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Abstract: Localization method based on skyline for visual geo-location is an important auxiliary
localization method that does not use a satellite positioning system. Due to the computational
complexity, existing panoramic skyline localization methods determine a small area using prior
knowledge or auxiliary sensors. After correcting the camera orientation using inertial navigation
sensors, a fine position is achieved via the skyline. In this paper, a new panoramic skyline localization
method is proposed that involves the following. By clustering the sampling points in the location
area and improving the existing retrieval method, the computing efficiency of the panoramic skyline
localization is increased by fourfold. Furthermore, the camera orientation is estimated accurately
from the terrain features in the image. Experimental results show that the proposed method achieves
higher localization accuracy and requires less computation for a large area without the aid of
external sensors.

Keywords: visual geo-location; lapel point clustering; orientation estimation; skyline localization

1. Introduction

Visual geo-location is an important branch of computer vision [1-3]. By extracting
visual features from images and comparing with the corresponding datasets, the posi-
tion and the orientation (i.e., heading angle, pitch and roll) of the camera used can be
obtained [4,5]. Skyline localization is an important visual geo-location method in the field
environment, which is widely used for unmanned systems, e.g., unmanned vehicles [6,7].
Skyline localization can be categorized into local skyline localization and panoramic sky-
line localization according to the Field of View (FoV) of the retrieved images. Compared
with local skyline localization, panoramic skyline localization has the following challenges.
First, since the panoramic image contains the skyline with FoV of 360°, there is a huge
amount of data processing for feature extraction and calculation [8]. Second, the pitch of
the camera has almost no effect on the local skyline, while the roll affects the rotation of the
skyline. However, if the optical axis of the camera is not parallel to the horizontal plane,
the acquired panoramic skyline will produce a sinusoidal distortion, which will affect the
subsequent localization [9].

In this paper, a new panoramic skyline localization method is proposed, which
achieves the panoramic skyline localization in a large area without using any auxiliary
sensors (e.g., electronic compass, inertial navigation, accelerometer, etc.) and auxiliary
information, e.g., from Geographical Information System (GIS). The novel contributions of
this paper are as follows. First, a panoramic skyline coarse-localization method based on
the skyline lapel points is introduced, including Digital Elevation Model (DEM) skyline
clustering and matching method, for fast elimination of a large number of position can-
didate points. As far as we know, this is the first time that a DEM clustering is used for
panoramic skyline localization. Second, a camera orientation estimation method based on
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the skyline lapel points is proposed. According to the difference between the lapel points
in the image and DEM, the camera orientation at each candidate point is estimated for
rapid confirmation of the skyline localization result.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 presents the proposed method. Section 4 presents the evaluation of the proposed
method in a hilly area. Finally, Section 5 concludes the paper and discusses the future work.

2. Related Works
2.1. Panoramic Skyline Localization

There are a few panoramic skyline localization methods that are quite different due to
their application in different scenarios. For example, in [10] a panoramic skyline localization
method is used on Mars exploration vehicles, as illustrated in Figure 1. After capturing the
panoramic image, the extracted skyline is calibrated by using the high-precision orientation
sensor. This is to enable the skyline to be transformed into the horizontal state and then
compared with a small range of DEM skylines. However, the accuracy of the commonly
used sensors is relatively low, and the inertial navigation system produces cumulative
errors when the system has run for a long time.

Elevation

Haorizon line

Figure 1. The Mars rover takes photos and extracts the skyline.

In [9], the panoramic skyline localization is used for unmanned boats near an
archipelago. The omni-directional camera on the unmanned boats is used to capture
the image of the surrounding sea, extract the skyline and estimate the camera orientation.
After the image skyline is corrected, it is compared with DEM skylines to determine the
position of the unmanned boats as illustrated in Figure 2. A deep neural network is used to
extract the waterline in the image, which is used to estimate the camera’s orientation. This
method is ingenious, but cannot be used in land environment since there are no waterlines
as reference.

In [11], the panoramic skyline localization is used in the urban area. Using a camera
with fish-eye lens placed on the roof of a vehicle, the image skylines are extracted and
compared with the rendering image generated by the 3-dimensional (3D) model of the
city, so as to determine the location of the vehicle as illustrated in Figure 3. It is difficult
to use this method in the field. First of all, it is difficult to use a fish-eye camera since
many mountains are far away and therefore cannot be photographed. Secondly, for urban
environment it is only necessary to process the dataset for the location of the sparse road
network. Finally, since roads in urban area are relatively flat, the method does not need to
deal with the distortion caused by the camera orientation, but only the distortion due to
fish-eye lens.
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Figure 2. Flowchart of skyline localization of unmanned boat [9]. It can be seen that due to the
turbulence of the unmanned boat, the skyline of the original collected image has a large distortion.
Through the second step of calibration, the distortion has been corrected.

Figure 3. Fish-eye camera takes urban images and extracts skyline.

2.2. Camera Orientation Estimation

In addition to camera orientation estimation and skyline correction in panoramic
skyline localization (see Section 2.1), the camera orientation can also be estimated by local
skyline localization. The method in [12] uses the first ridge line under the skyline as a
reference to extract the contour words and compare them with the features in the dataset
to determine its location. Since the contour words are sensitive to the camera orientation,
this method also introduces the camera orientation estimation, referred as enumeration
method, which is illustrated in Figure 4. Firstly, the ranges of the various parameters
of the camera orientation are determined (e.g., FoV is [0°, 70°], roll is [-6°, 6°]). This
is followed by using different parameter combinations to calculate the score of skyline
matching. Where a certain parameter combination gets a high score in the correct heading
angle, the combination of the parameters is considered as the real parameters of the camera.
This method is simple and effective, but the computational time is high.
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Figure 4. Enumeration method for estimating camera orientation. Using a combination of various pa-
rameters within a predetermined range, the skyline with the highest matching score after calibration
is found to determine the camera orientation.

The method in [13] uses the semantic information in images to estimate the camera
pose as illustrated in Figure 5. Unlike the other skyline localization methods, the 3D model
of this method adds corresponding semantic attributes through the GIS data of the region
(i.e., the types and shapes of various regions are identified on the 3D model, including
mountains, forests, glaciers, waters, etc.). The corresponding retrieved images also repre-
sent the various types of regions in the image by semantic segmentation. By calculating the
coincidence of each region in the image with the corresponding region in the 3D model,
the camera orientation is deduced. However, there are many limitations with this method.
The GIS data of the area must be included, and the semantic information of the area should
be relatively rich. Furthermore, under special weather conditions (e.g., haze), the semantic
information of the image may disappear, so the method cannot be used.

b) Semantic
segmentation

a) Segments rendered
from terrain model

c) Areal matching of
semantic segments

Figure 5. Camera pose estimation based on semantic segmentation. Through semantic segmentation
of the image, various geomorphic regions are identified, and the camera orientation is determined by
matching with the terrain model containing GIS data.
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There are also methods of determining skyline location by extracting features that are
independent of rotation, so the estimation of camera orientation is unnecessary. In [14],
the skyline is divided into several convex and concave curve segments as illustrated in
Figure 6. These curve segments are rotated and normalized, and the area between the
curve and the horizontal axis is encoded, so that the features are independent of camera
parameters. This method has produced better effect in the desert area. However, it is
more sensitive to noise, and any rotation will affect the end position of the skyline concave
segment. Furthermore, the distortion of the panoramic skyline is more complex than that
of the local skyline, which limits the application of this method in the panoramic skyline.

Sy

Figure 6. Skyline features of concavity.

2.3. Clustering of Skyline Localization Datasets

The skyline clustering method aims to classify similar skylines and improve the
retrieval efficiency, which is more important, and various researchers [12,14,15] regard it as
one of the topics to be studied in the future. Zhu et al. [16] studied the skyline clustering
of local skyline localization. Firstly, after obtaining dense and uniform skyline samples,
the skyline dataset is divided into four sub regions (with yaw angle of 0°, 90°, 180° and
270°), and the range of skyline in each sub interval is 90°. Secondly, in each sub region,
similar skylines are merged into the same region, referred as tolerance region, and only
one skyline is reserved for each tolerance region. Although the effect is small in complex
terrain, the sampling density is greatly reduced in the flat area as illustrated in Figure 7.
This method cannot be applied to a panoramic skyline because the four directions of
tolerance regions are completely different due to the terrain.

Flat Area

Dense Rendering 10045
Viewpoints (green)

Figure 7. The effect of clustering DEM skyline dataset. (Top): The terrain of the localization area;
and (Bottom) results of clustering DEM skylines in 0° and 90° directions, respectively. The green
points are the sampling points of the DEM skyline, and the red points are the tolerance regions.
The sampling points of a skyline in two directions are different due to the influence of terrain.
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3. Materials and Methods

Based on the previous work, this paper uses lapel points [17], the feature of the cross
point between skyline and ridge line (as illustrated in Figure 8), to cluster the DEM skylines
in order to accelerate the matching efficiency of panoramic skyline. Furthermore, a new
camera orientation estimation method is proposed, which only depends on the image
features and the corresponding features of DEM without using external sensors to estimate
the camera orientation. Figure 9 outlines the various processes of the proposed method.

Figure 8. The lapel point of a skyline: (left) left lapel point of skyline; and (right) right lapel point

of skyline.
Lapel points | Lapel point
extraction filtering
L |
Sin—adjust
filtering
|
. Skyline & ridge Match
Query image > . " F
line extraction filtering

S
DEM feature
Dataset

DEM Feature
Extraction

Lapel point

i clustering

Figure 9. The flow chart of the proposed method.

3.1. Clustering of the DEM Lapel Points

In the complex terrain environment, the skyline changes significantly over a short
distance [16] as illustrated in Figure 10. Thus, the dense sampling is the premise to ensure
the accuracy of skyline positioning, but the more intensive skyline sampling will lead to
the decrease of retrieval efficiency in skyline localization.

The proposed clustering method uses the lapel points to cluster DEM skylines, so
as to merge similar DEM skylines in close proximity. Compared with the method in [16],
the proposed method does not divide the dataset by angle in order to satisfy the needs of
panoramic skyline localization. In addition, a coarse localization of skyline algorithm is
designed through the lapel point matching, which is to reduce the required computation in
matching high-density skyline and improve the retrieval efficiency of skyline. The process
of clustering DEM lapel points is outlined in Figure 11.
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Figure 10. The intense change of the skyline in a mountainous area. Although Viewl and View2
are only 30 m apart, the skyline along the same direction changes greatly due to the promixity of
the mountains.

Extracti i . . Clusteri vithi M and
xtrac loAn o » Layered skylines Layered skylines p| UStErIng Within erge‘r ‘1,“
lapel points layers statistic

Figure 11. The flow chart of clustering lapel points.

Firstly, after extracting the lapel points of each skyline, the dataset is stratified accord-
ing to the number of lapel points, where the number of lapel points in each layer is the same.
Secondly, according to the sequence and spatial distance of lapel points, the clustering
method is used to group the lapel points of each layer. Finally, the clustering results of each
layer are merged to generate the cluster of lapel points in the region, and the statistical
features of various types are extracted.

3.1.1. Extraction of DEM Lapel Points

By calculating the first derivative of the depth value of each point on the DEM
skyline [17], we obtain the lapel points of the DEM skylines. The format of each DEM
skyline point is shown in Table 1.

Starting from the North, the features of lapel points for each DEM skyline are saved
successively. Type is the type of lapel point, which is of two types: left and right. Anglenos,
is the angle of the lapel point relative to North with value range [0, 360°]. Angle;gjscency is
the angle between the current lapel point and the next adjacent lapel point in the clockwise
direction with value range [0, 360°] (see Figure 12). (L-distance, R-distance) refers to the
depth of the skyline on the left and right sides of the corresponding lapel point, as illustrated
in Figure 13.

North
@ Leit lapel point
@ Right lape]l point

S

Figure 12. The angle between the North of the lapel point and the adjacent point in the clockwise
direction. The current selected lapel point is the right lapel point indicated by the black arrow, and its
Anglen,,, is «, and the Angle,gjacency is B-
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Figure 13. (L-distance, R-distance) of lapel point: (left) DEM skyline with the position of a lapel
point denoted by a red dot; and (right) the depth of the skyline in (left), where the red line denotes
the difference in depth in (left), and the L-distance and R-distance are denoted by black arrows,
representing the depth of left and right sides of lapel point, respectively.

Table 1. DEM lapel points information list.

Item Name Value Range Item Explanation
Type {Left, Right } Lapel Type
Anglen,m [0°, 360°] Angle from due north
Angle ggjacency [0°, 360°] Angle between adjacent lapels clockwise
(L-Dis, R-Dis) ([0, 00], [0, oo]) Distance between left and right sides of lapel

3.1.2. Layering of the DEM Lapel Points
After extracting the lapel points of each skyline in DEM, the number of the lapel points
is saved in a 2-dimension matrix (as shown in Figure 14).

lapelq y | lapelq, o | lapelq, s | lapelq lapelq
lapel s, 1) | lapel,s | lapele s | lapele,q lapel s, o)
].EL[_J‘S].(;{,‘ 13 ].‘dpel{;;__g'] ].EJ,[_J‘S].(;L ) ].El[)e].(;;__;;'] ].EJ,[_J‘S].(;;. n
]ape I (m, 1) | ape { m, 2 Lape I (m, 33 | ape | (m,4) | e Lape I (m, )

Figure 14. The lapel point matrix of the dataset. The size of the matrix is related to the DEM area and
skyline sampling density. The element (i, j) in the matrix represents the number of lapel points on

the skyline (i, j).

According to the number of lapel points, the dataset can generate a heatmap of the
sampling points as shown in Figure 15. It can be seen that when the sampling distance is
large, the number of lapel points changes greatly. Conversely, when the sampling distance
is small, the change of lapel point number is relatively small.
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Figure 15. The heatmap of the lapel points. The size of the heatmap is related to the DEM area and
the skyline sampling density. The dot (i, j) in the heatmap represents the number of lapel points of

the skyline in row i and column j.

The dataset is divided into several layers according to the number of lapel points in
the region as illustrated in Figure 16. The specific method is

1 item(i,i) = Lapeliygex

Sliceindex =

0 otherwise

)

After layering, the number of the lapel points in each layer is the same.
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Figure 16. The layering heatmap according to the number of each lapel point.
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3.1.3. Clustering of the DEM Skylines

After dividing the dataset into different layers, each layer has the same number of
lapel points. However, the skyline with the same number of lapel points does not represent
the same attributes. This is because some points are relatively far away from other points,
while some points are closer, and the type of lapel points may differ.

The purpose of skyline clustering is to classify the skylines with the closer distance
and the same lapel point sequence into the same category, so as to improve the efficiency of
skyline retrieval. The steps of the clustering are as follows. Firstly, code the lapel points of
a skyline from the North and save the types of each lapel point in turn to form a lapel point
sequence “l-r-r-l-l-r-r” as observed from a point A as illustrated in Figure 17(left). Secondly,
determine the lapel point sequences that are the same in the loop. This is needed because
the observed lapel points near North will change the lapel point sequence due to A being
slightly moved. For example, the lapel point sequence observed from A in Figure 17(right)
is “r-l-r-r-l-1-r”. Since the two lapel sequences are very close in distance, the skyline with
the same cycle of lapel points is considered the same. Finally, cluster the skylines with
the lapel point sequences. Since the number of clusters cannot be specified in advance,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used
for clustering. Unlike the partition and hierarchical clustering methods, DBSCAN defines a
cluster as the largest set of densely connected points. It divides the region with sufficiently
high density into clusters (as illustrated in Figure 18) and finds clusters of arbitrary shape
in a noisy spatial database [18].

Figure 17. The influence of the position of an observation point on the sequence of lapel points: (left)

@ Left lapel point
@ Right lapel point

North
@ Left lapel point ot

. Right lapel point

A

Point A is the current observation point; and (right) the lapel point sequence as observed from a
slightly moved A. The dotted circle represents the original position of A.

15-lapel points clustering

15-lapel points distribution 10
- 08
- 06
22 2
- 04 i
0z
00
D D0 oy

ST N e AN RERAR RRI Y TSR SHTSRRAARERARKRISTER
‘ol

columns lumns

-15

ows
ows

-10

30 30
2 2
3 3
3 3
3 3
a a
2 2
a3 a3
45 45
8 8

Figure 18. The clustering of the lapel point sequence: (left) Distribution of skyline with group of
8 lapel points; and (right) the result of the clustering by lapel point sequence and distance. It can be
seen that the skyline with lapel number 8 is divided into three categories.
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After clustering, the skyline with the same number of lapel points is divided into
different categories according to distance and type of lapel points. In the same category,
the features of skyline lapel points have certain similarities, as illustrated in Figure 19.

lapel points colormap with 1 square km lapel points clustering result
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14

Figure 19. A cluster of lapel points: (left) The heatmap of lapel points within 1 km?. The color of
each point denotes the corresponding number of lapel points; and (right) the clustering result of
(eft). The color of each point denotes the corresponding category of lapel points.

3.1.4. Listing the DEM Lapel Points

The DEM skylines are classified and managed according to the lapel point, and each
type of skyline has similar lapel point feature. By saving each type of skyline and creating
an index table, the efficiency of the skyline retrieval is improved. The lapel point index table
of skylines is a linked list, where each node stores the type and angle features of the skyline
lapel point. The node contents of the index of a skyline are shown in Table 2. The angle
features of a lapel point refer to the minimum and maximum value of Angle,4jgcens Of the
same index of the lapel point in the same skyline. It shows the range of lapel point angle of
uniform index number in the same type of skyline.

Table 2. Node contents of the index.

Item Name Value Range Item Explanation
Type {Left, Right} Lapel Type
(Min, Max) ([0°,360°], [0°, 360°]) Angle Range between adjacent lapels clockwise

The index saves the type and angle of each lapel point in turn. Figure 20 illustrates
how the index of lapel points is determined.

3.2. Extraction of Image Skyline and Lapel Points

The skylines and ridge lines are extracted from the image using methods of semantic
segmentation, such as U-Net [19]. The classification of lapel point type depends on the
spatial relationship between the skyline and the ridge line. Compared with the ridge line
matching proposed by other scholars, the lapel point reduces the accuracy requirement of
ridge line extraction [17]. It only needs to extract the ridge line near the intersection point
of ridge line and skyline. The effect of the extraction of lapel points of skyline is illustrated
in Figure 21.
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Figure 20. The feature extraction map of skyline type lapels: (First row) n skylines in the same
category considered by the clustering method to have the same geometry; (Second row) based on
the lapel point sequence of the first skyline in the same category, adjust the sequence of the remaining
skyline lapel points to correct the changes caused by the position of observation points; (Third row)
statistics of the type and angle of each lapel point; and (Fourth row) skyline lapel point index, which
records the type and angle range of each lapel point category.

Figure 21. The effect of the extraction skyline and lapel points. Red curve denotes the skyline and
the ridge lines, where the top red curve is the skyline, and a blue square denotes a lapel point after
manual verification and the ambiguous or incorrect lapel points are removed.

3.3. Panoramic Skyline Matching

Due to the large amount of data, existing methods only locate the panoramic skylines
in a small area (less than 1 km?) in order to improve the retrieval efficiency, and use sensor
(e.g., as in [10]) or other special features as in [9] to obtain the camera orientation. In
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this paper, a clustering method based on lapel points is first proposed, and a lapel point
matching algorithm is designed to improve the efficiency of skyline retrieval. Second,
a camera orientation estimation method based on lapel points difference is proposed.
The retrieval process of a panoramic skyline is outlined in Figure 22.

Lapel point filtering

Between—class filtering

L

Inter-class filtering

Sine—adjusted filtering

1

Match filtering

Figure 22. The panoramic skyline retrieval process. The retrieval consists of four steps, with each step
filtering out some candidate points, and the last step sorting them according to the matching results.

3.3.1. Between-Class Filtering

Between-class filtering refers to using the type and location of lapel points marked
in the image to filter out candidate points that do not match completely in DEM skylines
dataset. The filtering determines whether the remaining lapel points are within the angle
range of corresponding type of lapel point after the first lapel point of an image is aligned
with the same type of DEM. If all the image skyline lapel points are in the range of lapel
points of the class, then the matching between classes is successful. Conversely, all skylines
in the class are filtered out if they cannot match the lapel points of the image skyline.

Coarse matching is used to compare lapel points as illustrated in Figure 23. The sky-
lines that do not match the lapel points are filtered out, and the number of skylines with
the lapel points and the corresponding heading angles are recorded.

1500 4 1500 4
— DEM — DEM
1250 4 — Real 1250 4 — Real
x  Left Laped x  Left Laped
1000 & Right Lapel 1004 & Right Lapel
750 4 750 4
00 e — w0 — E;,{'—‘:-"'_'_“"..,___
01 - — -, LR [ — _
50 4 50 4
0
=250 4 =250
500 - . , 500 . ,
0 500 1000 1500 2000 500 3000 0 50 1000 1500 2000 500 3000

Figure 23. Coarse matching: (Left) the state before the DEM skyline is coarsely matched with the
image skyline; and (Right) the state after coarse matching between DEM skyline and image skyline.
Through the coarse matching, the candidate yaw in the image can be determined at the same time.

When judging the match between the image skyline lapel points and DEM skyline
lapel point category, a traversal method is used to align the first lapel point of the image
skyline with the same type of lapel points in DEM category in clockwise direction. This
is followed by checking the remaining skyline lapel points, including type matching and
whether the position of image skyline lapel point is within the threshold of DEM skyline
lapel point.
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In the matching process, due to the self-similarity of terrain and the lack of lapel
points in the image skyline, there may be multiple possible yaw candidates for the same
DEM skylines as illustrated in Figure 24. This diversity gradually decreases with the
completeness of the number of skyline lapel points.

Yaw Candidiate 1

. RS
DEM Lapel points ™ P .
) __Yaw Candidiate 2

Picture Lapel
points

Figure 24. For the same DEM skyline (enclosed in larger dotted red rectangles), the coarse matching of
the image skyline may have multiple yaw candidates (enclosed in the smaller dotted red rectangles).

3.3.2. Intra-Class Filtering

Intra-class filtering removes the skyline with a large difference in lapel points among
the selected lapel points categories, so as to reduce the number of candidate skylines
for fine localization. It is similar to between-class filtering, but changes [Min, Max| to
[—Threshold, Threshold], where the threshold is set to 2° to limit width of the filter window.
Between-class filtering and intra class retrieval improve the efficiency of skyline retrieval
significantly, even though they are additional processing steps than direct retrieval. Sup-
pose that the number of cluster points is 71, and the number of skyline lines of each cluster
is Count;. Let the mean value of the number of skyline lines of lapel type be

n
m = E(Count;) = M. )
The time complexity of the algorithm is given by O(n) + a - O(m), where « is the
number of classes considered by the algorithm. The time complexity of traversal is O(m - n),
where & < 1, thus, the efficiency of between-class filtering and intra class filtering are
higher. However, the lapel point matching only eliminates the skyline through the lapel
points, and the skyline with lapel points does not represent the same trend of skyline.

3.3.3. Orientation Estimation and Filtering

When the optical axis is not parallel to the horizontal plane (i.e., the pitch or roll of the
camera is not 0°), the camera can produce a panoramic picture with a sinusoidal distortion
(as illustrated in Figure 25).

Similar distortions are also found in other studies as illustrated in Figure 26. Al-
though choosing a suitable location on the land can avoid the large tilt, it is difficult to
ensure that the platform is completely horizontal. Since no waterline is considered in [9],
this paper proposes a new camera orientation estimation method, which only relies on the
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lapel points in the image to determine the candidate camera’s orientation and verifies the
orientation according to the match with the skyline.

et

B b - r

Figure 25. Camera orientation causes sinusoidal distortion in the image. For a sloping path, the two
sides of the picture are uplifted, whereas the middle part sinks to the right.

Figure 26. Panoramic view from an unmanned aerial vehicle [3]. Due to the influence of sea waves,
the images have a sinusoidal distortion.

The model of sinusoidal distortion at frequency w caused by camera orientation is
y = Asin(wx + ¢) + h. (3)

where the parameters A and ¢ are defined in the bottom right of Figure 27. Since the height
of DEM skyline dataset is the height from the camera of experimental vehicle to the ground,
and h is 0 under normal conditions. The panoramic skyline contains only one period of
sinusoidal distortion, so w is also a fixed value. Therefore, three or more points on the
sine curve can be identified, and the curve can be fitted by the least square method [20].
The whole fitting process is illustrated in Figure 27.

The lapel height difference is

lef = HeightDEMLPi — HeightPicLPj’l (4)

where Heightpempp, is the height of the ith lapel point in DEM and Heightp;.| pr is the
j
height of the jth lapel point. This pair of lapel points is the result of the coarse filtering.
Through orthogonal decomposition, the vehicle orientation is obtained by fitting as
follows. If the length of DEM skyline is Len(Skylinepgps), through the A and ¢ based on
the sine curve fitting, the estimated pitch and roll are

‘ 2w A i
Pitchestimate = Len(Skylinepgnr) .COS(E —9 ?
d
an Rollggy; = 2 A 'Si”(z —9) ©
Estimate = Len(Skylinepgp) 2 i

When the parameter / fitted by the lapel height difference is not 0 and exceeds the
preset threshold, then the DEM skyline does not match the image skyline and is marked as
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“the skyline difference is large”, so as to avoid the subsequent fine matching and improve
the retrieval efficiency. The anomaly of parameter / is the necessary condition of skyline
mismatching. For some mismatched skyline pairs, the sine function fitted by lapel points
difference is also less than the threshold value (see Figure 28), which needs to be further
filtered by skyline similarity calculation like the method in Section 3.3.4.

1500 f
— eM 1000
1250 — Real 750 |
x  Left Lape
1000 @  fight Lapel 500 1
=0 50 1
00 m 04 t T
S———
50 -250
" -500
—250 750 4
500 —1000 1
[ 500 W00 1560 2000 500 3000 0 500 1000 1500 2000 2500 3000

1000 {
750 4
500 1
50
0l =
T— —
=250
-500
-750
-1000 |
0 500 1000 1500 2000 2500 3000 I

Figure 27. The camera orientation estimation process: (Top-Left) Find the DEM skyline
lapel points matching the image lapel points (i.e., the result of coarse positioning outlined in
Section 3.3.2); (Top-Right) calculate the difference of lapel height; (Bottom-Left) fit the sine curve;
and (Bottom-Right) the physical meaning of sine function curve parameters. The variable A repre-
sents the size of the superposition of roll and pitch vector in camera orientation, and % — ¢ represents

the direction of the superposition.

oo — DEM 1200 ¢

1250 — Real =0
® Left Lapel
1000 ® Fight Lagel 50 4
750 =0
500 m 01 S —
50 —250
0 —s00
—250 —750 4
500 -1000
0 =00 Wor 1500 2000 3500 3000 0 500 1000 1500 2000 2500 3000
— DEM 1000
1250 — Real =04
% Left Lapsl
1000 & Right Lape! 500 1
750
=0 N
500 m o =L T I
B | Te— -250 o
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Figure 28. The sine fitting results of mismatched skyline pairs: (Top row) & is large and the entire
sine function shifts upward; and (Bottom row) the vertical offset of sine function is normal.
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3.3.4. Skyline Calibration and Computing Similarity

Skyline calibration is used to determine the tilt of the camera’s platform (i.e., the mag-
nitude and position of the tilt) to reverse compensate the image skyline, so that the image
skyline is restored to the camera horizontal condition so as to obtain the true shape of DEM
skyline. The restoration is using

A - Len(Skyline) . 2m-i

Skyline[i] = Skyline[i] + o -Sm(Len(Skyline) +¢), @)

where Skylineli] is the height of column i of the skyline and Len(Skyline) is the length of
the skyline. The restoration method determines the offset caused by fitting sine wave at
different positions of the skyline and compensates the skyline by the offset at the same
position, so as to realize the image skyline calibration as illustrated in Figures 29 and 30.

100 4 1500 1

— Before adjust
50 4 1250 4 — ANEr adjust
-=- DEM
500 1 10040 4
250 1 750 4
0= — — - L
250 1 250 4
—500 1
~750 1 -250 4
=100D 4 500 1
: - . - . : .
1] 510 1000 1500 2000 2500 3000 a 500 1000 1500 000 500 3000

Figure 29. Calibration effect of sinusoidal distortion: (Left) The sine curve as fitted in Section 3.3.3;
and (Right) The effect of calibration. It can be seen that there is a significant difference between the
DEM skyline and image skyline before and after calibration.

1500

== PBefare adjust == Before adjust
1250 —— After adjust 1250 —— After adjust
=== DEM === DEM

1000

=0

—250

—500
- T . ' - v - ' - ' - T
o 500 1000 1500 2000 2500 3000 o 500 1004 1500 000 2500 3000

Figure 30. An example of matching failure after sine correction. The features of skyline and DEM are
matched in the two maps, but after correction, the difference of skyline pairs is significant, indicating
that the locations of DEM sampling points for comparison are not the locations of where the images
were taken.

Since the orientation of a skyline can be estimated from lapel points, the proposed
method adopts the method similar to [10] and uses the square error (defined later) to
determine the similarity. Since there may be more than one group of camera orientation
estimated by lapel points, it is necessary to compute the similarity between the image
skylines and the DEM skylines of each candidate parameter and select the minimum among
the results. Since the lapel points pair is not completely aligned, the lapel point with the
furthest distance is selected as the anchor point for the alignment of the two skylines, i.e.,

Anchotyge, = argmin(min(L — Disj, R — Dis;)), (8)
i

where L — Disj and R — Disj, respectively, represent the left and the right of the distances
of lapel point j. Suppose an image skyline has n orientation candidates on a certain DEM
skyline, and each candidate orientation is
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Orientation; = (yaw;, A, ¢;)i € [1,n]. ©)

where yaw; is ith candidate’s yaw, and A; and ¢; are sine correction parameters. The square
error of each orientation is

Len(Skylinepgp)
e = Z \|Skylinepemj] — Skylinep.(Orientation;)[f]||>. (10)
=1

The similarity of image skyline on a DEM skyline is the minimum of all candidate
pose similarity sets on the DEM skyline, i.e.,
e = min {e;}. (11)
i€[1,n]
4. Results and Discussion
4.1. Experimental Site and Equipment
The experimental site is located in the suburb of Changsha, China, as shown in

Figure 31. The experimental area is about (28.08° N, 112.69° E~28.15° N, 112.76° E), which
is a hilly area with few human-made buildings.

[~ S
Figure 31. The DEM data of experimental area. The red dots in the figure represent the place where
the pictures were taken in the experiments.

The DEM data spatial resolution used in the experiment is 10 m. After a 3D terrain
model is constructed by OpenGL, the rendered DEM skyline image is generated by a
virtual camera. The resolution of the rendered image is 2880 x 480, and the horizontal FoV
and vertical FoV are 360° and 60°, respectively, (as shown in Figure 32).

Figure 32. Rendering of DEM skyline generated by 3D model: (Top) Rendering of skyline generated
from DEM data at selected sampling points, where the white area is the sky, the non-white area is the
peak, and the gray scale represents the distance between the mountain and the observation point;
(Bottom) pseudo-color map of (Top) to facilitate the viewing of details of the peak.
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For the acquisition of the panoramic images, we used a camera with horizontal
rotation controlled by command to rotate at a constant speed, which is fixed on the top of
the experimental vehicle and has a lifting lever. When the camera is raised, the height from
the ground is about 3.3 m (as shown in Figure 33).

Figure 33. Equipment used in the experiment: (Left) Camera can be rotated and images are captured
by command; and (Right) installation of the camera on the experimental vehicle.

During the image capture, the lifting lever raises the camera and captures images
from different heading angles in turn (see Figure 34). Using an image stitch algorithm,
the images are combined as a panoramic image as shown in Figure 35.

Figure 34. Images captured by the experimental vehicle. The FoV of the camera is 50° and each
image was captured every 40° rotation of the camera. The resolution of each image is 1920 x 1080. It
can be seen that there are some overlaps between the adjacent images.

-

X - y

Figure 35. The panoramic image. Using the image stitch algorithm, the sub images in Figure 34 are
merged into a panorama. The left side is the image captured when the optical axis of the camera
coincides with the central axis of the vehicle.
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During the image capture, GPS and inertial navigation were used to record the position
and camera orientation (as shown in Table 3).

Table 3. The orientation of the image in Figure 35.

Parameter Value

Longitude 112.6942537°

a Latitude 28.1354467°
Pitch 2.51°
Roll —0.61°

A total of 96 groups of images were captured, and the location and orientation were
recorded. In order to avoid the influence of foreground occlusion on localization, the lo-
cations were selected to be far away from a mountain peak, and where the foreground

interference is less.
All the experiments were run on a laptop, the CPU of which was Intel(R) Core(TM)

i5-7200U @ 2.50 GHz (4 CPUs) and with a size of RAM is 16 G.

4.2. Camera Orientation Estimation
The orientation of the camera is determined in the case of successful localization of
the restored skyline. The errors in the pitch and roll are determined as follows:

Ertyon = Rollgstimate — ROllgmundtruth (12)
Errpitch = Pitchgstimate — PitChgroundtruth-

The estimated camera orientation is very close to the parameters of a vehicle inertial
navigation system, as shown in Figure 36.

Error of orientation estimation
1
0.8
0.6

0.4

0.2
B -i '3

0.8 -0.6 -0.4 —0.2' 1] .0.2 0.4 0.6 0.8 1
-0.2

-0.4

Roll [degree]
s

-0.6

-0.8

-1
Pitch (degree)

Figure 36. Orientation estimation error. It can be seen that the estimated orientation is very close to

the inertial navigation system.

Although the method estimates the camera orientation (i.e., yaw, roll and pitch) by
comparing and fitting the lapel points, unlike the waterline method in [9], the matching
and fitting of lapel points may have ideal results at the real point and its vicinity, thus
reducing the localization accuracy. Thus, experiments were carried out to evaluate the
proposed method, where the localization accuracy and efficiency are compared between
estimating camera orientation and providing camera orientation. The experimental results
show that the accuracy and efficiency of localization are improved by providing camera
orientation as shown in Figure 37.
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Figure 37. The effects of positioning accuracy and efficiency between estimating orientation and
providing orientation.

Furthermore, compared with the enumeration method in [12], the efficiency of our
method is much higher, as shown in Figure 38.

Computational Time
1400
1200
1000

800

Second

600

400

200

Enumeration Proposed estimation

Figure 38. Comparing the efficiency of the proposed orientation estimation method with the enumer-
ation method in [12]. The range of roll and pitch of the enumeration method are both [-5°, 5°], step
size is 0.1°, and yaw step size is 1°.

4.3. Camera Localization

In the experiment, the 96 groups of images were used, and the localization accuracy
was determined. Experiments show that the accuracy of the proposed method is similar to
that of directly using the traversal method, as shown in Figure 39.

Localization Accuracy

100.00%

80.00%
60.00%
40.00%
20.00% II
0.00%
om S0m

100m 200m

Accuracy

Location error

B Traversal method B Proposed method

Figure 39. The localization accuracy of the proposed method is similar to that of the traversal method.



ISPRS Int. ]. Geo-Inf. 2021, 10, 537 22 of 25

A comparative experiment was also conducted on lapel point clustering, which im-
proves the retrieval efficiency. Compared with traversing the lapel points, the retrieval
efficiency of the cluster is improved by more than fourfold (see Figure 40).

Computational Time

Second
o

5 -
1]
Cluster of lapel points Traversal method

Figure 40. Comparing lapel point clustering efficiency with traversal method.

The influence of the number of lapel points on retrieval efficiency is compared in
Figure 41. It can be seen that reducing the number of lapel points in the image skyline
decreases the retrieval efficiency. When the number of lapel points is reduced to one,
the effect of lapel clustering almost disappears, and the speed of the algorithm is slightly
slower than the traversal retrieval method.

Computational Time
30

25

20

15

Second

10

5 4 3 2 1

Number of lapel points

==@==Cluster of lapel points === Traversal method

Figure 41. The effect of the number of lapel points on the retrieval efficiency. If the lapel points in the
skyline are removed, then the retrieval efficiency is greatly reduced.

4.4. The Influence of Lapel Point Error

The proposed clustering method using lapel points has greatly improved the local-
ization efficiency, but the accuracy of lapel points also affects the accuracy of localization.
Thus, two groups of experiments were designed to evaluate the influence of lapel points
error on localization accuracy.

4.4.1. Influence of Adjacency Angle Error

Adjacency angle refers to the angle between adjacent lapel points in clockwise di-
rection and indicates the distance between adjacent lapels. In the experiment, random
noise was added to the adjacent angles of all lapel points on the skyline, and the change in
localization accuracy was determined.

Denote the number of lapel points of a skyline as #, then

n
Z(Angleadjuncy—i) = 360°. (13)
i=1
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Denote the noise as Noiseys,ge and the random noise added to the adjacent angle of
each lapel point as noise;, then the adjacency angle of each lapel point is

Angleadjancy—i = Angleudjancy—i + Noise;

s.t. Noise; € [—Noiserange, NOiseRrange]
n
(Noise;) = 0°.
i=1

(14)

By adding noise to the adjacency angle of lapel points and observing the change
in localization accuracy, it can be seen that with the increase in noise, the accuracy of
localization gradually decreases. When the noise is greater than 4°, the downward trend is
more obvious as shown in Figure 42.

Influence of adjacency angle error on

localization

100.00%

80.00%

g 60.00%
=

8 o7

2 4000%

20.00%

0.00%

0° 1° 2 EN 4 5° 6°
Noise

Figure 42. The influence of adjacent angle noise on localization accuracy.

4.4.2. The Influence of Incorrect Lapel Points on Positioning

An incorrect lapel point refers to the error in the process of extracting the image skyline
lapel points, including the lapel point type error caused by manual marking and the pseudo
lapel point due to foreground obstacles. Experiment shows that these two types of errors
are detrimental to localization, and incorrect lapel points result in localization failure.

The first experiment randomly selected a skyline lapel point in each image skyline,
modified its type and counted the change of localization accuracy. The result is all the
localization failed (as shown in Figure 43(left)). Furthermore, the second experiment
randomly added a lapel point to each skyline, modified the relative information (adjacency
angle, etc.) of the skyline lapel point, and determined the change in localization accuracy.
The same results were obtained and shown in Figure 43(right).

Influence of wrong lapel point type on Influence of surplus lapel point on
localization accuracy localization accuracy

100.00% 100.00%
80.00% 80.00%

60.00% 60.00%

Aceuracy
Accuracy

40.00% 40.00%

20.00% 20.00%

0.00%
Original type Modified type Original lapel points Surplus lapel points

0.00%

Figure 43. The influence of incorrect lapel points: (Left) Influence of incorrect lapel point type on
localization accuracy; and (Right) influence of surplus lapel points on localization accuracy.



ISPRS Int. ]. Geo-Inf. 2021, 10, 537 24 of 25

5. Conclusions

In this paper, a new panoramic skyline location method is proposed. The DEM
skylines are clustered according to the lapel points, and the retrieval algorithm of coarse
positioning is proposed. A new camera orientation estimation method is also proposed.
Without the aid of external sensors and according to the lapel points, the camera orientation
is estimated, and the image skyline is verified. Experiments show that the proposed method
has good performance in efficiency and accuracy.

In the future, lapel points will be added between ridge lines to extend the DEM
multiple lapel points dataset. This is to complete the panoramic skyline localization
method under multi-visibility environment, and minimize the localization effect of the
algorithm in extreme environments such as rain, snow and haze. Furthermore, when some
errors in the extraction of the image lapel points are encountered, they can be used to
give the probability of lapel points similarity. Therefore, it is necessary to improve the
robustness of the proposed methods. Finally, the refinement of image skylines and ridge
lines is also worthwhile research, where the recognition of pseudo skylines and pseudo
ridge lines caused by foreground obstacles (e.g., trees, artificial objects, etc.) can be utilized
to improve the accuracy of skyline lapel point recognition, reduce manual intervention and
improve the adaptability of the proposed method.
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