
Algorithmica manuscript No.
(will be inserted by the editor)

Engineering Parallel String Sorting

Timo Bingmann · Andreas Eberle · Peter
Sanders

Received: date / Accepted: date

Abstract We discuss how string sorting algorithms can be parallelized on modern
multi-core shared memory machines. As a synthesis of the best sequential string
sorting algorithms and successful parallel sorting algorithms for atomic objects, we
first propose string sample sort. The algorithm makes effective use of the memory
hierarchy, uses additional word level parallelism, and largely avoids branch mis-
predictions. Then we focus on NUMA architectures, and develop parallel multiway
LCP-merge and -mergesort to reduce the number of random memory accesses to
remote nodes. Additionally, we parallelize variants of multikey quicksort and radix
sort that are also useful in certain situations. As base-case sorter for LCP-aware
string sorting we describe sequential LCP-insertion sort which calculates the LCP
array and accelerates its insertions using it. Comprehensive experiments on five
current multi-core platforms are then reported and discussed. The experiments
show that our parallel string sorting implementations scale very well on real-world
inputs and modern machines.

1 Introduction

Sorting is perhaps the most studied algorithmic problem in computer science.
While the most simple model for sorting assumes atomic keys, an important class
of keys are strings or vectors to be sorted lexicographically. Here, it is important to
exploit the structure of the keys to avoid costly repeated operations on the entire
string. String sorting is for example needed in database index construction, some
suffix sorting algorithms, or MapReduce tools. Although there is a correspondingly
large volume of work on sequential string sorting, there is very little work on
parallel string sorting. This is surprising since parallelism is now the only way to
get performance out of Moore’s law so that any performance critical algorithm
needs to be parallelized. We therefore started to look for practical parallel string
sorting algorithms for modern multi-core shared memory machines. Our focus is on

Timo Bingmann · Andreas Eberle · Peter Sanders
Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
Tel.: +49 721 608-43985, Fax: +49 721 608-43088, E-mail: {bingmann,sanders}@kit.edu

2 Timo Bingmann et al.

large inputs which fit into RAM. This means that besides parallelization we have
to take the memory hierarchy, layout, and processor features like the high cost of
branch mispredictions, word parallelism, and super scalar processing into account.
Looking beyond single-socket multi-core architectures, we also consider many-core
machines with multiple sockets and non-uniform memory access (NUMA).

In Section 3 we give an overview of basic sequential string sorting algorithms,
acceleration techniques and more related work. We then propose our first new
string sorting algorithm, super scalar string sample sort (S5), in Section 4. There-
after, we turn our focus to NUMA architectures in Section 5, and develop parallel
LCP-aware multiway merging as a top-level algorithm for combining presorted
sequences. Broadly speaking, we propose both multiway distribution-based string
sorting with S5 and multiway merge-based string sorting with LCP-aware merge-
sort, and parallelize both approaches.

Section 6 describes parallelizations of caching multikey quicksort and radix
sort, which are two more competitors. We then compare both parallel and sequen-
tial string sorting algorithms experimentally in Section 7.

For all our input instances, except random strings, parallel S5 achieves higher
speedups on modern single-socket multi-core machines than our own parallel mul-
tikey quicksort and radixsort implementations, which are already better than any
previous ones. For our Intel multi-socket NUMA machine, parallel multiway LCP-
merge with node-local parallel S5 achieves higher speedups for large real-world in-
puts than all other implementations in our experiment, while on our AMD many-
core NUMA machine, parallel caching multikey quicksort was slightly faster on
many inputs.

Shorter versions of Section 4, 6 and 7 have appeared in our conference paper [7].
We would like to thank our students Florian Drews, Michael Hamann, Christian
Käser, and Sascha Denis Knöpfle who implemented prototypes of our ideas.

2 Preliminaries

Our input is a set S = {s1, . . . , sn} of n strings with total length N . A string s is a
one-based array of |s| characters from the alphabet Σ = {1, . . . , σ}. We assume the
canonical lexicographic ordering relation ‘<’ on strings, and our goal is to sort S
lexicographically. For the implementation and pseudo-code, we require that strings
are zero-terminated, i.e. s[|s|] = 0 /∈ Σ, but this convention can be replaced using
other end-of-string indicators, like string length.

Let D denote the distinguishing prefix size of S, i.e., the total number of char-
acters that need to be inspected in order to establish the lexicographic ordering of
S. D is a natural lower bound for the execution time of sequential string sorting.
If, moreover, sorting is based on character comparisons, we get a lower bound of
Ω(D + n logn).

Sets of strings are usually represented as arrays of pointers to the beginning
of each string. Note that this indirection means that, in general, every access to
a string incurs a cache fault even if we are scanning an array of strings. This
is a major difference to atomic sorting algorithms where scanning is very cache
efficient. Our target machine is a shared memory system supporting p hardware
threads or processing elements (PEs), on Θ(p) cores.

Engineering Parallel String Sorting 3

2.1 Notation and Pseudo-code

The algorithms in this paper are written in a pseudo-code language, which mixes
Pascal-like control flow with array manipulation and mathematical set notation.
This enables powerful expressions like A := [(i2 mod 7, i) | i ∈ [0 : 5)], which
sets A to be the array of pairs [(0, 0), (1, 1), (4, 2), (2, 3), (2, 4)]. We write ordered
sequences like arrays using square brackets [. . .], overload ‘+’ to also concatenate
arrays, and let [1 :n] := [1, . . . , n] and [1 :n) := [1, . . . , n−1] be ranges of integers.
To make array operations more concise, we assume Ai and A[i] both to be the
i-th element in the array A. We do not allocate or declare arrays and variables
beforehand, so Ai := 1 also implicitly defines an array A. The unary operators
‘++‘ and ‘−−‘ increment and decrement integer variables by one.

To avoid special cases, we use the following sentinels: ‘ε’ is the empty string,
which is lexicographically smaller than any other string, ‘∞’ is a character or string
larger than any other character or string, and ‘⊥’ is an undefined variable.

For two arrays s and t, let lcp(s, t) denote the length of the longest common
prefix (LCP) of s and t. This function is symmetric, and for one-based arrays the
LCP value denotes the last index where s and t match, while position lcp(s, t) + 1
differs in s and t, if it exists. In a sequence x let lcpx(i) denote lcp(xi−1, xi).
For a sorted sequence of strings S = [s1, . . . , sn] the associated LCP array H
is [⊥, h2, . . . , hn] with hi = lcpS(i) = lcp(si−1, si). For the empty string ε, let
lcp(ε, s) = 0 for any string s.

We will often need the sum over all items in an LCP array H (excluding the
first), and denote this as L(H) :=

∑n
i=2Hi, or just L if H is clear from the

context. The distinguishing prefix size D and L are related but not identical.
While D includes all characters counted in L, additionally, D also accounts for
the distinguishing characters, some string terminators and characters of the first
string. In general, we have L ≤ D ≤ 2L+ n .

3 Basic Sequential String Sorting Algorithms

We begin by giving an overview of most efficient sequential string sorting algo-
rithms. Nearly all algorithms classify the original string set S into smaller sets
with a distinct common prefix. The smaller sets are then sorted further recur-
sively, until the sets contain only one item or another string sorter is called.

Multikey quicksort [6] is a simple but effective adaptation of quicksort to strings
(called multi-key data). When all strings in S have a common prefix of length `, the
algorithm uses character c = s[`+1] of a pivot string s ∈ S (e.g. a pseudo-median)
as a splitter character. S is then partitioned into S<, S=, and S> depending on
comparisons of the (` + 1)-th character with c. Recursion is done on all three
subproblems. The key observation is that the strings in S= have common prefix
length `+ 1 which means that compared characters found to be equal with c will
never be considered again. Insertion sort is used as a base case for constant size
inputs. This leads to a total execution time of O(D+ n logn). Multikey quicksort
works well in practice in particular for inputs which fit into the cache. Since a
variant of multikey quicksort was the overall best sequential algorithm in our
experiments, we develop a parallel version in Section 6.2.

4 Timo Bingmann et al.

Most significant digit (MSD) radix sort [21,5,23,20] with common prefix length
` looks at the (`+ 1)-th character producing σ subproblems which are then sorted
recursively with common prefix ` + 1. This is a good algorithm for large inputs
and small alphabets since it uses the maximum amount of information within a
single character. For input sizes o(σ) MSD radix sort is no longer efficient and
one has to switch to a different algorithm for the base case. The running time is
O(D) plus the time for solving the base cases. Using multikey quicksort for the
base case yields an algorithm with running time O(D + n log σ). A problem with
large alphabets is that one will get many cache faults if the cache cannot support
σ concurrent output streams (see [22] for details). We discuss parallel radix sorting
in Section 6.1.

Burstsort dynamically builds a trie data structure for the input strings. In
order to reduce the involved work and to become cache efficient, the trie is build
lazily – only when the number of strings referenced in a particular subtree of the
trie exceeds a threshold, this part is expanded. Once all strings are inserted, the
relatively small sets of strings stored at the leaves of the trie are sorted recursively
(for more details refer to [31,32,30] and the references therein).

LCP-Mergesort is an adaptation of mergesort to strings that saves and reuses
the LCPs of consecutive strings in the sorted subproblems [24]. In Section 5, we
develop a parallel multiway variant of LCP-merge, which is used to improve per-
formance on NUMA machines. Our multiway LCP-merge is also interesting for
merging of string sets stored in external memory.

Insertion sort [18] keeps an ordered array, into which unsorted items are in-
serted by linearly scanning for their correct position. If strings are considered
atomic, then full string comparisons are done during the linear scan. This is par-
ticularly cache-efficient and the algorithm is commonly used as base case sorter.
However, if one keeps additionally the associated LCP array, the number of charac-
ter comparisons can be decreased, trading them for integer comparisons of LCPs.
We needed a base case sorter that also calculates the LCP array and found no ref-
erence for LCP-aware insertion sort in the literature, so we describe the algorithm
in Section 5.5.

3.1 Architecture Specific Enhancements

To increase the performance of basic sequential string sorting algorithms on real
hardware, we have to take its architecture into consideration. In the following list
we highlight some of most important optimization principles.

Memory access time varies greatly in modern systems. While the RAM model
considers all memory accesses to take unit time, current architectures have multiple
levels of cache, require additional memory access on TLB misses, and may have to
request data from “remote” nodes on NUMA systems. While there are few hard
guarantees, we can still expect recently used memory to be in cache and use these
assumptions to design cache-efficient algorithms. Furthermore, on NUMA systems
we can instruct the kernel on how to distribute memory by specifying allocation
policies for memory segments

Caching of characters is very important for modern memory hierarchies as
it reduces the number of cache misses due to random access on strings. When
performing character lookups, a caching algorithm copies successive characters

Engineering Parallel String Sorting 5

of the string into a more convenient memory area. Subsequent sorting steps can
then avoid random access, until the cache needs to be refilled. This technique has
successfully been applied to radix sort [23], multikey quicksort [25], and in its
extreme to burstsort [32]. However, caching comes at the cost of increased space
requirements and memory accesses, hence a good trade-off must be found.

Super-Alphabets can be used to accelerate string sorting algorithms which orig-
inally look only at single characters. Instead, multiple characters are grouped as
one and sorted together. However, most algorithms are very sensitive to large al-
phabets, thus the group size must be chosen carefully. This approach results in
16-bit MSD radix sort and fast sorters for DNA strings. If the grouping is done
to fit many characters into a machine word for processing as a whole block using
arithmetic instructions, then this is also called word parallelism.

Unrolling, fission and vectorization of loops are methods to exploit out-of-order
execution and super scalar parallelism now standard in modern CPUs. The proces-
sor’s instruction scheduler automatically analyses the machine code, detects data
dependencies and can dispatch multiple parallel operations. However, only specific,
simple data independencies can be detected and thus inner loops must be designed
with care (e.g. for radix sort [20]). The performance increase by reorganizing loops
is most difficult to predict.

3.2 More Related Work

There is a huge amount of work on parallel sorting of atomic objects so that we
can only discuss the most relevant results. Cole’s celebrated merge sort [10] runs
on a CREW or EREW PRAM with n processors in O(logn) time, but it is mostly
of theoretical interest. For parallel algorithms we will use the CREW PRAM as
analysis model in which p independent RAM processors can perform operations
in parallel on a shared memory, as long as write operations are without conflict.
Besides more simple versions of (multiway) mergesort [3,29], perhaps the most
practical parallel sorting algorithms are parallelizations of radix sort (e.g. [34])
and quicksort [33] as well as sample sort [8].

There is some work on PRAM algorithms for string sorting (e.g. [14]). By com-
bining pairs of adjacent characters into single characters, one obtains algorithms
with work O(N logN) and time O(logN/ log logN). Compared to the sequential
algorithms this is suboptimal unless D = O(N) = O(n) and with this approach it
is unclear how to avoid work on characters outside distinguishing prefixes.

We found no publications on practical parallel string sorting, aside from our
conference paper [7]. However, Takuya Akiba has implemented a parallel radix
sort [2], Tommi Rantala’s library [25] contains multiple parallel mergesorts and a
parallel SIMD variant of multikey quicksort, and Nagaraja Shamsundar [28] also
parallelized Waihong Ng’s LCP-mergesort [24]. Of all these implementations, only
the radix sort by Akiba scales reasonably well to many-core architectures. We
discuss the scalability issues of these implementations in Section 7.3.

6 Timo Bingmann et al.

4 Super Scalar String Sample Sort (S5)

Already in a sequential setting, theoretical considerations and experiments (see
Section A) indicate that the best string sorting algorithm does not exist. Rather,
it depends at least on n, D, σ, and the hardware. Therefore we decided to paral-
lelize several algorithms taking care that components like data distribution, load
balancing or base case sorter can be reused. Remarkably, most algorithms in Sec-
tion 3 can be parallelized rather easily and we will discuss parallel versions in
Sections 4–6. However, none of these parallelizations make use of the striking new
feature of modern many-core systems: many multi-core processors with individ-
ual cache levels but relatively few and slow memory channels to shared RAM.
Therefore we decided to design a new string sorting algorithm based on sample
sort [13], which exploits these properties. Preliminary results on string sample sort
have been reported in the bachelor thesis of Sascha Denis Knöpfle [17].

4.1 Traditional (Parallel) Atomic Sample Sort

Sample sort [13,8] is a generalization of quicksort working with k−1 pivots at the
same time. For small inputs, sample sort uses some sequential base case sorter.
Larger inputs are split into k buckets b1, . . . , bk by determining k− 1 splitter keys
x1 ≤ · · · ≤ xk−1 and then classifying the input elements – element s goes to bucket
bi if xi−1 < s ≤ xi (where x0 and xk are defined as sentinel elements – x0 being
smaller than all possible input elements and xk being larger). Splitters can be
determined by drawing a random sample of size αk− 1 from the input, sorting it,
and then taking every α-th element as a splitter. Integer parameter α ≥ 1 is the
oversampling factor. The buckets are then sorted recursively and concatenated.
“Traditional” parallel sample sort chooses k = p and uses a sample big enough to
assure that all buckets have approximately equal size. Sample sort is also attractive
as a sequential algorithm since it is more cache efficient than quicksort and since it
is particularly easy to avoid branch mispredictions (super scalar sample sort – S4)
[27]. In this case, k is chosen in such a way that classification and data distribution
can be done in a cache efficient way.

4.2 String Sample Sort

In order to adapt the atomic sample sort from the previous section to strings, we
have to devise an efficient classification algorithm. Most importantly, we want to
avoid comparing whole strings needlessly, and thus focus on character comparisons.
Also, in order to approach total workO(D+n logn), we have to use the information
gained during classification in the recursive calls. This can be done by observing
that strings in buckets have a common prefix depending on the LCP of the two
splitters:

∀1 ≤ i ≤ k : ∀s, t ∈ bi : lcp(s, t) ≥ lcpx(i) . (1)

Another issue is that we have to reconcile the parallelization and load balancing
perspective from traditional parallel sample sort with the cache efficiency perspec-
tive of super scalar sample sort, where the splitters are designed to fit into cache.
We do this by using dynamic load balancing which includes parallel execution of

Engineering Parallel String Sorting 7

x3

x1 x5

x0 x2 x4 x6

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14

<

=

>

<

=

> <

=

>

< = > < = > < = > < = >

Fig. 1 Ternary classification tree for v = 7 splitters and k = 15 buckets.

recursive calls as in parallel quicksort. Dynamic load balancing is very important
and probably unavoidable for parallel string sorting, because any algorithm must
adapt to the input string set’s characteristics.

4.3 Super Scalar String Sample Sort (S 5) – A Pragmatic Solution

We adapt the implicit binary search tree approach used in (atomic) super scalar
sample sort (S4) [27] to strings. Algorithm 1 shows pseudo-code of one variant
of S5 as a guideline through the following discussion, and Figure 1 illustrates the
classification tree with buckets and splitters.

Rather than using whole strings as arbitrarily long splitters, or all characters
of the alphabet as in radix sort, we design the splitter keys to consist of as many
characters as fit into a machine word. In the following let w denote the number of
characters fitting into one machine word (for 8-bit characters and 64-bit machine
words we would have w = 8). We choose v = 2d−1 splitters x0, . . . , xv−1 (for some
integer d) from a sorted sample to construct a perfect binary search tree, which is
used to classify a set of strings based on the next w characters at common prefix h.
The main disadvantage of this approach is that we may have many input strings
whose next w characters are identical. For these strings, the classification does
not reveal much information. We make the best out of such inputs by explicitly
defining equality buckets for strings whose next w characters exactly match xi. For
equality buckets, we can increase the common prefix length by w in the recursive
calls, i.e., these characters will never be inspected again. In total, we have k = 2v+1
different buckets b0, . . . , b2v for a ternary search tree (see Figure 1).

Testing for equality can either be implemented by explicit equality tests at each
node of the search tree (which saves time when most elements end up in a few
large equality buckets) or by going down the search tree all the way to a bucket
bi (i even) doing only ≤-comparisons, followed by a single equality test with x i

2
,

unless i = 2v. This last variant is shown in Algorithm 1, and the equality test is
done in line 11.

Postponing the equality test allows us to completely unroll the loop descending
the search tree (line 8), since there is no exit condition. We can then also unroll the
loop over the elements (line 6), interleaving independent tree descent operations.
The number of interleaved descents is limited in practice by the number of registers
to hold local variables like i and c. As in [27], this is an important optimization

8 Timo Bingmann et al.

Algorithm 1: Sequential Super Scalar String Sample Sort – a single step

Input: S = {s1, . . . , sn} a set of strings with common prefix h, v = 2d − 1 a
number of splitters, v′ := v + 1, and α ≥ 1 an oversampling factor.

1 pi := charsh(srandom(1,...,n)) ∀ i = 1, . . . , vα+ α−1 // Read sample p of S,
2 sort([p1, . . . , pvα+α−1]) // sort it, and select
3 [x1, x2, . . . , xv−1, xv] := [pα, p2α, p3α, . . . , pvα] // equidistant splitters.
4 [t1, . . . , tv] := [x v′

2

, x v′
4

, x 3v′
4

, x v′
8

, x 3v′
8

, x 5v′
8

, x 7v′
8

, . . .] // Construct tree, save

5 [h′0, . . . , h
′
v] := [0] + [lcp(xi−1, xi) | i = 1, . . . , v − 1] + [0] // LCPs of splitters.

6 for j := 1, . . . , n do // Process strings (interleavable loop).
7 local i := 1, c := charsh(sj) // Start at root, get w chars from sj,
8 for 1, . . . , log2(v + 1) do // and traverse tree (unrollable loop)
9 i := 2i+ (c ≤ ti) // without branches using “(c ≤ ti)” ∈ {0, 1}.

10 i := i− (v + 1), local m := 2i // Calculate matching non-equality bucket.
11 if xi = c then m++ // Test for equality with next splitter.
12 oj := m // Save final bucket number for string sj in an oracle.

13 bi := 0 ∀ i = 0, . . . , 2v // Inclusive prefix sum
14 for i := 1, . . . , n do (boi)++ // over bucket sizes
15 [b0, . . . , b2v, b2v+1] := [

∑
j≤i bj | i = 0, . . . , 2v] + [n] // as fissioned loops.

16 for i := 1, . . . , n do s′(boi)−−
:= si // Reorder strings into new subsets.

Output: S′i = {s′j | j = bi, . . . , bi+1 − 1 if bi < bi+1} for i = 0, . . . , 2v are string
subsets with S′i < S′i+1. The subsets have common prefix h+ h′i/2 for i
even, and common prefix h+ w for i odd.

since it allows the instruction scheduler in a super scalar processor to parallelize
the operations by drawing data dependencies apart.

After reordering, the strings in the “< x0” and “> xv−1” buckets b0 and b2v
keep common prefix length h. For other even buckets bi the common prefix length
is increased by lcpx(i2).

An analysis similar to the one of multikey quicksort [6] lets us conjecture the
following asymptotic time bound.

Conjecture 1 String sample sort with implicit binary trees, word parallelism and
equality checking at each splitter node can be implemented to run in expected
time O(Dw + n logn).

We now argue the correctness of Conjecture 1, without giving a formal proof1.
The classification schemes of multikey quicksort and string sample sort can both
be seen as a tree. In this tree, edges are either associated with characters of a
distinguishing prefix, or with string ranges determined by splitters.

In multikey quicksort each inner node z of the tree has three children: <, =,
and >. We can associate each character comparison during partitioning at node z
with the thereby determined edge. By selecting pivots randomly or using a sam-
ple median, the expected number of < and > edges in all paths from the root
is O(logn) [15,6], since this approach is identical to atomic quicksort. Thus the
time spent over all comparisons accounted by these edges is expected O(n logn).

1 We are currently working on this for a final version of this paper

Engineering Parallel String Sorting 9

All comparisons associated with = edges correspond to characters from the dis-
tinguishing prefix, and are thus bounded by D. In total we have O(D + n logn)
work in the multikey quicksort tree.

We can view string sample sort as a multikey quicksort using multiple pivots
in the classification tree, as seen in Figure 1. In string sample sort, an = edge
matches w characters, of which at least one is from the distinguishing prefix D
(but usually all are). If any of the w characters is not counted in D, then the
= edge leads to a leaf, which does not require further sorting. There are at most
n such comparisons leading to leaves, all other = edges match w characters. Thus
we have at most D

w + n comparisons leading to = edges. To prove our conjecture,
we need to show that the expected number of < and > edges on all paths from
the root is O(logn). However, we are not aware of any analysis of sample sort
showing this expected run time for a fixed sample size. Furthermore, in string
sample sort we have to deal with the probability of multiple equal samples and
need to resample strings repeatedly at higher depths, thus the known analysis of
a single top-level sampling approach [8,35,13] do not apply. Nevertheless, due to
repeated resampling, we can conjecture that the bucket sizes grow small very fast,
just as they do in atomic sample sort. By using the additional LCP information
gained at < and > edges from Equation 1 one could decrease the expected path
length from the root further, though probably not asymptotically.

If the = edges are taken immediately, as done in the variant with explicit
equality checking at each node, then we conjecture expected O(Dw +n logn) time.
However, if we choose to unroll descents of the tree, then the splitter at the root
may match and the Θ(log v) additional steps down the tree are superfluous. This
happens when many strings are identical, and the corresponding splitters are high
up in the tree. We thus have to attribute O((Dw + n) log v) time to the = edges.
Together with the expected cost of < and > edges, we conjecture in total an
expected O((Dw +n) log v+n logn) bound. However, due to the unclear interaction
of repeated sampling with fixed size and the probability of hitting the equality
buckets, we leave a full proof of our conjecture to future work.

String sample sort is particularly easy to parallelize for large string sets and
current multi-core architectures where n � pv, and we can state the following
theorem.

Theorem 1 A single step of super scalar string sample sort (Algorithm 1) can be
implemented to run on a CREW PRAM with p < n

v processors in O(np log v+log p)

time and O(n log v + pv) work.

Proof Sorting the sample requiresO(a log a
p +log p) time andO(a log a) work [10,9],

where a := αv+α−1� n is the sample size. Selecting the sample, picking splitters,
constructing the tree and saving LCP of splitters is all O(ap) time and O(a) work.
Each processors gets n

p strings and in worst case runs down all log v steps in the

classification tree, which is O(np log v) time and O(n log v) work. Departing from
lines 13–16, each processor keeps its own bucket array bi of size 2v+1, initializes it
in O(v) time, and classifies only those strings in its string set. Then, an interleaved
global prefix sum over the p(2v+1) bucket counters yields the boundaries in which
each processor can independently redistribute its strings. The prefix sum runs in
O(log pv) time and O(pv) work [19], while counting and redistribution runs in
O(np) time and O(n) work. Summing all time and work yields our result.

10 Timo Bingmann et al.

We only consider a single step here, and thus cannot use the distinguishing
prefix D to bound the overall work.

4.4 Implementation Details

One goal of S5 is to have a common classification data structure that fits into the
cache of all cores. Using this data structure, all PEs can independently classify
a subset of the strings into buckets in parallel. The process follows the classic
distribution-based sorting steps: we first classify strings (lines 6–12), counting how
many fall into each bucket (line 14), then calculate a prefix sum (line 15) and
redistribute the string pointers accordingly (line 16). To avoid traversing the tree
twice, the bucket index of each string is stored in an oracle (lines 12, 14, 16).
Additionally, to make higher use of super scalar parallelism, we even separate the
classification loop (line 6) from the counting loop (line 14), as done by [20].

Like in S4, the binary tree of splitters is stored in level-order as an array t
(line 4), allowing efficient traversal using i := 2i+{0, 1}, without branch mispredic-
tions in line 9. The pseudo-code “(c ≤ ti)”, which yields 0 or 1, can be implemented
using different machine instructions. One method is to use the instruction SETA,
which sets a register to 0 or 1 depending on a preceding comparison. Alternatively,
newer processors have predicated instruction like CMOVA to conditionally move one
register to another, again depending on a preceding comparison’s outcome. We
noticed that CMOVA was slightly faster than flag arithmetic.

While traversing the classification tree, we compare w characters using one
arithmetic comparison. However, we need to make sure that these comparisons
have the desired outcome, e.g., that the most significant bits of the register hold the
first character. For little-endian machines and 8-bit characters, which are used in
all of our experiments, we need to swap the byte order when loading character from
a string. In our implementation we do this using the BSWAP machine instruction. In
the pseudo-code (Algorithm 1) this operation is symbolized by charsh(si), which
fetches w characters from si at depth h+ 1, and swaps them appropriately.

For performing the equality check, already mentioned in the previous section,
we want to discuss four different alternatives in more technical details here:

1. One can traverse the tree using only ≤-comparisons and perform the equality
check afterwards, as shown in Algorithm 1. For this we keep the splitters xi in
an in-order array, in addition to the classification tree t, which contains them
in level-order. Duplicating the splitters avoids additional work in line 11, where
i is an in-order index. This variant, called S5-Unroll, was our final choice as it
was overall fastest.

2. The additional in-order array from the previous variant, however, can be re-
moved. Instead, a rather simple calculation involving only bit operations can
be used to transform the in-order index i back to level-order, and reuse the
classification tree t. We tried this variant, but found no performance advantage
over the first.

3. Another idea is to keep track of the last ≤-branch during tree traversal, this
however was slower and requires an extra register for each of the interleaved
descents.

4. The last variant is to check for equality after each comparison in line 9. This
requires only an additional JE instruction and no extra CMP in the inner-most

Engineering Parallel String Sorting 11

loop. The branch misprediction cost of the JE is counter-balanced by skipping
the rest of the tree. As i is a tree-order index when exiting the inner loop,
we need to apply the inverse of the transformation mentioned in the second
method to i to determine the correct equality bucket. Thus in this fourth
variant, named S5-Equal, no additional in-order splitter array is needed.

The sample is drawn pseudo-randomly with an oversampling factor α = 2 to
keep it in cache when sorting with STL’s introsort and building the search tree.
Instead of using the straight-forward equidistant method to draw splitters from the
sample, as shown in Algorithm 1 (line 3), we developed a simple recursive scheme
that tries to avoid using the same splitter multiple times: Select the middle sample
m of a range a..b (initially the whole sample) as the middle splitter x̄. Find new
boundaries b′ and a′ by scanning left and right from m skipping samples equal to
x̄. Recurse on a..b′ and a′..b. The splitter tree selected by this heuristic was never
slower than equidistant selection, but slightly faster for inputs with many equal
common prefixes. It is used in all our experiments.

The LCP of two consecutive splitters in line 5 can be calculated without a
loop using just two machine instructions: XOR and BSR (to count the number of
leading zero bits in the result of XOR). In our implementation, these calculation
are done while selecting splitters. Similarly, we need to check if splitters contain
end-of-string terminators, and skip the recursion in this case.

For current 64-bit machines with 256 KiB L2 cache, we use v = 8191. Note
that the limiting data structure which must fit into L2 cache is not the splitter
tree t, which is only 64 KiB for this v, but is the bucket counter array b containing
2v + 1 counters, each 8 bytes long. We did not look into methods to reduce this
array’s size, because the search tree is stored both in level-order and in in-order,
and thus we could not increase the tree size anyway.

4.5 Practical Parallelization of S5

Parallel S5 (pS5) is composed of four sub-algorithms for differently sized subsets of
strings. For a string subset S with |S| ≥ n

p , a fully parallel version of S5 is run, for

large sizes n
p > |S| ≥ tm a sequential version of S5 is used, for sizes tm > |S| ≥ ti

the fastest sequential algorithm for medium-size inputs (caching multikey quicksort
from Section 6.2) is called, which internally uses insertion sort when |S| < ti. We
empirically determined tm = 1 Mi and ti = 64 as good thresholds to switch sub-
algorithms.

The fully parallel version of S5 uses p′ = Θ(pn |S|) threads for a subset S. It
consists of four stages: selecting samples and generating a splitter tree, parallel
classification and counting, global prefix sum, and redistribution into buckets.
Selecting the sample and constructing the search tree are done sequentially, as
these steps have negligible run time. Classification is done independently, dividing
the string set evenly among the p′ threads. The prefix sum is done sequentially
once all threads finish counting.

In both the sequential and parallel versions of S5 we permute the string pointer
array using out-of-place redistribution into an extra array. In principle, we could
do an in-place permutation in the sequential version by walking cycles of the
permutation [21]. Compared to out-of-place copying, the in-place algorithm uses

12 Timo Bingmann et al.

fewer input/output streams and requires no extra space. However, we found that
modern processors optimize the sequential reading and writing pattern of the out-
of-place version better than the random access pattern of the in-place walking.
Furthermore, for fully parallel S5, an in-place permutation cannot be done in the
same manner. We therefore always use out-of-place redistribution, with an extra
string pointer array of size n. For recursive calls, the role of the extra array and
original array are swapped, which saves superfluous copying work.

All work in parallel S5 is dynamically load balanced via a central job queue.
We use the lock-free queue implementation from Intel’s Thread Building Blocks
(TBB) and threads initiated by OpenMP to create a light-weight thread pool.

To make work balancing most efficient, we modified all sequential sub-algo-
rithms of parallel S5 to use an explicit recursion stack. The traditional way to
implement dynamic load balancing would be to use work stealing among the se-
quentially working threads. This would require the operations on the local re-
cursion stacks to be synchronized or atomic. However, for our application fast
stack operations are crucial for performance as they are very frequent. We there-
fore choose a different method: voluntary work sharing. If the global job queue is
empty and a thread is idle, then a global atomic counter is incremented to indicate
that other threads should share their work. These then free the stack level with
the largest subproblems from their local recursion stack and enqueue these as sep-
arate, independent jobs. This method avoids costly atomic operations on the local
stacks, replacing it by a faster counter check, which itself need not be synchronized
or atomic. The short wait of an idle thread for new work does not occur often,
because the largest recursive subproblems are shared. Furthermore, the global job
queue never gets large because most subproblems are kept on local stacks.

5 Parallel Multiway LCP-Mergesort

When designing pS5 we considered L2 cache sizes, word parallelism, super scalar
parallelism and other modern features. However, new architectures with large
amounts of RAM are now commonly non-uniform memory access (NUMA) sys-
tems, and the RAM chips are distributed onto different memory banks, called
NUMA nodes. In preliminary synthetic experiments, access to memory on “re-
mote” nodes was 2–5 times slower than memory on the local socket, because
the requests must pass over an additional interconnection bus. This latency and
throughput disparity brings algorithms for external and distributed memory to
mind, but the divide is much less pronounced and block sizes are smaller.

In light of this disparity, we propose to use independent string sorters on each
NUMA node, and then merge the sorted results. During merging, the amount of
information per transmission unit passed via the interconnect (64-byte cache lines)
should be maximized. Thus, besides the sorted string pointers, we also want to use
LCP information to skip over known common prefixes, and cache the distinguishing
characters.

While merging sorted sequences of strings with associated LCP information is
a very intuitive idea, remarkably, only one very recent paper by Ng and Kakehi [24]
fully considers LCP-aware mergesort for strings. They describe binary LCP-merge-
sort and perform an average case analysis yielding estimates for the number of
comparisons needed. For the NUMA scenario, however, we need a practical parallel

Engineering Parallel String Sorting 13

K-way LCP-merge, where K is the number of NUMA nodes. Furthermore, we also
need to extend our existing string sorting algorithms to save the LCP array.

In the next section, we first review binary LCP-aware merging. On this founda-
tion we then propose and analyze parallel K-way LCP-merging with tournament
trees in Sections 5.2–5.4. For node-local LCP calculations, we extended pS5 ap-
propriately, and describe the necessary base case sorter, LCP-insertion sort, in
Section 5.5. Further information on the results of this section are available in the
bachelor thesis of Andreas Eberle [12].

Another way to perform a K-way LCP-merge is to use the LCP-aware string
heap described by Kent, Lewenstein, and Sheinwald [16] as an on-demand string
sorter for the smallest strings of the K sorted sequences. This solution yields the
same asymptotic time bounds as our approach, but as with merging of atomic
objects, tournament trees promise smaller constant factors and better practical
runtime than heaps. Our extension of tournament trees and insertion sort to use
LCP-aware comparisons can be seen as an application of the theoretical “block-
box” framework by Amir et al. [4], which takes any comparison-driven data struc-
ture and augments it with LCP-awareness. However, this framework is complex
and does not yield practical algorithms, as the authors themselves note.

5.1 Binary LCP-Compare and LCP-Mergesort

We reformulate the binary LCP-merge and -mergesort presented by Ng and Ka-
kehi [24] here in a different way. Our exposition is somewhat more verbose than
necessary, but this is intentional and prepares for a simpler description of K-way
LCP-merge in the following section.

Consider the basic comparison of two strings sa and sb. If there is no ad-
ditional LCP information, the strings must be compared character-wise until a
mismatch is found. However, if we have additionally the LCP of sa and sb to an-
other string p, namely lcp(p, sa) and lcp(p, sb), then we can first compare these
LCP values. Since both reference p, we know that sa and sb share a common prefix
min{lcp(p, sa), lcp(p, sb)} and that this common prefix is maximal (i.e. longest).
Thus if lcp(p, sa) < lcp(p, sb), then the two strings sa and sb differ at position
` := lcp(p, sa) + 1. If we now furthermore assume p ≤ sa, then we immediately
see p[`] = sb[`] < sa[`], from which follows sb < sa. The argument can be applied
symmetrically if lcp(p, sb) < lcp(p, sa).

There remains the case lcp(p, sa) = lcp(p, sb). Here, the LCP information only
reveals that both have a common prefix lcp(p, sa), and additional character com-
parisons starting at the common prefix are necessary to order the strings.

The pseudo-code in Algorithm 2 implements these three cases. In preparation
for K-way LCP-merge, the function LCP-Compare additionally takes variables a
and b, which are corresponding indexes and returns these instead of sa or sb. It
also calculates more information than just the order of sa and sb, since future
LCP-aware comparisons also require lcp(sa, sb).

In the cases lcp(p, sa) 6= lcp(p, sb), the lcp(sa, sb) is easily inferred since the
character after the smaller LCP differs in sa and sb. From this follows lcp(sa, sb) =
min{lcp(p, sa), lcp(p, sb)}, as already stated above. For lcp(p, sa) = lcp(p, sb) each
additionally compared equal character is common to both sa and sb, and the

14 Timo Bingmann et al.

Algorithm 2: Binary LCP-Compare

1 Function LCP-Compare((a, sa, ha), (b, sb, hb))
Input: (a, sa, ha) and (b, sb, hb) where sa and sb are two strings together

with LCPs ha = lcp(p, sa) and hb = lcp(p, sb), and p is another string
with p ≤ sa and p ≤ sb.

2 if ha = hb then // case 1: LCPs are equal ⇒ compare more characters,
3 h′ := ha // starting at h′ = ha = hb.
4 while sa[h′] 6= 0 and sa[h′] = sb[h

′] do // Compare characters and
5 h′++ // increase total LCP.

6 if sa[h′] ≤ sb[h′] then return (a, ha, b, h
′)

7 else return (b, hb, a, h
′)

8 else if ha < hb then return (b, hb, a, ha) // case 2: sb[ha+1] < sa[ha+1].
9 else return (a, ha, b, hb) // case 3: sa[hb+1] < sb[hb+1].

Output: (x, hx, y, h
′) with sx ≤ sy, {x, y} = {a, b}, and h′ = lcp(sa, sb).

Algorithm 3: Binary LCP-Merge

Input: S1 and S2 two sorted sequences of strings with LCP arrays H1 and H2.
Assume sentinels Sk[|Sk|+ 1] =∞ for k = 1, 2, and S0[0] = ε.

1 i1 := 1, i2 := 1, j := 1 // Indexes for S1, S2 and S0.
2 h1 := 0, h2 := 0 // Invariant: hk = lcp(Sk[ik],S0[j − 1]) for k = 1, 2.
3 while i1 + i2 ≤ |S1|+ |S2| do
4 s1 := S1[i1], s2 := S2[i2] // Fetch strings s1 and s2,
5 (x,⊥, y, h′) = LCP-Compare((1, s1, h1), (2, s2, h2)) // compare them,
6 (S0[j], H0[j]) := (sx, hx), j++ // put smaller into output
7 ix++, (hx, hy) := (Hx[ix], h′) // and advance to next.

Output: S0 contains sorted S1 and S2, and S0 has the LCP array H0

comparison loop in line 4 of Algorithm 2 breaks at the first mismatch or zero
termination. Thus afterwards h′ = lcp(sa, sb), and can be returned as such.

Using LCP-Compare we can now build a binary LCP-aware merging method,
which merges two sorted string sequences with associated LCP arrays. One only
needs to take sa and sb, compare them using LCP-Compare, write the smaller of
them, say sa, to the output and fetch its successor s′a from the sorted sequence.
The written string sa then plays the role of p in the discussion above, and the next
two candidate strings s′a and sb can be compared, since lcp(p, sb) = lcp(sa, sb) is
returned by LCP-Compare and lcp(p, s′a) = lcp(sa, s

′
a) is known from the corre-

sponding LCP array. This procedure is detailed in Algorithm 3. For binary merg-
ing, we can ignore the hx returned by LCP-Compare. Notice that using the indexes
x and y, the LCP invariant can be restored using just one assignment in line 7.

Theorem 2 Using Algorithm 3, one can implement a binary LCP-mergesort al-
gorithm, which requires at most L+ ndlog2 ne character comparisons and runs in
O(D + n logn) time.

Proof We assume the divide step of binary LCP-mergesort to do straight-forward
halving as in non-LCP mergesort [18], which is why we omitted its pseudo-code.

Engineering Parallel String Sorting 15

Likewise, the recursive division steps have at most depth dlog2 ne when reaching
the base case. If we briefly ignore the character comparison loop in LCP-Compare,
line 4, and regard it as a single comparison, then the standard divide-and-conquer
recurrence T (n) ≤ T (bn2 c) + T (dn2 e) + n of non-LCP mergesort still holds. Re-
garding the character comparison loop, we can establish that each increment of h′

ultimately increases the overall LCP sum by exactly one, since in all other state-
ments LCPs are only moved, swapped or stored, but never decreased or discarded.
Another way to see this is that the character comparison loop is the only place
where characters are compared, thus to be able to establish the correctly sorted
order, all distinguishing characters must be compared here.

We regard the three different comparison expressions in lines 4–6 as one ternary
comparison, as the same values are checked again and zero-terminators can be
handled using flag tests. To count the total number of comparisons, we can thus
account for all true-outcomes of the while loop condition in LCP-Compare (line 4)
using L, and all false-outcomes using ndlog2 ne, since this is the highest number
of times case 1 can occur in the mergesort recursion. This is an upper bound, and
for most string sets, cases 2 and 3 reduce the number of comparisons in the second
term. Since L ≤ D, the time complexity O(D + n logn) follows immediately. ut

Ng and Kakehi [24] do not give an explicit worst case analysis. Their average
case analysis shows, that the total number of character comparisons of binary
LCP-mergesort is about n(µa − 1) + Pωn log2 n, where µa is the average length
of distinguishing prefixes and Pω the probability of a “breakdown”, which corre-
sponds to case 1 in LCP-Compare. Taking Pω = 1 and µa = D

n , their equation
matches our worst-case result, except for the minor difference between D and L.

5.2 K-way LCP-Merge

To accelerate LCP-merge for NUMA systems, we extended the binary LCP-merge
approach to K-way LCP-merge using tournament trees [18,26], since current
NUMA systems have four or even eight nodes. We could not find any reference
to K-way LCP-merge with tournament trees in the literature, even though the
idea to store and reuse LCP information inside the tree is very intuitive. The algo-
rithmic details, however, require precise elaboration. Compared to the LCP-aware
string heap [16], our K-way LCP-aware tournament tree is only better by constant
factors, but these are very important for practical implementations.

As commonly done in multiway mergesort, to perform K-way merging one
regards selection of the next item as a tournament with K players (see Figure 2).
Players compete against each other using binary comparisons, and these games
are organized in a binary tree. Each node in the tree corresponds to one game,
and we label the nodes of the tree with the “losers” of that particular game. The
“winner” continues upward and plays further games, until the overall winner is
determined. The winner is commonly placed on the top, in an additional node,
and with this node, the tournament tree contains each player exactly once. Hence
the tree has exactly K nodes, since we do not consider the input, output or players
part of the tree. For sorting strings into ascending sequences, the “overall winner”
of the tournament is the lexicographically smallest string.

The first winner is determined by playing an initial round on all K nodes from
bottom up. This winner can then be sent to the output, and the next item from

16 Timo Bingmann et al.

(w, h1)Winner

(y2, h2)

(y3, h3) (y4, h4)

Losers

Players (s1, h
′
1) (s2, h

′
2) (s3, h

′
3) (s4, h

′
4)

Inputs (S1, H1) (S2, H2) (S3, H3) (S4, H4)

Output (S0, H0)

Fig. 2 LCP-aware tournament tree with K = 4 showing input and output streams, their front
items as players, the winner node (w, h1), and loser nodes (yi, hi), where yi is the index of the
losing player of the particular game and hi is the LCP of syi and the winner of the comparison
at node i.

the corresponding input sequence takes its place. Thereafter, only log2K games
must be replayed, since the previous winner only took part in those games along
the path from the corresponding input to the root of the tournament tree. This
can be repeated until all streams are empty. By using sentinels for empty inputs,
special cases can be avoided, and we can assume K to be a power of two, filling
up with empty inputs as needed. Thus the tournament tree can be assumed to be
a perfect binary tree, and can be stored implicitly in an array. Navigating upward
in the tree corresponds to division by two: d i2e is the parent of child i, unless i = 1
(note that we use a one-based array here). Thus finding the path from input leaf
to root when replaying the game can be implemented very efficiently. Inside the
tree nodes, we save the loser input index yi, or winner index w (renamed from y1),
instead of storing the string si or a reference thereof.

We now discuss how to make the tournament tree LCP-aware. The binary
comparisons between players are done using LCP-Compare (Algorithm 2), which
may perform explicit character comparisons in case 1. Since we want to avoid
comparing characters already found equal, we store alongside the loser input index
yi an LCP value hi in the tree node. The LCP hi represents the LCP of the stored
losing string syi with the particular game’s winner string, which passes upward to
play further comparisons. If we call the corresponding winner xi, even though it’s
not explicitly stored, then hi = lcp(sxi , syi).

After the initial overall winner w is determined, we have to check that all
requirements of LCP-Compare are fulfilled when replaying the games on the path
from input w to the root. The key argument is that the overall winner w was also
the immediate winner of all individual games on the path, while the losers on this
path are themselves winners of the subtree leading to the path but not on the
path. These subtree winners are exactly all players against which w won along the
way to being overall winner. The LCP outcome of this game remained unchanged
at the loser position, since any winner prior to w cannot have originated below
this game.

Overall, this results in that all games i on that path have hi = lcp(sw, syi).
Thus after writing sw to the output, and advancing to the next item (s′w, h

′′
w) from

the input (Sw, Hw), we have p = sw as the common, smaller predecessor string.

Engineering Parallel String Sorting 17

Algorithm 4: K-way LCP-Merge

Input: S1, . . . ,SK sorted sequences of strings with LCP arrays H1, . . . , HK and
common prefix h. Assume sentinels Sk[|Sk|+ 1] =∞ for k = 1, . . . ,K,
and K a power of two.

1 ik := 1 ∀ k = 1, . . . ,K, j := 1 // Initialize indexes for S1, . . . ,SK and S0.
2 for k := 1, . . . ,K do // Initialize loser tree, building
3 sk := Sk[ik] // perfect subtrees left-to-right.

4 (x, h′) := (k, h), v := K + k // Play from input node v, upward till the root
5 while v is even and v > 2 do // of a perfect odd-based subtree is reached.
6 v := v

2 , (x, h′, yv, hv) := LCP-Compare((x, sx, h
′), (yv, syv , hv))

7 v := dv2 e, (yv, hv) := (x, h′) // Save winner node at top of odd-based subtree.

8 w := y1 // Initial winner after all games (rename y1 → w).

9 while j ≤
∑K
k=1 |Sk| do // Loop until output is done.

10 (S0[j], H0[j]) := (sw, h1), j++ // Output winner string sw with LCP h1.
11 iw++, sw := Sw[iw] // Replace winner with next item from input.
12 (x, h′) := (w,Hw[iw]), v := K + w // Play from input node v, all games
13 while v > 2 do // upward to root (unrollable loop).
14 v := dv2 e, (x, h′, yv, hv) := LCP-Compare((x, sx, h

′), (yv, syv , hv))

15 (w, h1) := (x, h′) // Save next winner at top.

Output: S0 contains sorted S1, . . . ,SK and has the LCP array H0

The previous discussion about the path to the overall winner w is also valid for the
path to the individual winner xi of any node i in the tree, since it is the winner
of all games leading from input xi to node i.

The function signature (x, hx, y, hy) = LCP-Compare((a, sa, ha), (b, sb, hb)) was
designed to be played on two nodes (a, ha) and (b, hb) of the LCP-aware tourna-
ment tree. When replaying a path, we can picture a node (a, ha) moving “upward”
along the edges. LCP-Compare is called with this moving node and the loser infor-
mation (b, hb) := (yi, hi) saved in the encountered node i. After performing the
comparisons, the returning values (x, hx) are the winner node, which passes up-
wards, and (y, hy) are the loser information, which is saved in the node i. Thus
LCP-Compare effectively selects the winner of each game, and computes the loser
information for future LCP-aware comparisons. Due to the recursive property dis-
cussed in the previous paragraph, the requirements of LCP-Compare remains valid
along all paths, and LCP-Compare can switch between them.

This LCP-aware K-way merging procedure is shown in pseudo-code in Algo-
rithm 4. We build the initial tournament tree incrementally from left to right,
playing all games only on the right-most path of every odd-based perfect subtree.
This right-most side contains only nodes with even index.

The pseudo-code works with one-based arrays, but our implementation uses
a zero-based implicit tree, which reduces the number of operations slightly. The
pseudo-code also contains a superfluous run of lines 11–15, which we keep for better
exhibition, as it separates initialization from output iterations. This run can be
removed by moving the output instruction (line 10) to the end of the second loop,
and replacing the last run (k = K) of the first loop with a run of second loop by
setting w = K and iw = 0.

18 Timo Bingmann et al.

The following theorem considers only a single execution of K-way LCP-merg-
ing, since this is what we need in our NUMA scenario:

Theorem 3 Algorithm 4 requires at most ∆L+ n log2K +K character compar-
isons, where n = |S0| is the total number of strings and ∆L = L(H0)−

∑K
k=1 L(Hk)

is the sum of increments to LCP array entries.

Proof We focus on the character comparisons in the sub-function LCP-Compare,
since Algorithm 4 itself does not contain any character comparisons. As in the
proof of Theorem 2, we can account for all true-outcomes of the while loop con-
dition in LCP-Compare (line 4) using ∆L, since it increments the overall LCP.
We can bound the number of false-outcomes by bounding the number of calls to
LCP-Compare, which occurs exactly K times when building the tournament tree,
and then log2K times for each of the n output string (excluding the superfluous
run in the pseudo-code). As before, this upper bound, ∆L+n log2K +K, is only
attained in pathological cases, and for most inputs, cases 2 and 3 in LCP-Compare

reduce the overall number of character comparisons. ut

Theorem 4 Using Algorithm 4 one can implement a K-way LCP-mergesort al-
gorithm, which requires less than L + ndlogK ne log2K + (n − 1) K

K−1 character
comparisons and runs in O(D + n logn+ nK) time.

Proof We assume the divide step of K-way LCP-mergesort to split into K sub-
problems of nearly even size. Using Theorem 3 yields the recurrence T (n) = K ·
T (nK) + n log2K +K with T (1) = 0, if we ignore the character comparisons loop.

Assuming n = Kd for some integer d, the recurrence can be solved elementary
using induction, yielding T (n) = n logK n · log2K + K(n−1)

K−1 . For n 6= Kd, the
input cannot be split evenly into recursive subproblems. However, to keep this
analysis simple, we use K-way mergesort even when n < K, and thus incur the
cost of Theorem 3 also at the base level. So, we have dlogK ne levels of recursion.
As in previous proofs, we account for all matching character comparisons with L,
and all others with the highest number of occurrences of case 1 in LCP-Compare in
the whole recursion, which is T (n). Since L ≤ D, the run time follows. ut

In the proof we assume K-way LCP-merge even in the base level. In an imple-
mentation, one would chose a different merger when n < K. By selecting 2-way
LCP-merge, the number of comparisons in the lowest recursion is reduced, and we
can get a bound of L+ n log2 n+O(nK).

5.3 Practical Parallelization of K-way LCP-Merge

We now discuss how to parallelize K-way LCP-merge when given K sorted in-
put streams. The problem is that merging itself cannot be parallelized without
significant overhead [10], as opposed to the classification and distribution in pS5.
Instead, we want to split the problem into disjoint areas of independent work, as
done commonly in practical parallel multiway mergesort sorting algorithms and
implementations [3,29].

In contrast to atomic merging, a perfect split with respect to the number of
elements in the subproblems by no means guarantees good load balance for string

Engineering Parallel String Sorting 19

merging. Rather, the amount of work in each piece depends on the unknown values
of the common prefixes. Therefore, dynamic load balancing is needed anyway and
we can settle for a simple and fast routine for splitting the input into pieces that are
small enough to allow good load balance. We now outline our current approach.
Since access to string characters incurs costly cache faults, we want to use the
information in the LCP array to help split the input streams. In principle, in the
following heuristic we merge the top of the LCP interval trees [1] of the K input
streams to find independent areas.

If we consider all occurrences of the global minimum in an LCP array, then
these split the input stream into disjoint areas starting with the same distinct
prefix. The only remaining challenge is to match equal prefixes from the K input
streams, and for this matching we need to inspecting the first distinguishing char-
acters of any string in the area. Matching areas can then be merged independently.

Depending on the input, considering only the global LCP minima may not
yield enough independent work. However, we can apply the same splitting method
again on matching sub-areas, within which all strings have a longer common prefix,
and the global minimum of the sub-area is larger.

We put these ideas together in a splitting heuristic, which scans the K input
LCP arrays sequentially once, and creates merge jobs while scanning. We start by
reading w characters from the first string of all K input streams, and select those
inputs with the smallest character block c. In each of these selected inputs, we scan
the LCP array forward, skipping over all entries > w, and checking entries = w
for equal character blocks, until either an entry < w or a mismatching character
block is found. This forward scan encompasses all strings with prefix c, and an
independent merge job can be started. The process is then repeated with the next
strings on all K inputs.

We start the heuristic with w = 8 (loading a 64-bit register full of characters),
but reduce w depending on how many jobs are started, as otherwise the heuristic
may create too many splits, e.g. for random input strings. We therefore calculate
an expected number of independent jobs, and adapt w depending on how much
input is left and how many jobs were already created. This adaptive procedure
keeps w high for inputs with high average common prefix and low otherwise.

We use the same load balancing framework as with pS5 (see Section 4.5). Dur-
ing merge jobs, we check if other threads are idle via the global unsynchronized
counter variable. To reduce balancing overhead, we check only every 4 096 pro-
cessed strings. If idle threads are detected, then a K-way merge job is split up into
further independent jobs using the same splitting heuristic, except that a common
prefix of all strings may be known, and is used to offset the character blocks of
size w.

5.4 Implementation Details

Our experimental platforms have m ∈ {4, 8} NUMA nodes, and we use parallel
K-way LCP-merge only as a top-level merger on m input streams. Thus we assume
the N inputs characters to be divided evenly onto the m memory nodes. On the
individual NUMA memory nodes, we pin about p

m threads and run pS5 on the

string subset. We do not rebalance the string sets or thread associations when pS5

finishes early on one of the NUMA nodes, as the synchronization overhead was

20 Timo Bingmann et al.

more costly than the gain. For skewed inputs, however, this problem remains to
be solved.

Since K-way LCP-merge requires the LCP arrays of the sorted sequences, we
extended pS5 to optionally save the LCP value while sorting. The string pointers
and LCP arrays are kept separate, as opposed to interleaving them as “anno-
tated” strings [24]. This was done, because pS5 already requires an additional
pointer array during out-of-place redistribution. The additional string array and
the original string array are alternated between in recursive calls. When a subset is
finally sorted, the correctly ordered pointers are copied back to the original array,
if necessary. This allows us to place the LCP values in the additional array.

The additional work and space needed by pS5 to save the LCP values is very
small, we basically get LCPs for free. Most LCPs are calculated in the base case
sorter of pS5, and hence we describe LCP-aware insertion sort in the next sec-
tion. All other LCPs are located at the boundaries of buckets separated by either
multikey quicksort or string sample sort. We calculate these boundary LCPs after
recursive levels are finished, and use the saved splitters or pivot elements whenever
possible.

The splitting heuristic of parallel K-way LCP-merge creates jobs with varying
K, and we created special implementations for the 1-way (plain copying) and 2-
way (binary merging) cases, while all other K-way merges are performed using the
LCP-aware tournament tree.

To make parallel K-way LCP-merge more cache- and NUMA transfer-efficient,
we devised a caching variant. In LCP-Compare the first character needed for addi-
tional character comparisons during the merge can be predicted (if comparisons
occur at all). This character is the distinguishing character between two strings,
which we label ĉi = si[hi], where hi = lcpS(i). Caching this character while sort-
ing is easy, since it is loaded in a register when the final, distinguishing character
comparison is made. We extended pS5 to save ĉi in an additional array and employ
it in a modified variant of LCP-Compare to save random accesses across NUMA
nodes. Using this caching variant all character comparisons accounted for in the
n log2K + K term in Theorem 3 can be done using the cached ĉi, thus only ∆L
random accesses to strings are needed for a K-way merge.

5.5 LCP-Insertion Sort

As mentioned in the preceding section, we extended pS5 to save LCP values. Thus
its base-case string sorter, insertion sort, also needed to be extended. Again, saving
and reusing LCPs during insertion sort is a very intuitive idea, but we found no
reference or analysis in the literature.

Assuming the array S = [s1, . . . , sj−1] is already sorted and the associated
LCP array H is known, then insertion sort locates a position i at which a new
string x = sj can be inserted, while keeping the array sorted. After insertion, at
most the two LCP values hi and hi+1 may need to be updated. While scanning
for the correct position i, customarily from the right, values of both S and H can
already be shifted to allocate a free position.

Using the information in the preliminary LCP array, the scan for i can be
accelerated by skipping over certain areas in which the LCP value attests a mis-
match. The scan corresponds to walking down the LCP interval tree, testing only

Engineering Parallel String Sorting 21

Algorithm 5: LCP-InsertionSort

Input: S = {s1, . . . , sn} is a set of strings with common prefix h
1 for j = 1, . . . , n do // Insert x = sj into sorted sequence [s1, . . . , sj−1].

2 i := j, (x, h′) := (sj , h) // Start candidate LCP h′ with common prefix h.
3 while i > 1 do
4 if hi < h′ then break // case 1: LCP decreases ⇒ insert after si−1.
5 else if hi = h′ then // case 2: LCP equal ⇒ compare more characters.
6 p := h′ // Save LCP of x and si.
7 while x[h′] 6= 0 and x[h′] = si−1[h′] do // Compare characters.
8 h′++

9 if x[h′] ≥ si−1[h′] then // If x is larger, insert x after si−1,
10 hi := h′, h′ := p // set hi, the LCP of si−1 and x, but
11 break // set hi+1 after loop in line 14.

12 (si, hi+1) := (si−1, hi) // case 3: LCP is larger ⇒ no comparison needed.
13 i−−
14 (si, hi+1) := (x, h′) // Insert x at correct position, update hi+1 with LCP.

Output: S = [s1, . . . , sn] is sorted and has the LCP array [⊥, h2, . . . , hn]

one item of each child node, and descending down if it matches. In plainer words,
areas of strings with a common prefix can be identified using the LCP array (as
already mentioned in Section 5.3), and it suffices to check once if the candidate
matches this common prefix. If not, then the whole area can be skipped.

In the pseudo-code of Algorithm 5, the common prefix of the candidate x is
kept in h′, and increased while characters match. When a mismatch occurs, the
scan is continued to the left, and all strings can be skipped if the LCP reveals that
the mismatch position remains unchanged (case 3). If the LCP goes below h′, then
a smaller strings precedes and therefore the insertion point i is found (case 1). At
positions with equal LCP more characters need to be compared (case 2). In the
pseudo-code these three cases are fused with a copy-loop moving items to right.
Note that the pseudo-code sets hn+1 := h̄ in the last iteration when i = j = n,
which requires a sentinel array position or an out-of-bounds check in the last
iteration.

Theorem 5 LCP-aware insertion sort (Algorithm 5) requires at most L+ n(n−1)
2

character comparisons and runs in O(D + n2) time.

Proof The only lines containing character comparisons in Algorithm 5 are lines 7
and 9. If the while loop condition is true, then h′ is incremented. In the remaining
algorithm the value of h′ is only shifted around, never discarded or decreased. Thus
we can count the number of comparisons yielding a while-loop repetition with L.
The while loop is encountered at most n(n−1)

2 times, as this is the highest number
of times the inner loop in lines 4–13 runs. We can regard the exiting comparison
of line 7 and the following comparison in line 9 as one ternary comparison, as
the same values are checked again. This ternary comparison occurs at most once
each run of the inner loop, thus n(n−1)

2 times. With L ≤ D, the run time follows

22 Timo Bingmann et al.

Sequential = < ? > =
swap⇒ < = >

Parallel ?

B0

?

B1

?

B2

?

B6

?

B7

?

B11

?

B3

?

B4

?

B5

?

B8

?

B9

?

B10

?

B12

?

B13

?

B14

0

B′
0

0

B′
1

0

B′
2

W
o
rk

in
g

B
lo

ck
s

p1 < ?

B11

= ?

B7

> ?

B6

p2 < ?

B9

= ?

B8

>

B10

O
u

tp
u

t

<

B0

<

B3

S<

=

B5

S=

>

B1

>

B2

>

B4

S>done

Fig. 3 Block schema of sequential and parallel multikey quicksort’s ternary partitioning pro-
cess

from the number of iterations of the for loop (line 1–14) and the while loop (lines
3–13). ut

We close with the remark that non-LCP insertion sort requires O(nD) steps
in the worst case, when all strings are equal except for the last character.

6 More Shared Memory Parallel String Sorting

6.1 Parallel Radix Sort

Radix sort is very similar to sample sort, except that classification is much faster
and easier. Hence, we can use the same parallelization toolkit as with S5. Again, we
use three sub-algorithms for differently sized subproblems: fully parallel radix sort
for the original string set and large subsets, a sequential radix sort for medium-
sized subsets and insertion sort for base cases. Fully parallel radix sort consists
of a counting phase, global prefix sum and a redistribution step. Like in S5, the
redistribution is done out-of-place by copying pointers into a shadow array.

We experimented with 8-bit and 16-bit radixes for the fully parallel step.
Smaller recursive subproblems are processed independently by sequential radix
sort with in-place permuting, and here we found 8-bit radixes to be faster than
16-bit sorting. Our parallel radix sort implementation uses the same work balanc-
ing method as parallel S5, freeing the largest subproblems when other threads are
idle.

6.2 Parallel Caching Multikey Quicksort

Our preliminary experiments with sequential string sorting algorithms (see Sec-
tion A) showed a surprise winner: an enhanced variant of multikey quicksort by
Tommi Rantala [25] often outperformed more complex algorithms.

This variant employs both caching of characters and uses a super-alphabet of
w = 8 characters, exactly as many as fit into a machine word. The string pointer
array is augmented with w cache bytes for each string, and a string subset is
partitioned by a whole machine word as splitter. Thereafter, the cached characters

Engineering Parallel String Sorting 23

are reused for the recursive subproblems S< and S>, and access to strings is needed
only for sorting S=, unless the pivot contains a zero-terminator. In this section
“caching” means copying of characters into another array, not necessarily into
the processor’s cache. Key to the algorithm’s good performance is the following
observation:

Theorem 6 Caching multikey quicksort needs at most bDw c+n (random) accesses
to string characters in total, where w is the number of characters cached per access.

Proof Per string access w characters are loaded into the cache, and these w charac-
ters are never fetched again. We can thus account for all accesses to distinguishing
characters using bDw c, since the characters are fetched in blocks of size w. Beyond
these, at most one access per string can occur, which accounts for fetching w
characters of which not all are need for sorting.

In light of this variant’s good performance, we designed a parallelized version.
We use three sub-algorithms: fully parallel caching multikey quicksort, the original
sequential caching variant (with explicit recursion stack) for medium and small
subproblems, and insertion sort as base case. For the fully parallel sub-algorithm,
we generalized a block-wise processing technique from (two-way) parallel atomic
quicksort [33] to three-way partitioning.

The input array is viewed as a sequence of blocks containing B string pointers
together with their w cache characters (see Figure 3). Each thread holds exactly
three blocks and performs ternary partitioning by a globally selected pivot. When
all items in a block are classified as <, = or >, then the block is added to the
corresponding output set S<, S=, or S>. This continues as long as unpartitioned
blocks are available. If no more input blocks are available, an extra empty memory
block is allocated and a second phase starts. The second partitioning phase ends
with fully classified blocks, which might be only partially filled. Per fully parallel
partitioning step there can be at most 3p partially filled blocks. The output sets
S<, S=, and S> are processed recursively with threads divided as evenly among
them as possible. The cached characters are updated only for the S= set.

In our implementation we use atomic compare-and-swap operations for block-
wise processing of the initial string pointer array and Intel TBB’s lock-free queue
for sets of blocks, both as output sets and input sets for recursive steps. When a
partition reaches the threshold for sequential processing, then a continuous array of
string pointers plus cache characters is allocated and the block set is copied into
it. On this continuous array, the usual ternary partitioning scheme of multikey
quicksort is applied sequentially. Like in the other parallelized algorithms, we use
dynamic load balancing and free the largest level when re-balancing is required.
We empirically determined B = 128 Ki as a good block size.

6.3 Burstsort

Burstsort is one of the fastest string sorting algorithms and cache-efficient for many
inputs, but it looks difficult to parallelize it. Keeping a common burst trie would
require prohibitively many synchronized operations, while building independent
burst tries on each PE would lead to the question how to merge multiple tries
of different structure. This problem of merging tries is related to parallel K-way
LCP-merge, and future work may find a way to combine these approaches.

24 Timo Bingmann et al.

7 Experimental Results

We implemented parallel versions of S5, K-way LCP-merge, multikey quicksort
and radix sort in C++ and compare them with the few parallel string sorting
implementations we could find online in Section 7.3. We also integrated many
sequential implementations into our test framework, and discuss their performance
in Section A. Our implementations, the test framework and most input sets are
available from http://panthema.net/2013/parallel-string-sorting.

7.1 Experimental Setup

We tested our implementations and those by other authors on five different plat-
forms. All platforms run Linux and their main properties are listed in Table 1.
We compiled all programs using gcc 4.6.3 with optimizations -O3 -march=native.
The five platforms were chosen to encompass a wide variety of multi-core systems,
which exhibit different characteristics in their memory system and also cover to-
day’s most popular hardware. By experimenting on a large number of systems (and
inputs), we demonstrate how robust our implementations and algorithm designs
are.

The test framework sets up a separate environment for each run. To isolate heap
fragmentation, it was very important to fork() a child process for each run. The
string data is loaded before the fork(), allocating exactly the matching amount
of RAM, and shared read-only with the child processes. No precaution to lock
the program’s memory into RAM was taken (as opposed to previous experiments
reported in [7]). Turbo-mode was disabled on IntelE5.

Before an algorithm is called, the string pointer array is generated inside the
child process by scanning the string data for zero characters, thus flushing caches
and TLB entries. Time measurement is done with clock gettime() and encompasses
only the sorting algorithm. Because many algorithms have a deep recursion stack
for our large inputs, we increased the stack size limit to 64 MiB. For non-NUMA
experiments, we took no special precautions of pinning threads to specific cores
or nodes, and used the default Linux task scheduling system as is. Memory for
NUMA-unaware algorithms was interleaved across all nodes by setting the default
allocation policy.

For our experiments with NUMA-aware string sorting, the characters array is
segmented equally onto the NUMA memory banks before running an algorithm.
The algorithm then pins its threads to the appropriate node, enabling node-local
memory access. Additional allocations are also taken preferably from the local
memory node.

The output of each string sorting algorithm was verified by first checking that
the resulting pointer list is a permutation of the input set, and then checking
that strings are in non-descending order. The input was shared read-only with the
algorithm’s process and thus cannot have been modified.

Methodologically we have to discuss, whether measuring only the algorithm’s
run time is a good decision. The issue is that deallocation and defragmentation in
both heap allocators and kernel page tables is done lazily. This was most notable
when running two algorithms consecutively. The fork() process isolation excludes
both variables from the experimental results, however, for use in a real program

http://panthema.net/2013/parallel-string-sorting

Engineering Parallel String Sorting 25

Table 1 Hard- and software characteristics of experimental platforms

Name Processor Clock Sockets × Cache: L1 L2 L3 RAM
[GHz] Cores × HT [KiB] [KiB] [MiB] [GiB]

IntelE5 Intel Xeon E5-4640 2.4 4× 8× 2 32× 32 32× 256 4× 20 512
AMD48 AMD Opteron 6168 1.9 4× 12 48× 64 48× 512 8× 6 256
AMD16 AMD Opteron 8350 2.0 4× 4 16× 64 16× 512 4× 2 64
Inteli7 Intel Core i7 920 2.67 1× 4× 2 4× 32 4× 256 1× 8 12
IntelX5 Intel Xeon X5355 2.67 2× 4× 1 8× 32 4× 4096 16

Name Codename Memory NUMA Interconnect Linux/Kernel Version
Channels Nodes

IntelE5 Sandy Bridge 4 × DDR3-1600 4 2 × 8.0 GT/s QPI Ubuntu 12.04/3.2.0
AMD48 Magny-Cours 4 × DDR3-667 8 4 × 3.2 GHz HT Ubuntu 12.04/3.2.0
AMD16 Barcelona 2 × DDR2-533 4 3 × 1.0 GHz HT Ubuntu 10.04/2.6.32
Inteli7 Bloomfield 3 × DDR3-800 1 × 4.8 GT/s QPI openSUSE 11.3/2.6.34
IntelX5 Clovertown 2 × DDR2-667 1 × 1.3 GHz FSB Ubuntu 12.04/3.2.0

context these costs cannot be ignored. We currently do not know how to invoke
the lazy cleanup procedures to regenerate a pristine memory environment. These
issues must be discussed in greater detail in future work for sound results with
big data in RAM. We briefly considered HugePages, but these did not yield a
performance boost. This is probably due to random accesses being the main time
cost of string sorting, while the number of TLB entries is not a bottleneck.

7.2 Inputs

We selected the following datasets, all with 8-bit characters. Most important char-
acteristics of these instances are shown in Table 2.

URLs contains all URLs found on a set of web pages which were crawled
breadth-first from the author’s institute website. They include the protocol name.

Random (from [31]) are strings of length [0 : 20) over the ASCII alphabet
[33 : 127), with both length and characters chosen uniformly random.

GOV2 is a TREC test collection consisting of 25 million HTML pages, PDF
and other documents retrieved from websites under the .gov domain. We consider
the whole corpus for line-based string sorting, concatenated by document id.

Wikipedia is an XML dump of the most recent version of all pages in the
English Wikipedia, which was obtained from http://dumps.wikimedia.org/; our
dump is dated enwiki-20120601. Since the XML data is not line-based, we perform
suffix sorting on this input.

We also include the three largest inputs Ranjan Sinha [31] tested burstsort
on: a set of URLs excluding the protocol name, a sequence of genomic strings of
length 9 over a DNA alphabet, and a list of non-duplicate English words called
NoDup. The “largest” among these is NoDup with only 382 MiB, which is why
we consider these inputs more as reference datasets than as our target.

The inputs were chosen to represent both real-world datasets, and to exhibit
extreme results when sorting. Random has a very low average LCP, while URLs
have a high average LCP. GOV2 is a general text file with all possible ASCII char-
acters, and Sinha’s DNA has a small alphabet size. By taking suffixes of Wikipedia

http://dumps.wikimedia.org/

26 Timo Bingmann et al.

Table 2 Characteristics of the selected input instances.

Name n N D
N (D) L

n |Σ| avg. |s|
URLs 1.11 G 70.7 Gi 93.5 % 62.0 84 68.4
Random ∞ ∞ − − 94 10.5
GOV2 11.3 G 425 Gi 84.7 % 32.0 255 40.3
Wikipedia 83.3 G 1

2n(n+1) (79.56 T) 954.7 213 1
2 (n+1)

Sinha URLs 10 M 304 Mi 97.5 % 29.4 114 31.9
Sinha DNA 31.6 M 302 Mi 100 % 9.0 4 10.0
Sinha NoDup 31.6 M 382 Mi 73.4 % 7.7 62 12.7

we have a very large sorting problem instance, which needs little memory for char-
acters.

Our inputs are very large, one infinite, and most of our platforms did not have
enough RAM to process them. For each platform, we determined a large prefix
[0 :n), which can be processed with the available RAM and time, and leave sorting
of the remainder to future work.

7.3 Performance of Parallel Algorithms

In this section we report on our experiments on the platforms shown in Table 1,
which contains a wide variety of multi-core machines of different age. The results
plotted in Figures 4–8 show the speed up of each parallel algorithm over the best
sequential one, for increasing thread count. Tables 7–13 show absolute running
times of our experiments, with the fastest algorithm’s time highlighted in bold
text.

Overall, our parallel string sorting implementations yield high speedups, which
are generally much higher than those of all previously existing parallel string
sorters. Each individual parallel algorithm’s speedup depends highly on hardware
characteristics like processor speed, RAM and cache performance2, the intercon-
nection between sockets, and the input’s characteristics. In general, the speedup of
string sorting for high thread counts is bounded by memory bandwidth, not pro-
cessing power. On both non-NUMA platforms (Figures 7, 8), our implementations
of pS5 are the string sorting algorithm with highest speedups, except for Ran-
dom and Sinha’s NoDup inputs. On NUMA many-core platforms, the picture is
more complex and results mostly depend on how well the inner loops and memory
transfers are optimized on each particular system.

The parallel experiments cover all algorithms we describe in this paper: pS5-
Unroll is a variant of pS5 from Section 4, which interleaves three unrolled descents
of the classification tree, while pS5-Equal unrolls only a single descent, but tests
equality at each splitter node. In the NUMA-aware variant called “pS5-Unroll
+ pLCP-Merge” we first run pS5-Unroll independently on each NUMA node for
separate parts of the input, and then merge the presorted parts using our parallel
K-way LCP-merge algorithm (Section 5). From the additional parallel algorithms
in Section 6, we draw our parallel multikey quicksort (pMKQS) implementations,
and radix sorts with 8-bit and 16-bit fully parallel steps. Furthermore, we included

2 See http://panthema.net/2013/pmbw/ for parallel memory bandwidth experiments

http://panthema.net/2013/pmbw/

Engineering Parallel String Sorting 27

the parallel radix sort implemented by Takuya Akiba [2] in the experiments on all
platforms.

For the tests on Inteli7 and IntelX5, we added three more parallel implemen-
tations: pMKQS-SIMD is a multikey quicksort implementation from Rantala’s
library, which uses SIMD instructions to perform vectorized classification against
a single pivot. We improved the code to use OpenMP tasks for recursive sort-
ing steps. The second implementation is a parallel 2-way LCP-mergesort also by
Rantala, which we also augmented with OpenMP tasks. However, only recursive
merges are run in parallel, the largest merge is performed sequentially. The imple-
mentation uses insertion sort for |S| < 32, all other sorting is done via merging.
N. Shamsundar’s parallel LCP-mergesort is the third additional implementation,
but it also uses only 2-way merges. As seen in Figures 7–8, only Akiba’s radix
sort scales fairly well, which is why we omitted the other three algorithms on the
platforms with more than eight cores.

Inteli7 (Figure 7, Table 10–11) is a consumer-grade, single socket machine
with fast RAM and cache hierarchy. IntelX5 (Figure 8, Table 12–13) is our oldest
architecture, and shows the slowest absolute speedups. Both are not NUMA archi-
tectures, which is why we did not run our NUMA-aware algorithm on them. They
are more classic architectures, and exhibit most of the effects we targeted in our al-
gorithms to gain good speedups. Our pS5 variants are fastest on all inputs, except
very random ones (Random and NoDup), where radix sorts are slightly faster on
Inteli7. Remarkably, on IntelX5 radix sort was not faster. We suspect that newer
processors can optimize the inner loops of radix sort (counting, prefix sums and
data redistributions with few input/output streams [20]) better than older ones.
Our pMKQS also shows good overall speedups, but is never particularly fast. This
is due to the high memory bandwidth caching multikey quicksort requires, as it
reads and rereads an array to just partition by one pivot.

For all test instances, except URLs, the fully parallel sub-algorithm of pS5 was
run only 1–4 times. Thereafter, the input was split up into enough subsets, and
most of the additional speedup is gained by load-balancing the sequential sub-
algorithms well. The pS5-Equal variant handles URL instances better, as many
equal matches occur here. However, for all other inputs, pS5-Unroll with inter-
leaved tree descents fares better, even though it has higher theoretical running
time.

Comparing our radix sorts with Akiba’s we already see the implementation’s
main problems: it does not parallelize recursive sorting steps (only the top-level
is parallelized) and only performs simple load balancing. This can be seen most
pronounced on URLs and GOV2. All three additional implementations, pMKQS-
SIMD, pMergesort-2way by Rantala, and the same by Shamsundar do not show
any good speedup, partly because they are already pretty slow sequentially, and
partly because they are not fully parallelized.

On the Inteli7 machine, which has four real cores and four Hyper-Threading
cores, pS5 achieves speedups ≥ 3.2 on all inputs, except Random where it gains
only 2.5. This is remarkable, as the machine has only three memory channels, and
a single core can fully utilize two of them. Thus in pS5 a lot of computation work
is parallelized. On IntelX5, which has eight real cores, pS5 achieves speedups ≥ 3
on all inputs. We attribute this to the early dual-socket architecture, on which
many other parallel implementations also do not scale well.

28 Timo Bingmann et al.

Table 3 Description of parallel string sorting algorithms in experiment

Name Description and Author
pS5-Unroll Our parallel super scalar string sample sort (see Section 4) with un-

rolled and interleaved tree descents.
pS5-Equal Our parallel super scalar string sample sort (see Section 4) with equal-

ity checking at each splitter node.
pMKQS Our parallel multikey quicksort (see Section 6.2) with caching of w = 8

characters.
pS5+LCP-M Our parallel multiway LCP-merge with pS5 on each NUMA node.
pRS-8bit Our parallel radix sort (see Section 6.1) with 8-bit alphabet
pRS-16bit Our parallel radix sort (see Section 6.1) with 16-bit alphabet at the

fully parallel levels, and 8-bit alphabets for sequentially processed sub-
problems.

pRS/Akiba Takuya Akiba’s [2] radix sort.
p2w-MS/R Parallel 2-way LCP-mergesort from Tommi Rantala’s library [25].
pMKQS-SIMD/R Parallel multikey quicksort with SIMD operations from Tommi

Rantala’s library [25].
pLCP-2w-MS/S Parallel 2-way LCP-mergesort by Nagaraja Shamsundar [28], which is

based on Waihong Ng’s LCP-mergesort [24].

IntelE5 (Figure 4, Table 7) is our newest machine with 32 real cores across four
sockets with one NUMA node each. It contains one of Intel’s most recent many-
core processors. AMD48 (Figure 5, Table 8) is a somewhat older AMD many-core
machine with high core count, but relatively slow RAM and a slower intercon-
nect. Compared to the previous results on Inteli7, we notice that parallel multikey
quicksort (pMKQS) is very fast, and achieves slightly higher speedups than pS5

on most inputs on IntelE5 and significantly higher ones on AMD48. This effect is
clearly due to pS5 ignoring the NUMA architecture and thus incurring a relatively
large number of expensive inter-node random string accesses. We analyzed the
number of string access of pMKQS in Theorem 6, after which the characters are
saved and accessed in a scanning pattern. This scanning apparently works well
on the NUMA machines, as it is very cache-efficient, can be easily predicted by
the processor’s memory prefetcher, and a costly inter-node transfered cache line
contains saved characters of eight strings.

These expected results were the reason to focus on NUMA-aware string sorting
algorithms, and to develop parallel K-way LCP-merge for top-level merging of
presorted sequences. In our experiments we ran “pS5-Unroll + pLCP-Merge” only
when there is at least one thread per NUMA node. We tried to rebalance threads to
other NUMA nodes once work on a node is done, but this did not work well, since
the additional inter-node synchronization was too costly. We thus have to leave
the question of how to balance sorting work on NUMA systems for highly skewed
inputs open to future research. Plain LCP-merge also contains costly inter-node
random string accesses in case 1 of LCP-Compare. As predicted in Section 5.4, we
saw a huge speed improvement due to caching of just the distinguishing character
ĉ, and don’t consider the non-caching variant in our results.

On IntelE5, with four NUMA nodes, pS5-Unroll + pLCP-Merge reaches the
highest speedups on URLs, GOV2 inputs and Wikipedia suffixes. On the AMD48
machine with eight NUMA nodes, random access is even more costly and the inter-
node connections are easily congested, which is why pMKQS fairs better against
our NUMA-aware sorting. In future (possibly the next revision of this journal
paper), experiments with caching more than just one character may lead to larger

Engineering Parallel String Sorting 29

1 8 16 32 48 64

0

5

10

15

sp
ee

d
u

p

URLs, n = 1.11 G, N = 70.7 Gi

1 8 16 32 48 64

0

2

4

6

8

10

12

14

Random, n = 3.27 G, N = 32 Gi

1 8 16 32 48 64

0

5

10

15

sp
ee

d
u

p

GOV2, n = 3.1 G, N = 128 Gi

1 8 16 32 48 64

0

5

10

15

20

25

30

Wikipedia, n = N = 4 Gi

1 8 16 32 48 64

0

2

4

6

8

10

12

sp
ee

d
u

p

Sinha URLs, n = 10 M, N = 304 Mi

1 8 16 32 48 64
0

2

4

6

8

10

12

14

number of threads

Sinha DNA, n = 31.6 M, N = 302 Mi

1 8 16 32 48 64
0

5

10

15

number of threads

sp
ee

d
u

p

Sinha NoDup, n = 31.6 M, N = 382 Mi

pS5-Unroll

pS5-Equal

pS5-Unroll + pLCP-Merge

pMultikeyQuicksort

pRadixsort 8-bit

pRadixsort 16-bit

pRadixsort Akiba

Fig. 4 Speedup of parallel algorithm implementations on IntelE5, median of 1–3 runs

30 Timo Bingmann et al.

1 6 12 24 36 48

0

5

10

15

sp
ee

d
u

p

URLs, n = 1.11 G, N = 70.7 Gi

1 6 12 24 36 48

0

5

10

15

Random, n = 2.45 G, N = 24 Gi

1 6 12 24 36 48

0

5

10

15

20

sp
ee

d
u

p

GOV2, n = 1.38 G, N = 64 Gi

1 6 12 24 36 48

0

5

10

15

20

Wikipedia, n = N = 2 Gi

1 6 12 24 36 48

0

2

4

6

8

10

sp
ee

d
u

p

Sinha URLs, n = 10 M, N = 304 Mi

1 6 12 24 36 48
0

2

4

6

8

10

12

number of threads

Sinha DNA, n = 31.6 M, N = 302 Mi

1 6 12 24 36 48

0

5

10

15

number of threads

sp
ee

d
u

p

Sinha NoDup, n = 31.6 M, N = 382 Mi

pS5-Unroll

pS5-Equal

pS5-Unroll + pLCP-Merge

pMultikeyQuicksort

pRadixsort 8-bit

pRadixsort 16-bit

pRadixsort Akiba

Fig. 5 Speedup of parallel algorithm implementations on AMD48, median of 1–3 runs

Engineering Parallel String Sorting 31

1 2 4 6 8 12 16

0

2

4

6

8

sp
ee

d
u

p

URLs, n = 500 M, N = 32 Gi

1 2 4 6 8 12 16
0

1

2

3

4

5

6

Random, n = 1.23 G, N = 12 Gi

1 2 4 6 8 12 16

0

2

4

6

8

10

sp
ee

d
u

p

GOV2, n = 490 M, N = 24 Gi

1 2 4 6 8 12 16
0

2

4

6

8

10

12

Wikipedia, n = N = 1 Gi

1 2 4 6 8 12 16

0

2

4

6

8

10

sp
ee

d
u

p

Sinha URLs, n = 10 M, N = 304 Mi

1 2 4 6 8 12 16
0

2

4

6

8

10

number of threads

Sinha DNA, n = 31.6 M, N = 302 Mi

1 2 4 6 8 12 16
0

2

4

6

8

10

number of threads

sp
ee

d
u

p

Sinha NoDup, n = 31.6 M, N = 382 Mi

pS5-Unroll

pS5-Equal

pS5-Unroll + pLCP-Merge

pMultikeyQuicksort

pRadixsort 8-bit

pRadixsort 16-bit

pRadixsort Akiba

Fig. 6 Speedup of parallel algorithm implementations on AMD16, median of 1–3 runs

32 Timo Bingmann et al.

1 2 3 4 5 6 7 8

1

2

3

sp
ee

d
u

p

URLs, n = 66 M, N = 4 Gi

1 2 3 4 5 6 7 8

0

1

2

3

Random, n = 205 M, N = 2 Gi

1 2 3 4 5 6 7 8
0

1

2

3

4

sp
ee

d
u

p

GOV2, n = 80 M, N = 4 Gi

1 2 3 4 5 6 7 8
0

1

2

3

4

Wikipedia, n = N = 256 Mi

1 2 3 4 5 6 7 8
0

1

2

3

sp
ee

d
u

p

Sinha URLs, n = 10 M, N = 304 Mi

1 2 3 4 5 6 7 8
0

1

2

3

number of threads

Sinha DNA, n = 31.6 M, N = 302 Mi

1 2 3 4 5 6 7 8
0

1

2

3

number of threads

sp
ee

d
u

p

Sinha NoDup, n = 31.6 M, N = 382 Mi

pS5-Unroll

pS5-Equal

pMultikeyQuicksort

pRadixsort 8-bit

pRadixsort 16-bit

pRadixsort Akiba

pMKQS-SIMD Rantala

pMergesort-2way Rantala

pMergesort-2way Shamsundar

Fig. 7 Speedup of parallel algorithm implementations on Inteli7, median of fifteen runs

Engineering Parallel String Sorting 33

1 2 3 4 5 6 7 8

1

2

3

sp
ee

d
u

p

URLs, n = 132 M, N = 8 Gi

1 2 3 4 5 6 7 8

0

1

2

3

Random, n = 307 M, N = 3 Gi

1 2 3 4 5 6 7 8
0

1

2

3

sp
ee

d
u

p

GOV2, n = 166 M, N = 8 Gi

1 2 3 4 5 6 7 8
0

1

2

3

4

Wikipedia, n = N = 512 Mi

1 2 3 4 5 6 7 8

1

2

3

sp
ee

d
u

p

Sinha URLs, n = 10 M, N = 304 Mi

1 2 3 4 5 6 7 8
0

1

2

3

number of threads

Sinha DNA, n = 31.6 M, N = 302 Mi

1 2 3 4 5 6 7 8
0

1

2

3

number of threads

sp
ee

d
u

p

Sinha NoDup, n = 31.6 M, N = 382 Mi

pS5-Unroll

pS5-Equal

pMultikeyQuicksort

pRadixsort 8-bit

pRadixsort 16-bit

pRadixsort Akiba

pMKQS-SIMD Rantala

pMergesort-2way Rantala

pMergesort-2way Shamsundar

Fig. 8 Speedup of parallel algorithm implementations on IntelX5, median of fifteen runs

34 Timo Bingmann et al.

speedups on these NUMA systems. Remarkably, radix sort is still very fast on
both NUMA machines for random inputs.

The lower three plots in Figure 4 and 5 show that on these large many-core
platforms, parallel sorting becomes less efficient for small inputs (around 300 MiB).
This is expected due to the high cost of synchronization, but our parallel algorithms
still fare well.

AMD16 (Figure 6, Table 9) is an earlier NUMA architecture with four NUMA
nodes, and the slowest RAM speed and interconnect in our experiment. However,
on this machine random access, memory bandwidth and processing power (in
cache) seems to be more balanced for pS5 than on the newer NUMA machines.

We included the absolute running times of all our speedup experiments in
Tables 7–13 for reference and to show that our parallel implementations scale well
both for very large instances on many-core platforms and also for small inputs on
machines with fewer cores.

8 Conclusions and Future Work

We have demonstrated that string sorting can be parallelized successfully on mod-
ern multi-core shared memory and NUMA machines. In particular, our new string
sample sort algorithm combines favorable features of some of the best sequential
algorithms – robust multiway divide-and-conquer from burstsort, efficient data
distribution from radix sort, asymptotic guarantees similar to multikey quicksort,
and word parallelism from caching multikey quicksort. For NUMA machines we
developed parallel K-way LCP-merge to further decrease costly inter-node random
access.

Both algorithms are practical for many applications, and our implementations
are available as templates for further customization. For general use, our pS5

implementation is recommended, as it works reliably well on all platforms.

We want to highlight that using our pS5 (which can save LCPs) and K-way
LCP-merge implementations it is straight-forward to construct a fast parallel ex-
ternal memory string sorter for short strings (≤ B) using shared memory paral-
lelism. The sorting throughput of our string sorters is probably higher than the
available I/O bandwidth.

Implementing some of the refinements discussed in the next section are likely
to yield further improvements for string sample sort and K-way LCP-merge.

As most important vectors of future work, we see the splitting heuristic of
LCP-Merging, and how to rebalance work for skewed inputs on NUMA machines.

8.1 Practical Refinements

Memory conservation: For use of our algorithms in applications like database
systems or MapReduce libraries, it is paramount to give hard guarantees on
the amount of memory required by the implementations. Our experiments show
clearly, that caching of characters accelerates string sorting, but this speed comes
at the cost of memory space. A future challenge is thus to sort fast, but with
limited memory. In this respect, pS5 is a very promising candidate, as it can be

Engineering Parallel String Sorting 35

restricted to use only the classification tree and a recursion stack, if little addi-
tional memory is available. But if more memory is available, then caching, saving
oracle values and out-of-place redistribution can be enabled adaptively.

Multipass data distribution: There are two constraints for the maximum sen-
sible value for the number of splitters v: The cache size needed for the classifi-
cation data structure and the resources needed for data distribution. Already in
the plain external memory model these two constraints differ (v = O(M) versus
v = O(M/B)). In practice, things are even more complicated since multiple cache
levels, cache replacement policy, TLBs, etc. play a role. Anyway, we can increase
the value of v to the value required for classification by doing the data distribution
in multiple passes (usually two). Note that this fits very well with our approach
to compute oracles even for single pass data distribution. This approach can be
viewed as LSD radix sort using the oracles as keys. Initial experiments indicate
that this could indeed lead to some performance improvements.

Alphabet compression: When we know that only σ′ < σ different values from
Σ appear in the input, we can compress characters into

⌈
log σ′

⌉
bits. For S5, this

allows us to pack more characters into a single machine word. For example, for
DNA input, we might pack 32 characters into a single 64 bit machine word. Note
that this compression can be done on the fly without changing the input/output
format and the compression overhead is amortized over log v key comparisons.

Jump tables: In S5, the a most significant bits of a key are often already suf-
ficient to define a path in the classification tree of length up to a. We can exploit
this by precomputing a jump table of size 2a storing a pointer to the end of this
path. During element classification, a lookup in this jump table can replace the
traversal of the path. This might reduce the gap to radix sort for easy instances.

Using tries in practice: The success of burstsort indicates that traversing tries
can be made efficient. Thus, we might also be able to use a tuned trie based
implementation of S5 in practice. One ingredient to such an implementation could
be the word parallelism used in the pragmatic solution – we define the trie over
an enlarged alphabet. This reduces the number of required hash table accesses by
a factor of w. The tuned van Emde Boas trees from [11] suggest that this data
structure might work in practice.

Adaptivity: By inspecting the sample, we can adaptively tune the algorithm.
For example, when noticing that already a lot of information3 can be gained from
a few most significant bits in the sample keys, the algorithm might decide to switch
to radix sort. On the other hand, when even the w most significant characters do
not give a lot of information, then a trie based implementation can be used. Again,
this trie can be adapted to the input, for example, using hash tables for low degree
trie nodes and arrays for high degree nodes.

Acknowledgements We would like the thank the anonymous reviewer for extraordinarily
thorough checking of our algorithms and proofs, and for kind suggestions on how to improve
the paper.

3 The entropy 1
n

∑
i log n

|bi|
can be used to define the amount of information gained by a

set of splitters. The bucket sizes bi can be estimated using their size within the sample.

36 Timo Bingmann et al.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix
arrays. Journal of Discrete Algorithms (JDA) 2(1), 53–86 (2004)

2. Akiba, T.: Parallel string radix sort in C++. http://github.com/iwiwi/
parallel-string-radix-sort (2011). Git repository accessed November 2012

3. Akl, S.G., Santoro, N.: Optimal parallel merging and sorting without memory conflicts.
IEEE Transactions on Computers 100(11), 1367–1369 (1987)

4. Amir, A., Franceschini, G., Grossi, R., Kopelowitz, T., Lewenstein, M., Lewenstein, N.:
Managing unbounded-length keys in comparison-driven data structures with applications
to online indexing. SIAM Journal on Computing 43(4), 1396–1416 (2014)

5. Andersson, A., Nilsson, S.: Implementing radixsort. Journal of Experimental Algorithmics
(JEA) 3, 7 (1998)

6. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In: ACM
(ed.) 8th Symposium on Discrete Algorithms (SODA), pp. 360–369 (1997)

7. Bingmann, T., Sanders, P.: Parallel string sample sort. In: 21th European Symposium on
Algorithms (ESA), no. 8125 in LNCS. Springer-Verlag (2013)

8. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha, M.: A
comparison of sorting algorithms for the connection machine CM-2. In: 3rd Symposium
on Parallel Algorithms and Architectures (SPAA), pp. 3–16. ACM (1991)

9. Brent, R.P.: The parallel evaluation of general arithmetic expressions. Journal of the ACM
(JACM) 21(2), 201–206 (1974)

10. Cole, R.: Parallel merge sort. SIAM Journal on Computing 17(4), 770–785 (1988)
11. Dementiev, R., Kettner, L., Mehnert, J., Sanders, P.: Engineering a sorted list data

structure for 32 bit keys. In: 6th Workshop on Algorithm Engineering & Experiments
(ALENEX), pp. 142–151. SIAM (2004)

12. Eberle, A.: Parallel multiway LCP-mergesort (2014). Bachelor Thesis, Karlsruhe Institute
of Technology, to appear

13. Frazer, W.D., McKellar, A.C.: Samplesort: A sampling approach to minimal storage tree
sorting. Journal of the ACM (JACM) 17(3), 496–507 (1970)

14. Hagerup, T.: Optimal parallel string algorithms: sorting, merging and computing the min-
imum. In: 16th ACM Symposium on Theory of Computing (STOC), pp. 382–391 (1994)

15. Hoare, C.A.R.: Quicksort. The Computer Journal 5(1), 10–16 (1962)
16. Kent, C., Lewenstein, M., Sheinwald, D.: On demand string sorting over unbounded al-

phabets. Theoretical Computer Science 426, 66–74 (2012)
17. Knöpfle, S.D.: String samplesort (2012). Bachelor Thesis, Karlsruhe Institute of Technol-

ogy, in German
18. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting And Searching, 2

edn. Addison Wesley Longman Publishing Co., Inc. (1998)
19. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class

of recurrence equations. IEEE Transactions on Computers 100(8), 786–793 (1973)
20. Kärkkäinen, J., Rantala, T.: Engineering radix sort for strings. In: 16th International

Conference on String Processing and Information Retrieval (SPIRE), no. 5280 in LNCS,
pp. 3–14. Springer-Verlag (2009)

21. McIlroy, P.M., Bostic, K., McIlroy, M.D.: Engineering radix sort. Computing Systems
6(1), 5–27 (1993)

22. Mehlhorn, K., Sanders, P.: Scanning multiple sequences via cache memory. Algorithmica
35(1), 75–93 (2003)

23. Ng, W., Kakehi, K.: Cache efficient radix sort for string sorting. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences E90-A(2), 457–466
(2007)

24. Ng, W., Kakehi, K.: Merging string sequences by longest common prefixes. IPSJ Digital
Courier 4, 69–78 (2008)

25. Rantala, T.: Library of string sorting algorithms in C++. http://github.com/rantala/
string-sorting (2007). Git repository accessed November 2012

26. Sanders, P.: Fast priority queues for cached memory. Journal of Experimental Algorithmics
(JEA) 5, 7 (2000)

27. Sanders, P., Winkel, S.: Super scalar sample sort. In: 12th European Symposium on
Algorithms (ESA), LNCS, vol. 3221, pp. 784–796. Springer-Verlag (2004)

28. Shamsundar, N.: A fast, stable implementation of mergesort for sorting text files. http://
code.google.com/p/lcp-merge-string-sort (2009). Source downloaded November 2012

http://github.com/iwiwi/parallel-string-radix-sort
http://github.com/iwiwi/parallel-string-radix-sort
http://github.com/rantala/string-sorting
http://github.com/rantala/string-sorting
http://code.google.com/p/lcp-merge-string-sort
http://code.google.com/p/lcp-merge-string-sort

Engineering Parallel String Sorting 37

29. Singler, J., Sanders, P., Putze, F.: MCSTL: The multi-core standard template library. In:
Euro-Par 2007 Parallel Processing, no. 4641 in LNCS, pp. 682–694. Springer-Verlag (2007)

30. Sinha, R., Wirth, A.: Engineering Burstsort: Toward fast in-place string sorting. Journal
of Experimental Algorithmics (JEA) 15, 2.5:1–24 (2010)

31. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic tries.
Journal of Experimental Algorithmics (JEA) 9, 1.5:1–31 (2004)

32. Sinha, R., Zobel, J., Ring, D.: Cache-efficient string sorting using copying. Journal of
Experimental Algorithmics (JEA) 11, 1.2:1–32 (2007)

33. Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quicksort and its perfor-
mance evaluation on SUN enterprise 10000. In: 11th Euromicro Workshop on Parallel,
Distributed and Network-Based Processing (PDP), pp. 372–381. IEEE Computer Society
(2003)

34. Wassenberg, J., Sanders, P.: Engineering a multi-core radix sort. In: Euro-Par 2011 Parallel
Processing, no. 6853 in LNCS, pp. 160–169. Springer-Verlag (2011)

35. Yang, M.C.K., Huang, J.S., Chow, Y.C.: Optimal parallel sorting scheme by order statis-
tics. SIAM Journal on Computing 16(6), 990–1003 (1987)

38 Timo Bingmann et al.

A Performance of Sequential Algorithms

We collected many sequential string sorting algorithms in our test framework. We believe it
to contain virtually every string sorting implementation publicly available.

The algorithm library by Tommi Rantala [25] contains 37 versions of radix sort (in-place,
out-of-place, and one-pass with various dynamic memory allocation schemes), 26 variants of
multikey quicksort (with caching, block-based, different dynamic memory allocation and SIMD
instructions), 10 different funnelsorts, 38 implementations of burstsort (again with different
dynamic memory managements), and 29 mergesorts (with losertree and LCP caching variants).
In total these are 140 original implementation variants, all of high quality.

The other main source of string sorting implementations are the publications of Ranjan
Sinha. We included the original burstsort implementations (one with dynamically growing
arrays and one with linked lists), and 9 versions of copy-burstsort. The original copy-burstsort
code was written for 32-bit machines, and we modified it to work with 64-bit pointers.

We also incorporated the implementations of CRadix sort and LCP-Mergesort by Waihong
Ng, and the original multikey quicksort code by Bentley and Sedgewick.

Of the 203 different sequential string sorting variants, we selected the thirteen implemen-
tations listed in Table 4 to represent both the fastest ones in a preliminary test and each of the
basic algorithms from Section 3. The thirteen algorithms were run on all our five test platforms
on small portions of the test instances described in Section 7. Tables 5 and 6 show the results,
with the fastest algorithm’s time highlighted with bold text.

Cells in the tables without value indicate a program error, out-of-memory exceptions or
extremely long runtime. This was always the case for the copy-burstsort variants on the GOV2
and Wikipedia inputs, because they perform excessive caching of characters. On Inteli7, some
implementations required more memory than the available 12 GiB to sort the 4 GiB prefixes
of Random and URLs.

Table 4 Description of selected sequential string sorting algorithms

Name Description and Author

std::sort gcc’s standard atomic introsort with full string comparisons.
mkqs Original multikey quicksort by Bentley and Sedgewick [6].
mkqs cache8 Modified multikey quicksort with caching of eight characters

by Tommi Rantala [25], slightly improved.
radix8 CI 8-bit in-place radix sort by Tommi Rantala [20].
radix16 CI Adaptive 16-/8-bit in-place radix sort by Tommi Rantala

[20].
radixR CE7 Adaptive 16-/8-bit out-of-place radix sort by Tommi

Rantala [20], version CE7 (preallocated swap array, unrolling,
sorted-check).

CRadix Cache efficient radix sort by Waihong Ng [23], unmodified.
LCPMergesort LCP-mergesort by Waihong Ng [24], unmodified.
Seq-S5-Unroll Sequential super scalar string sample sort with interleaved

loop over strings, unrolled tree traversal and radix sort as
base sorter.

Seq-S5-Equal Sequential super scalar string sample sort with equality
check, unrolled tree traversal and radix sort as base sorter.

burstsortA Burstsort using dynamic arrays by Ranjan Sinha [31], from
[25].

fbC-burstsort Copy-Burstsort with “free bursts” by Ranjan Sinha [32],
heavily repaired and modified to work with 64-bit pointers.

sCPL-burstsort Copy-Burstsort with sampling, pointers and only limited
copying depth by Ranjan Sinha [32], also heavily repaired.

Engineering Parallel String Sorting 39

Over all run instances and platforms, multikey quicksort with caching of eight characters
was fastest on 18 pairs, winning the most tests. It was fastest on all platforms for both URL list
and GOV2 prefixes, except URL on IntelX5, and on all large instances on AMD48 and AMD16.
However, for the NoDup input, short strings with large alphabet, the highly tuned radix sort
radixR CE7 consistently outperformed mkqs cache8 on all platforms by a small margin. The
copy-burstsort variant fbC burstsort was most efficient on all platforms for DNA, which are
short strings with small alphabet. For Random strings and Wikipedia suffixes, mkqs cache8
or radixR CE7 was fastest, depending on the platforms memory bandwidth and sequential
processing speed. Our own sequential implementations of S5 were never the fastest, but they
consistently fall in the middle field, without any outliers. This is expected, since S5 is mainly
designed to be used as an efficient top-level parallel algorithm, and to be conservative with
memory bandwidth, since this is the limiting factor for data-intensive multi-core applications.

We also measured the peak memory usage of the sequential implementations using a heap
and stack profiling tool4 for the selected sequential test instances. The bottom of Table 5 shows
the results in MiB, excluding the string data array and the string pointer array (we only have
64-bit systems, so pointers are eight bytes). We must note that the profiler considers allocated
virtual memory, which may not be identical to the amount of physical memory actually used.
From the table we plainly see, that the more caching an implementation does, the higher its
peak memory allocation. However, the memory usage of fbC burstsort is extreme, even if one
considers that the implementation can deallocate and recreate the string data from the burst
trie. The lower memory usage of fbC burstsort for Random is due to the high percentage of
characters stored implicitly in the trie structure. The sCPL burstsort and burstsortA variants
bring the memory requirement down somewhat, but they are still high. Some radixsort variants
and, most notable, mkqs cache8 are also not particularly memory conservative, again due to
caching. Our sequential S5 implementation fares well in this comparison because it does no
caching and permutes the string pointers in-place (Note that radixsort is used for small string
subsets in sequential S5. This is due to the development history: we finished sequential S5

before focusing on caching multikey quicksort). For sorting with little extra memory, plain
multikey quicksort is still a good choice.

4 http://panthema.net/2013/malloc_count/, by one of the authors.

http://panthema.net/2013/malloc_count/

40 Timo Bingmann et al.

Table 5 Run time of sequential algorithms on IntelE5 and AMD48 in seconds, and peak
memory usage of algorithms on IntelE5. See Table 4 for a short description of each.

Our Datasets Sinha’s
URLs Random GOV2 Wikipedia URLs DNA NoDup

n 66 M 409 M 80.2 M 256 Mi 10 M 31.5 M 31.6 M
N 4 Gi 4 Gi 4 Gi 32 Pi 304 Mi 302 Mi 382 Mi
D/N (D) 92.7 % 43.0 % 69.7 % (13.6 G) 97.5 % 100 % 73.4 %
L/n 57.9 3.3 34.1 33.0 29.4 9.0 7.7

IntelE5
std::sort 122 422 153 287 11.6 26.9 25.4
mkqs 37.1 228 56.7 129 5.67 11.0 10.9
mkqs cache8 16.6 67.1 25.7 79.5 2.03 4.62 6.02
radix8 CI 48.4 64.3 54.6 90.1 6.12 6.79 6.29
radixR CE7 37.5 58.6 44.6 72.4 4.77 4.66 4.73
Seq-S5-Unroll 32.4 142 39.9 103 4.90 7.05 7.78
Seq-S5-Equal 32.8 169 45.6 120 5.11 7.68 8.38
CRadix 54.1 65.1 61.6 113 6.82 10.2 8.63
LCPMergesort 25.8 316 53.9 167 5.00 14.6 17.0
burstsortA 29.5 131 43.3 120 5.64 8.48 8.46
fbC burstsort 60.9 69.8 11.0 3.81 15.4
sCPL burstsort 45.0 122 11.1 14.3 24.8

AMD48
std::sort 243 1 071 197 494 21.7 55.7 44.2
mkqs 90.7 511 78.2 226 11.0 20.8 19.8
mkqs cache8 37.9 96.9 31.7 114 3.44 7.08 8.75
radix8 CI 83.1 127 71.2 138 9.72 10.9 9.46
radixR CE7 73.6 125 63.6 120 8.34 8.27 7.70
Seq-S5-Unroll 59.4 283 55.6 167 7.93 11.2 11.7
Seq-S5-Equal 56.5 292 57.7 180 8.06 11.5 12.2
CRadix 98.2 115 68.8 147 8.11 12.6 11.2
LCPMergesort 48.2 597 68.8 232 7.35 20.7 24.4
burstsortA 46.0 214 53.0 193 8.49 13.3 13.1
fbC burstsort 85.8 115 17.7 5.92 22.1
sCPL burstsort 73.1 266 20.1 24.6 37.9

Memory usage of sequential algorithms (on IntelE5) in MiB, excluding
input and string pointer array

std::sort 0.002 0.002 0.002 0.003 0.002 0.002 0.002
mkqs 0.134 0.003 1.66 0.141 0.015 0.003 0.004
mkqs cache8 1 002 6 242 1 225 4 096 153 483 483
radix8 CI 62.7 390 77.2 256 9.55 30.2 30.2
radixR CE7 669 3 902 786 2 567 111 303 303
Seq-S5-Unroll 129 781 155 513 20.3 60.8 60.9
Seq-S5-Equal 131 781 156 513 20.8 60.8 61.0
CRadix 752 4 681 919 3 072 114 362 362
LCPMergesort 1 002 6 242 1 225 4 096 153 483 483
burstsortA 1 466 7 384 1 437 5 809 200 531 792
fbC burstsort 31 962 6 200 2 875 436 4 182
sCPL burstsort 9 971 7 262 1 578 1 697 5 830

Engineering Parallel String Sorting 41

Table 6 Run time of sequential algorithms on AMD16, Inteli7, and IntelX5 in seconds. See
Table 4 for a short description of each.

Our Datasets Sinha’s
URLs Random GOV2 Wikipedia URLs DNA NoDup

n 66 M 409 M 80.2 M 256 Mi 10 M 31.5 M 31.6 M
N 4 Gi 4 Gi 4 Gi 32 Pi 304 Mi 302 Mi 382 Mi
D/N (D) 92.6 % 43.0 % 69.7 % (13.6 G) 97.5 % 100 % 73.4 %
L/n 57.9 3.3 34.1 33.0 29.4 9.0 7.7

AMD16
std::sort 274 1 088 237 28.1 73.5 56.8
mkqs 138 586 99.7 284 15.9 29.6 26.9
mkqs cache8 45.4 114 40.2 142 4.77 8.99 10.7
radix8 CI 112 158 84.5 171 11.7 13.6 11.5
radixR CE7 91.4 156 75.3 135 10.5 10.8 9.46
Seq-S5-Unroll 70.6 326 68.4 235 9.57 14.5 14.8
Seq-S5-Equal 72.9 315 67.9 227 9.41 12.8 13.5
CRadix 132 128 91.8 201 11.7 19.0 14.7
LCPMergesort 56.8 631 86.6 285 9.22 25.5 30.9
burstsortA 52.4 284 64.4 252 10.1 17.2 17.0
fbC burstsort 109 123 25.5 6.34 29.8
sCPL burstsort 79.8 288 28.8 38.9 54.9

Inteli7
std::sort 94.4 360 75.6 233 9.41 23.3 21.2
mkqs 33.2 187 30.9 112 5.00 9.43 9.62
mkqs cache8 14.7 14.5 66.1 1.81 3.91 5.10
radix8 CI 38.3 49.6 32.4 73.0 4.95 5.35 5.05
radixR CE7 30.7 46.6 28.8 59.7 3.85 3.71 3.84
Seq-S5-Unroll 25.3 108 26.2 86.5 3.94 5.75 6.44
Seq-S5-Equal 25.9 130 27.6 97.4 4.11 6.14 6.82
CRadix 43.2 33.4 84.6 5.27 7.87 6.49
LCPMergesort 22.7 32.3 139 4.33 12.1 14.2
burstsortA 22.5 24.9 102 4.52 6.67 6.91
fbC burstsort 9.31 3.12 12.7
sCPL burstsort 35.3 9.82 13.0 20.0

IntelX5
std::sort 140 731 137 401 17.4 48.9 38.6
mkqs 74.2 333 56.6 148 7.18 13.9 14.0
mkqs cache8 30.1 80.1 25.5 95.5 3.35 6.48 7.51
radix8 CI 69.0 109 49.7 88.9 5.84 7.47 7.06
radixR CE7 55.9 110 44.6 83.5 4.92 6.12 5.95
Seq-S5-Unroll 35.9 170 34.4 108 4.17 5.62 6.74
Seq-S5-Equal 38.7 198 36.5 121 4.65 6.09 7.19
CRadix 77.7 94.3 57.7 141 8.26 13.3 11.0
LCPMergesort 36.2 454 55.1 208 6.61 19.3 22.8
burstsortA 27.0 215 34.9 153 4.70 9.17 10.1
fbC burstsort 86.8 16.4 4.31 21.1
sCPL burstsort 46.5 212 19.6 26.8 38.5

42 Timo Bingmann et al.

Table 7 Absolute run time of parallel and best sequential algorithms on IntelE5 in seconds,
median of 1–3 runs. See Table 3 for a short description of each.

PEs 1 2 4 8 12 16 24 32 48 64

URLs (complete), n = 1.11 G, N = 70.7 Gi, D
N

= 93.5 %
mkqs cache8 467
pS5-Unroll 633 310 156 92.8 69.2 52.7 45.1 42.8 41.1 39.9
pS5-Equal 646 316 157 93.0 69.3 52.8 45.8 42.0 41.2 41.2
pS5+LCP-M 116 74.4 57.7 47.0 38.4 34.4 34.1 35.1
pMKQS 617 292 146 84.2 57.5 47.1 41.0 38.0 37.0 38.0
pRS-8bit 1 959 975 493 280 204 171 144 142 140 140
pRS-16bit 1 960 883 444 260 179 148 125 119 115 116
pRS/Akiba 1 293 1 258 1 255 1 249 1 256 1 255 1 249 1 259 1 255 1 249

Random, n = 3.27 G, N = 32 Gi, D
N

= 44.9 %
mkqs cache8 609
pS5-Unroll 1 209 601 301 166 122 101 76.7 67.7 65.3 63.7
pS5-Equal 1 322 657 326 178 131 107 81.4 70.7 67.6 64.2
pS5+LCP-M 367 196 135 108 80.0 71.0 72.7 71.7
pMKQS 732 379 198 108 79.7 69.1 63.6 65.5 70.7 75.2
pRS-8bit 1 530 706 343 183 127 100 70.9 59.3 60.8 59.2
pRS-16bit 1 530 657 343 185 129 100 69.4 56.2 52.4 53.6
pRS/Akiba 1 355 751 447 321 280 257 232 223 219 216

GOV2, n = 3.1 G, N = 128 Gi, D
N

= 82.7 %
mkqs cache8 1 079
pS5-Unroll 1 399 673 326 212 176 145 113 97.1 92.1 89.0
pS5-Equal 1 476 705 339 224 186 154 119 101 95.8 91.2
pS5+LCP-M 272 166 131 112 93.3 80.5 80.7 82.1
pMKQS 1 347 661 350 207 164 127 101 91.8 93.7 95.1
pRS-8bit 4 244 1 992 964 585 462 394 311 299 302 291
pRS-16bit 4 252 1 912 928 571 471 384 306 279 280 257
pRS/Akiba 2 645 1 306 1 028 1 055 1 048 1 034 1 037 1 045 1 051 1 052

Wikipedia, n = N = 4 Gi, D = 249 G
mkqs cache8 2 502
pS5-Unroll 2 728 1 341 648 350 252 203 147 120 110 103
pS5-Equal 2 986 1 435 694 374 268 215 157 125 115 105
pS5+LCP-M 635 338 235 186 130 107 97.6 92.0
pMKQS 2 554 1 259 620 336 238 189 143 127 122 119
pRS-8bit 4 064 1 879 909 486 349 271 192 157 150 144
pRS-16bit 4 068 1 805 875 469 340 262 187 149 145 139
pRS/Akiba 2 862 1 450 754 453 355 302 249 229 265 263

Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, D
N

= 73.4 %
radixR CE7 6.00
pS5-Unroll 8.27 4.17 2.13 1.22 0.921 0.790 0.695 0.642 0.592 0.544
pS5-Equal 8.84 4.46 2.26 1.28 0.963 0.825 0.710 0.661 0.601 0.567
pS5+LCP-M 2.52 1.41 1.01 0.815 0.653 0.604 0.691 0.779
pMKQS 8.44 4.30 2.21 1.25 0.920 0.801 0.744 0.798 0.973 1.11
pRS-8bit 8.35 4.06 2.01 1.08 0.770 0.643 0.489 0.425 0.422 0.441
pRS-16bit 8.35 3.49 1.74 0.949 0.682 0.595 0.445 0.422 0.467 0.502
pRS/Akiba 7.58 4.09 2.38 1.59 1.33 1.21 1.09 1.04 1.04 1.02

Engineering Parallel String Sorting 43

Table 8 Absolute run time of parallel and best sequential algorithms on AMD48 in seconds,
median of 1–3 runs. See Table 3 for a short description of each.

PEs 1 2 3 6 9 12 18 24 36 42 48

URLs (complete), n = 1.11 G, N = 70.7 Gi, D
N

= 93.5 %
mkqs cache8 773
pS5-Unroll 1 030 521 352 181 127 99.9 74.9 64.0 53.0 48.0 46.8
pS5-Equal 931 477 331 176 123 97.1 73.3 65.0 55.0 48.8 47.6
pS5+LCP-M 122 114 76.3 60.3 50.0 49.6 46.8
pMKQS 844 415 280 146 102 80.4 59.6 49.9 44.2 44.0 45.1
pRS-8bit 2 552 1 306 897 468 325 266 202 177 157 156 155
pRS-16bit 2 550 1 210 823 428 299 234 183 151 126 125 126
pRS/Akiba 1 861 1 840 1 832 1 830 1 821 1 819 1 823 1 822 1 822 1 827 1 821

Random, n = 2.45 G, N = 24 Gi, D
N

= 44.5 %
mkqs cache8 879
pS5-Unroll 1 315 683 466 248 176 140 104 86.3 69.3 64.4 61.7
pS5-Equal 1 225 634 433 232 165 131 98.3 82.1 67.1 62.1 59.7
pS5+LCP-M 196 185 109 82.7 71.5 66.0 61.9
pMKQS 751 392 264 143 106 81.0 65.3 56.0 54.7 55.8 61.3
pRS-8bit 1 182 594 404 209 144 111 79.6 63.5 52.2 49.9 47.1
pRS-16bit 1 188 615 423 224 154 120 85.1 68.0 51.3 47.4 44.8
pRS/Akiba 1 525 861 643 421 348 312 277 259 241 238 234

GOV2, n = 1.38 G, N = 64 Gi, D
N

= 77.0 %
mkqs cache8 750
pS5-Unroll 881 449 305 162 129 110 83.2 69.9 58.4 54.4 50.2
pS5-Equal 854 436 296 156 123 104 79.2 67.1 55.8 52.5 48.7
pS5+LCP-M 100 98.2 62.0 48.7 42.9 39.5 37.4
pMKQS 785 397 268 140 101 83.8 60.1 50.7 44.1 42.8 42.6
pRS-8bit 2 071 1 015 676 351 280 251 182 154 125 120 114
pRS-16bit 2 061 980 652 338 269 242 171 143 111 107 102
pRS/Akiba 1 547 794 617 594 584 582 581 581 584 585 585

Wikipedia, n = N = 2 Gi, D = 116 G
mkqs cache8 1 442
pS5-Unroll 1 634 838 569 299 208 164 119 96.9 74.6 68.7 65.3
pS5-Equal 1 592 827 561 293 205 161 117 95.4 73.6 68.1 64.3
pS5+LCP-M 267 255 142 104 83.4 72.8 65.9
pMKQS 1 556 790 534 273 188 145 102 84.3 67.0 64.1 64.0
pRS-8bit 2 547 1 216 825 417 281 215 148 115 85.2 78.1 72.6
pRS-16bit 2 547 1 168 795 405 276 211 147 114 82.6 74.2 69.2
pRS/Akiba 1 966 1 030 717 403 299 249 198 197 196 196 198

Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, D
N

= 73.4 %
radixR CE7 8.24
pS5-Unroll 12.8 6.73 4.63 2.52 1.82 1.47 1.13 0.978 0.836 0.804 0.794
pS5-Equal 12.0 6.30 4.34 2.37 1.72 1.39 1.08 0.944 0.812 0.779 0.772
pS5+LCP-M 1.89 1.76 1.39 1.10 1.01 0.993 0.984
pMKQS 11.2 5.81 4.02 2.14 1.53 1.28 1.00 0.935 0.989 1.04 1.16
pRS-8bit 10.8 5.33 3.61 1.87 1.35 1.01 0.771 0.596 0.482 0.462 0.453
pRS-16bit 10.8 4.82 3.27 1.72 1.32 0.988 0.872 0.779 0.924 1.01 1.10
pRS/Akiba 11.5 6.33 4.62 2.90 2.33 2.05 1.80 1.68 1.57 1.54 1.53

44 Timo Bingmann et al.

Table 9 Absolute run time of parallel and best sequential algorithms on AMD16 in seconds,
median of 1–3 runs. See Table 3 for a short description of each.

PEs 1 2 4 6 8 12 16

URLs, n = 500 M, N = 32 Gi, D
N

= 95.4 %
mkqs cache8 422
pS5-Unroll 424 218 115 83.0 70.5 56.2 49.1
pS5-Equal 455 233 123 91.4 75.1 61.6 51.6
pS5+LCP-M 152 152 91.9 73.2 58.7
pMKQS 456 220 117 88.3 74.4 63.7 61.5
pRS-8bit 1 256 652 362 284 253 238 220
pRS-16bit 1 253 601 331 255 225 212 185
pRS/Akiba 1 063 1 060 1 049 1 057 1 110 1 048 1 105

Random, n = 1.23 G, N = 12 Gi, D
N

= 43.7 %
mkqs cache8 350
pS5-Unroll 675 349 182 128 100 74.6 61.6
pS5-Equal 621 321 167 119 93.2 70.0 58.2
pS5+LCP-M 207 194 112 80.3 64.4
pMKQS 384 203 112 84.6 79.6 69.4 62.4
pRS-8bit 605 302 161 109 89.8 67.6 55.7
pRS-16bit 605 297 167 110 95.5 71.6 59.1
pRS/Akiba 805 459 283 227 198 171 157

GOV2, n = 490 M, N = 24 Gi, D
N

= 72.4 %
mkqs cache8 291
pS5-Unroll 336 171 88.3 62.6 55.5 44.9 36.5
pS5-Equal 326 166 86.0 61.0 53.5 43.2 35.3
pS5+LCP-M 81.4 78.2 46.5 34.4 28.0
pMKQS 296 152 79.4 60.6 46.9 39.4 37.2
pRS-8bit 692 338 176 132 112 105 92.1
pRS-16bit 691 327 170 126 115 92.9 81.7
pRS/Akiba 552 285 226 225 225 226 227

Wikipedia, n = N = 1 Gi, D = 40 G
mkqs cache8 642
pS5-Unroll 840 424 214 147 112 78.9 62.0
pS5-Equal 819 414 209 144 110 77.1 60.6
pS5+LCP-M 195 175 104 73.6 57.7
pMKQS 693 351 183 130 104 80.9 71.8
pRS-8bit 920 425 216 153 118 90.1 75.1
pRS-16bit 917 408 207 149 114 87.3 71.4
pRS/Akiba 782 419 238 181 154 128 116

Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, D
N

= 73.4 %
radixR CE7 9.50
pS5-Unroll 11.9 6.13 3.15 2.14 1.65 1.19 0.963
pS5-Equal 11.0 5.65 2.90 1.99 1.52 1.11 0.912
pS5+LCP-M 4.22 3.65 2.30 1.64 1.32
pMKQS 11.9 6.11 3.23 2.34 1.92 1.56 1.46
pRS-8bit 12.1 5.97 3.09 2.20 1.74 1.37 1.25
pRS-16bit 12.1 5.44 2.82 1.98 1.56 1.20 1.12
pRS/Akiba 13.0 7.19 4.28 3.33 2.86 2.44 2.24

Engineering Parallel String Sorting 45

Table 10 Absolute run time of parallel and best sequential algorithms on Inteli7 in seconds,
median of fifteen runs, larger test instances. See Table 3 for a short description of each.

PEs 1 2 3 4 5 6 7 8

URLs, n = 65.7 M, N = 4 Gi, D
N

= 92.7 %
mkqs cache8 14.8
pS5-Unroll 14.9 8.46 5.87 4.83 4.81 4.52 4.41 4.24
pS5-Equal 14.5 8.27 5.80 4.86 4.61 4.39 4.29 4.17
pMKQS 15.6 8.78 6.57 5.59 5.42 5.31 5.21 5.15
pRS-8bit 39.8 22.0 16.8 14.5 14.3 13.9 13.6 13.5
pRS-16bit 39.8 20.0 14.9 12.7 12.4 12.1 11.9 11.7
pRS/Akiba 32.0 31.7 31.7 31.7 31.7 31.7 31.7 31.7
p2w-MS/R 30.1 17.3 17.3 12.7 12.4 10.5 9.96 9.83
pMKQS-SIMD/R 31.4 19.4 15.4 13.6 13.4 13.3 13.3 13.3
pLCP-2w-MS/S 29.7 18.9 14.7 13.2 13.0 13.2 12.9 13.0

Random, n = 205 M, N = 2 Gi, D
N

= 42.1 %
radixR CE7 19.6
pS5-Unroll 32.2 17.5 12.1 9.39 9.51 9.07 8.29 7.67
pS5-Equal 34.2 18.6 12.8 9.93 9.76 9.27 8.46 7.83
pMKQS 31.2 16.9 11.9 9.42 8.64 8.07 7.75 7.50
pRS-8bit 23.6 12.9 9.24 7.89 7.55 7.22 7.00 6.86
pRS-16bit 23.6 12.5 9.04 8.35 7.76 7.65 7.16 7.34
pRS/Akiba 24.0 16.1 13.3 12.0 11.7 11.4 11.2 11.0
p2w-MS/R 95.9 58.1 58.1 52.4 46.9 43.5 40.2 40.2
pMKQS-SIMD/R 123 72.9 55.3 47.2 46.8 46.6 46.5 46.2
pLCP-2w-MS/S 185 119 101 97.9 105 110 115 121

GOV2, n = 80 M, N = 4 Gi, D
N

= 69.8 %
mkqs cache8 14.6
pS5-Unroll 13.1 7.15 5.00 3.95 3.99 3.93 3.73 3.51
pS5-Equal 13.5 7.39 5.16 4.06 3.94 3.87 3.69 3.49
pMKQS 15.5 8.62 6.22 5.08 4.82 4.58 4.43 4.30
pRS-8bit 33.5 17.8 12.9 10.2 9.85 9.52 9.43 9.69
pRS-16bit 33.4 17.1 12.2 9.62 9.20 8.73 8.40 8.20
pRS/Akiba 27.4 15.2 13.4 13.3 13.3 14.2 14.4 14.4
p2w-MS/R 32.6 19.3 19.3 16.8 15.8 12.8 12.6 12.4
pMKQS-SIMD/R 32.5 19.5 14.9 12.8 12.6 12.5 12.4 12.4
pLCP-2w-MS/S 43.9 22.9 15.8 12.5 12.8 11.5 10.5 9.94

Wikipedia, n = N = 256 Mi, D = 13.8 G
radixR CE7 59.6
pS5-Unroll 59.9 32.8 22.6 17.5 17.1 16.1 14.7 13.6
pS5-Equal 63.3 34.6 23.8 18.4 17.5 16.3 15.0 13.9
pMKQS 69.3 37.5 26.1 20.4 18.6 17.3 16.2 15.5
pRS-8bit 74.5 37.9 26.2 19.9 18.6 17.2 16.1 15.1
pRS-16bit 74.5 36.2 25.2 19.0 17.9 16.5 15.4 14.5
pRS/Akiba 62.4 34.8 24.9 20.0 18.6 17.5 16.6 15.7
p2w-MS/R 123 72.2 72.7 64.8 58.6 51.6 48.0 47.7
pMKQS-SIMD/R 127 74.4 55.5 46.8 45.7 44.7 44.2 43.5
pLCP-2w-MS/S 221 115 79.2 62.1 60.6 54.4 51.5 48.4

46 Timo Bingmann et al.

Table 11 Absolute run time of parallel and best sequential algorithms on Inteli7 in seconds,
median of fifteen runs, smaller test instances. See Table 3 for a short description of each.

PEs 1 2 3 4 5 6 7 8

Sinha URLs (complete), n = 10 M, N = 304 Mi, D
N

= 97.5 %
mkqs cache8 1.81
pS5-Unroll 1.54 0.853 0.595 0.471 0.495 0.464 0.445 0.431
pS5-Equal 1.67 0.924 0.641 0.505 0.505 0.475 0.452 0.436
pMKQS 1.93 1.07 0.766 0.618 0.593 0.571 0.552 0.544
pRS-8bit 5.05 2.48 1.74 1.37 1.32 1.28 1.23 1.20
pRS-16bit 5.06 2.23 1.56 1.21 1.19 1.14 1.11 1.08
pRS/Akiba 4.02 3.44 3.23 3.13 3.12 3.10 3.10 3.08
p2w-MS/R 3.98 2.35 2.34 2.05 1.86 1.64 1.51 1.53
pMKQS-SIMD/R 3.93 2.37 1.83 1.59 1.60 1.59 1.61 1.61
pLCP-2w-MS/S 5.93 3.57 2.89 2.65 2.83 2.81 2.86 2.93

Sinha DNA (complete), n = 31.6 M, N = 302 Mi, D
N

= 100 %
radixR CE6 3.69
pS5-Unroll 2.94 1.63 1.14 0.906 0.989 0.900 0.883 0.831
pS5-Equal 3.37 1.85 1.29 1.02 1.04 0.944 0.920 0.864
pMKQS 4.28 2.37 1.72 1.40 1.32 1.25 1.22 1.21
pRS-8bit 5.47 2.99 2.14 1.68 1.63 1.58 1.54 1.51
pRS-16bit 5.47 2.78 1.94 1.57 1.54 1.50 1.47 1.42
pRS/Akiba 3.83 2.29 1.74 1.50 1.51 1.54 1.50 1.43
p2w-MS/R 11.1 6.36 6.36 5.13 5.10 4.17 3.98 3.97
pMKQS-SIMD/R 10.5 6.50 5.10 4.51 4.51 4.53 4.55 4.56
pLCP-2w-MS/S 18.5 11.1 8.79 7.91 8.39 8.18 8.29 8.40

Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, D
N

= 73.4 %
radixR CE7 3.83
pS5-Unroll 4.54 2.47 1.69 1.31 1.33 1.21 1.15 1.07
pS5-Equal 4.96 2.68 1.83 1.42 1.38 1.29 1.18 1.10
pMKQS 5.47 2.98 2.11 1.67 1.52 1.42 1.34 1.29
pRS-8bit 5.22 2.71 1.87 1.47 1.40 1.31 1.25 1.20
pRS-16bit 5.22 2.48 1.70 1.32 1.28 1.19 1.12 1.07
pRS/Akiba 4.97 2.84 2.06 1.68 1.59 1.50 1.43 1.37
p2w-MS/R 12.7 7.46 7.45 6.22 5.96 4.89 4.88 4.89
pMKQS-SIMD/R 13.6 8.08 6.10 5.23 5.15 5.09 5.05 5.02
pLCP-2w-MS/S 19.8 12.2 10.0 9.39 9.43 10.1 10.4 10.7

Engineering Parallel String Sorting 47

Table 12 Absolute run time of parallel and best sequential algorithms on IntelX5 in seconds,
median of fifteen runs, larger test instances. See Table 3 for a short description of each.

PEs 1 2 3 4 5 6 7 8

URLs, n = 132 M, N = 8 Gi, D
N

= 92.6 %
mkqs cache8 64.2
pS5-Unroll 56.2 30.8 24.4 20.7 20.2 19.2 19.0 19.0
pS5-Equal 58.6 32.1 25.3 21.2 20.5 19.7 19.4 19.3
pMKQS 67.1 36.0 29.8 26.5 26.2 26.0 26.0 25.9
pRS-8bit 150 89.5 79.6 72.9 72.8 71.7 72.6 71.6
pRS-16bit 150 78.5 68.3 62.7 61.9 61.8 62.4 59.7
pRS/Akiba 121 119 120 119 120 119 120 119
p2w-MS/R 85.9 49.3 52.5 42.1 40.1 35.0 35.1 34.9
pMKQS-SIMD/R 153 92.0 83.9 77.9 77.5 77.2 77.4 77.5
pLCP-2w-MS/S 108 63.3 52.5 49.9 57.8 55.8 54.4 57.7

Random, n = 307 M, N = 3 Gi, D
N

= 42.8 %
mkqs cache8 58.9
pS5-Unroll 78.5 42.2 31.0 25.0 22.9 20.9 19.7 18.9
pS5-Equal 82.1 44.0 32.1 25.9 23.6 21.1 20.0 19.2
pMKQS 65.8 35.5 28.4 24.4 23.7 23.5 23.4 23.5
pRS-8bit 77.5 44.1 35.4 30.4 28.4 26.9 26.0 25.5
pRS-16bit 77.5 43.3 35.0 27.9 27.0 25.5 24.3 23.8
pRS/Akiba 81.7 50.6 41.9 37.2 34.9 33.3 32.6 31.9
p2w-MS/R 303 186 200 172 168 156 154 155
pMKQS-SIMD/R 467 277 246 229 225 222 220 219
pLCP-2w-MS/S 625 388 390 377 386 412 472 507

GOV2, n = 166 M, N = 8 Gi, D
N

= 70.6 %
mkqs cache8 55.3
pS5-Unroll 47.8 25.8 19.5 16.2 15.4 14.5 14.8 14.6
pS5-Equal 49.1 26.4 19.9 16.4 15.5 14.6 15.0 14.8
pMKQS 58.7 32.2 26.0 22.6 22.0 22.0 22.1 22.2
pRS-8bit 115 61.7 49.8 43.8 44.9 45.2 44.2 44.0
pRS-16bit 115 59.5 47.0 40.0 37.7 40.4 38.8 38.8
pRS/Akiba 94.2 51.6 49.3 48.3 49.2 50.6 52.6 53.0
p2w-MS/R 124 74.7 81.7 69.0 66.2 62.0 62.1 62.7
pMKQS-SIMD/R 165 98.4 87.8 81.1 79.6 79.2 78.6 79.3
pLCP-2w-MS/S 185 93.9 90.1 71.2 67.0 62.4 66.0 65.3

Wikipedia, n = N = 512 Mi, D = 21.5 G
radixR CE7 185
pS5-Unroll 194 104 76.2 62.0 56.8 52.5 50.8 49.4
pS5-Equal 202 107 78.7 63.8 58.2 53.6 51.7 50.3
pMKQS 211 112 87.5 74.2 71.3 69.4 68.9 68.9
pRS-8bit 212 111 85.4 71.0 67.0 63.8 62.6 61.7
pRS-16bit 212 109 84.2 68.5 64.8 62.1 59.8 58.2
pRS/Akiba 192 107 83.4 70.6 66.5 64.3 62.9 62.5
p2w-MS/R 420 261 281 237 231 230 230 230
pMKQS-SIMD/R 583 343 301 277 274 273 273 274
pLCP-2w-MS/S 882 443 345 277 292 282 252 264

48 Timo Bingmann et al.

Table 13 Absolute run time of parallel and best sequential algorithms on IntelX5 in seconds,
median of fifteen runs, smaller test instances. See Table 3 for a short description of each.

PEs 1 2 3 4 5 6 7 8

Sinha URLs (complete), n = 10 M, N = 304 Mi, D
N

= 97 5 %
mkqs cache8 3.35
pS5-Unroll 2.91 1.60 1.22 1.03 0.985 0.939 0.932 0.929
pS5-Equal 3.03 1.65 1.26 1.05 0.986 0.940 0.931 0.929
pMKQS 3.57 1.95 1.57 1.35 1.33 1.31 1.32 1.34
pRS-8bit 5.85 3.22 2.63 2.30 2.22 2.18 2.16 2.14
pRS-16bit 5.86 2.86 2.32 1.99 1.93 1.90 1.87 1.86
pRS/Akiba 5.12 4.38 4.22 4.10 4.09 4.10 4.09 4.08
p2w-MS/R 6.40 4.02 4.31 3.67 3.55 3.45 3.55 3.49
pMKQS-SIMD/R 9.56 5.87 5.47 5.15 5.15 5.14 5.20 5.20
pLCP-2w-MS/S 10.2 6.10 5.44 5.12 5.89 5.84 5.98 6.27

Sinha DNA (complete), n = 31.6 M, N = 302 Mi, D
N

= 100 %
radixR CE7 6.11
pS5-Unroll 5.14 2.87 2.21 1.85 1.73 1.59 1.55 1.50
pS5-Equal 5.63 3.11 2.36 1.96 1.82 1.66 1.60 1.54
pMKQS 7.14 3.97 3.39 2.98 2.95 2.96 2.96 2.98
pRS-8bit 7.45 4.36 3.85 3.37 3.36 3.33 3.33 3.36
pRS-16bit 7.45 4.05 3.46 3.10 3.09 3.07 3.08 3.07
pRS/Akiba 6.00 3.72 3.44 3.12 3.13 3.11 3.12 3.06
p2w-MS/R 18.1 10.6 11.3 8.96 8.91 7.92 7.98 7.92
pMKQS-SIMD/R 27.1 16.8 15.6 14.7 14.7 14.7 14.8 14.8
pLCP-2w-MS/S 33.1 20.2 17.8 16.5 18.6 18.4 18.6 19.4

Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, D
N

= 73.4 %
radixR CE7 5.96
pS5-Unroll 7.06 3.83 2.80 2.25 2.02 1.88 1.74 1.66
pS5-Equal 7.51 4.05 2.94 2.35 2.08 1.88 1.77 1.69
pMKQS 8.17 4.39 3.54 2.97 2.85 2.82 2.76 2.76
pRS-8bit 7.22 3.99 3.20 2.74 2.62 2.49 2.46 2.43
pRS-16bit 7.22 3.57 2.78 2.32 2.19 2.10 2.03 1.97
pRS/Akiba 7.10 4.10 3.27 2.81 2.66 2.55 2.51 2.48
p2w-MS/R 20.8 12.6 13.4 11.3 11.3 10.4 10.2 10.1
pMKQS-SIMD/R 30.0 17.9 15.9 14.8 14.7 14.6 14.6 14.7
pLCP-2w-MS/S 34.5 21.3 19.5 18.9 21.7 22.0 22.5 24.5

