Figure 35: Acquisition id 8, simulated acquisitions
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Figure 36: Acquisition id 8, extracted skyline

17.4 ANNEX4: MAGELLIUM’S TESTROVER STEREO-BENCH SPECIFICATIONS

surface

extended)

Magellium ExoMars NavCam Mars 2020 NavCam

Baseline Adjustable : 12cmto 15cm 42.4cm

22cm(can be

extended)
Boresight Mounted to PTU, Mounted to PTU, Mounted to PTU,
mounting Left/right camera Left/right camera Left/right camera
orientation boresights are parallel | boresights are boresights are

parallel parallel

Pixel format 1600*1200 1024*1024 5120*3840
Horizontal FOV 62° 65° 96°
Vertical FOV 48° 35¢ 73°
Focal length emm 4mm 19.1mm
Aperture f/1.4 f/8 f/f12
Height above 75cm (can be 205cm 198cm

Angular range of
the PTU

Horizontal: 360°
Vertical: 180°

Horizontal: 360°
Vertical: 180°

Horizontal: 360°
Vertical: 180°

Table 9: Magellium's stereo-bench specifications
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