11,159 research outputs found

    Efficient String Matching on Coded Texts

    Get PDF
    The so called "four Russians technique'' is often used to speed up algorithms by encoding several data items in a single memory cell. Given a sequence of n symbols over a constant size alphabet, one can encode the sequence into O(n / lambda) memory cells in O(log(lambda) ) time using n / log(lambda) processors. This paper presents an efficient CRCW-PRAM string-matching algorithm for coded texts that takes O(log log(m/lambda)) time making only O(n / lambda ) operations, an improvement by a factor of lambda = O(log n) on the number of operations used in previous algorithms. Using this string-matching algorithm one can test if a string is square-free and find all palindromes in a string in O(log log n) time using n / log log n processors

    Compressed Text Indexes:From Theory to Practice!

    Full text link
    A compressed full-text self-index represents a text in a compressed form and still answers queries efficiently. This technology represents a breakthrough over the text indexing techniques of the previous decade, whose indexes required several times the size of the text. Although it is relatively new, this technology has matured up to a point where theoretical research is giving way to practical developments. Nonetheless this requires significant programming skills, a deep engineering effort, and a strong algorithmic background to dig into the research results. To date only isolated implementations and focused comparisons of compressed indexes have been reported, and they missed a common API, which prevented their re-use or deployment within other applications. The goal of this paper is to fill this gap. First, we present the existing implementations of compressed indexes from a practitioner's point of view. Second, we introduce the Pizza&Chili site, which offers tuned implementations and a standardized API for the most successful compressed full-text self-indexes, together with effective testbeds and scripts for their automatic validation and test. Third, we show the results of our extensive experiments on these codes with the aim of demonstrating the practical relevance of this novel and exciting technology

    A new word-based compression model allowing compressed pattern matching

    Get PDF
    In this study a new semistatic data compression model that has a fast coding process and that allows compressed pattern matching is introduced. The name of the proposed model is chosen as tagged word-based compression algorithm (TWBCA) since it has a word-based coding and word-based compressed matching algorithm. The model has two phases. In the first phase a dictionary is constructed by adding a phrase, paying attention to word boundaries, and in the second phase compression is done by using codewords of phrases in this dictionary. The first byte of the codeword determines whether the word is compressed or not. By paying attention to this rule, the CPM process can be conducted as word based. In addition, the proposed method makes it possible to also search for the group of consecutively compressed words. Any of the previous pattern matching algorithms can be chosen to use in compressed pattern matching as a black box. The duration of the CPM process is always less than the duration of the same process on the texts coded by Gzip tool. While matching longer patterns, compressed pattern matching takes more time on the texts coded by compress and end-tagged dense code (ETDC). However, searching shorter patterns takes less time on texts coded by our approach than the texts compressed with compress. Besides this, the compression ratio of our algorithm has a better performance against ETDC only on a file that has been written in Turkish. The compression performance of TWBCA is stable and does not vary over 6% on different text files

    Practical Evaluation of Lempel-Ziv-78 and Lempel-Ziv-Welch Tries

    Full text link
    We present the first thorough practical study of the Lempel-Ziv-78 and the Lempel-Ziv-Welch computation based on trie data structures. With a careful selection of trie representations we can beat well-tuned popular trie data structures like Judy, m-Bonsai or Cedar

    A new problem in string searching

    Full text link
    We describe a substring search problem that arises in group presentation simplification processes. We suggest a two-level searching model: skip and match levels. We give two timestamp algorithms which skip searching parts of the text where there are no matches at all and prove their correctness. At the match level, we consider Harrison signature, Karp-Rabin fingerprint, Bloom filter and automata based matching algorithms and present experimental performance figures.Comment: To appear in Proceedings Fifth Annual International Symposium on Algorithms and Computation (ISAAC'94), Lecture Notes in Computer Scienc
    corecore