813 research outputs found

    Efficient Symbolic Representation of Convex Polyhedra in High-Dimensional Spaces

    Full text link
    peer reviewedThis work is aimed at developing an efficient data structure for representing symbolically convex polyhedra. We introduce an original data structure, the Decomposed Convex Polyhedron (DCP), that is closed under intersection and linear transformations, and allows to check inclusion, equality, and emptiness. The main feature of DCPs lies in their ability to represent concisely polyhedra that can be expressed as combinations of simpler sets, which can overcome combinatorial explosion in high dimensional spaces. DCPs also have the advantage of being reducible into a canonical form, which makes them efficient for representing simple sets constructed by long sequences of manipulations, such as those handled by state-space exploration tools. Their practical efficiency has been evaluated with the help of a prototype implementation, with promising results

    Reachability analysis of linear hybrid systems via block decomposition

    Get PDF
    Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.Comment: Accepted at EMSOFT 202

    Quadtrees as an Abstract Domain

    Get PDF
    Quadtrees have proved popular in computer graphics and spatial databases as a way of representing regions in two dimensional space. This hierarchical data-structure is flexible enough to support non-convex and even disconnected regions, therefore it is natural to ask whether this datastructure can form the basis of an abstract domain. This paper explores this question and suggests that quadtrees offer a new approach to weakly relational domains whilst their hierarchical structure naturally lends itself to representation with boolean functions

    Software for Exact Integration of Polynomials over Polyhedra

    Full text link
    We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed ups and extensions of the algorithms presented in previous work. We present the new software implementation and provide benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.Comment: Major updat

    LazySets.jl: Scalable symbolic-numeric set computations

    Get PDF
    LazySets.jl is a Julia library that provides ways to symbolically represent sets of points as geometric shapes, with a special focus on convex sets and polyhedral approximations. LazySets provides methods to apply common set operations, convert between different set representations, and efficiently compute with sets in high dimensions using specialized algorithms based on the set types. LazySets is the core library of JuliaReach, a cutting-edge software addressing the fundamental problem of reachability analysis: computing the set of states that are reachable by a dynamical system from all initial states and for all admissible inputs and parameters. While the library was originally designed for reachability and formal verification, its scope goes beyond such topics. LazySets is an easy-to-use, general-purpose and scalable library for computations that mix symbolics and numerics. In this article we showcase the basic functionality, highlighting some of the key design choices.Comment: published in the Proceedings of the JuliaCon Conferences 202

    Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving

    Full text link
    We derive efficient algorithms for coarse approximation of algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe in an elementary way, come from tropical geometry. We thus reduce a hard algebraic problem to high-precision linear optimization, proving new upper and lower complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding

    Convergent Puiseux Series and Tropical Geometry of Higher Rank

    Full text link
    We propose to study the tropical geometry specifically arising from convergent Puiseux series in multiple indeterminates. One application is a new view on stable intersections of tropical hypersurfaces. Another one is the study of families of ordinary convex polytopes depending on more than one parameter through tropical geometry. This includes cubes constructed by Goldfarb and Sit (1979) as special cases.Comment: 32 pages, 3 figure
    • …
    corecore