8,558 research outputs found

    Engineering Parallel String Sorting

    Get PDF
    We discuss how string sorting algorithms can be parallelized on modern multi-core shared memory machines. As a synthesis of the best sequential string sorting algorithms and successful parallel sorting algorithms for atomic objects, we first propose string sample sort. The algorithm makes effective use of the memory hierarchy, uses additional word level parallelism, and largely avoids branch mispredictions. Then we focus on NUMA architectures, and develop parallel multiway LCP-merge and -mergesort to reduce the number of random memory accesses to remote nodes. Additionally, we parallelize variants of multikey quicksort and radix sort that are also useful in certain situations. Comprehensive experiments on five current multi-core platforms are then reported and discussed. The experiments show that our implementations scale very well on real-world inputs and modern machines.Comment: 46 pages, extension of "Parallel String Sample Sort" arXiv:1305.115

    Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method.

    Get PDF
    Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets

    GPU-Accelerated BWT Construction for Large Collection of Short Reads

    Full text link
    Advances in DNA sequencing technology have stimulated the development of algorithms and tools for processing very large collections of short strings (reads). Short-read alignment and assembly are among the most well-studied problems. Many state-of-the-art aligners, at their core, have used the Burrows-Wheeler transform (BWT) as a main-memory index of a reference genome (typical example, NCBI human genome). Recently, BWT has also found its use in string-graph assembly, for indexing the reads (i.e., raw data from DNA sequencers). In a typical data set, the volume of reads is tens of times of the sequenced genome and can be up to 100 Gigabases. Note that a reference genome is relatively stable and computing the index is not a frequent task. For reads, the index has to computed from scratch for each given input. The ability of efficient BWT construction becomes a much bigger concern than before. In this paper, we present a practical method called CX1 for constructing the BWT of very large string collections. CX1 is the first tool that can take advantage of the parallelism given by a graphics processing unit (GPU, a relative cheap device providing a thousand or more primitive cores), as well as simultaneously the parallelism from a multi-core CPU and more interestingly, from a cluster of GPU-enabled nodes. Using CX1, the BWT of a short-read collection of up to 100 Gigabases can be constructed in less than 2 hours using a machine equipped with a quad-core CPU and a GPU, or in about 43 minutes using a cluster with 4 such machines (the speedup is almost linear after excluding the first 16 minutes for loading the reads from the hard disk). The previously fastest tool BRC is measured to take 12 hours to process 100 Gigabases on one machine; it is non-trivial how BRC can be parallelized to take advantage a cluster of machines, let alone GPUs.Comment: 11 page

    Parallel String Sample Sort

    Get PDF
    We discuss how string sorting algorithms can be parallelized on modern multi-core shared memory machines. As a synthesis of the best sequential string sorting algorithms and successful parallel sorting algorithms for atomic objects, we propose string sample sort. The algorithm makes effective use of the memory hierarchy, uses additional word level parallelism, and largely avoids branch mispredictions. Additionally, we parallelize variants of multikey quicksort and radix sort that are also useful in certain situations.Comment: 34 pages, 7 figures and 12 table

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing
    • …
    corecore