
B
R

IC
S

R
S-94-42

B
reslauer

&
G

a̧sieniec:
E

fficientString
M

atching
on

C
oded

T
exts

BRICS
Basic Research in Computer Science

Efficient String Matching on
Coded Texts

Dany Breslauer
Leszek Ga̧sieniec

BRICS Report Series RS-94-42

ISSN 0909-0878 December 1994

Copyright c� 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk

E�cient String Matching on Coded Texts

Dany Breslauer� Leszek G�asieniecy

Abstract

The so called �four Russians technique� is often used to speed up al�
gorithms by encoding several data items in a single memory cell� Given
a sequence of n symbols over a constant size alphabet� one can encode
the sequence into O�n��� memory cells in O�log�� time using n� log�
processors�

This paper presents an e	cient CRCW�PRAM string�matching al�
gorithm for coded texts that takes O�log log�m���� time� making only
O�n��� operations� an improvement by a factor of �
 O�logn� on the
number of operations used in previous algorithms� Using this string�
matching algorithm one can test if a string is square�free and �nd all
palindromes in a string in O�log logn� time using n� log logn processors�

� Introduction

In the string�matching problem one is searching for occurrences of a pattern
string P ����m� in a text string T ����n�� There exist several O�n �m	 time se�
quential string�matching algorithms that are used in a large variety of applica�
tions� Galil �
�� published the �rst ecient parallel string�matching algorithm�
His algorithm takes O�logm	 time and uses n processors in the concurrent�
read concurrent�write parallel random�access�machine model� If the symbols
of the input strings are taken from a constant size alphabet� then the number
of processors is reduced to n� logm� achieving an optimal speedup� or in other
words achieving a time�processor product that is equal to the running time of
the fastest sequential algorithm for the problem� �Notice that there is a trivial
constant time parallel string�matching algorithm that uses nm processors� Our
goal is to design fast parallel algorithms that use few processors�	 The saving
is obtained by using the so called �four Russians technique�� named after the
work of Arlazarov et al� ���� where each block of O�logm	 symbols is packed
into a single memory cell to facilitate comparisons of many symbols in a single
operation�

�BRICS � Basic Research in Computer Science� Centre of the Danish National Research
Foundation� Department of Computer Science� University of Aarhus� DK����� Aarhus C�
Denmark� Partially supported by ESPRIT Basic Research Action Program of the EC under
contract �	
�
 �ALCOM II� Part of the research reported in the paper was carried out
while this author was visiting at the Istituto di Elaborazione dell�Informazione� Consiglio
Nazionale delle Ricerche� Pisa� Italy� with the support of the European Research Consortium
for Informatics and Mathematics postdoctoral fellowship�

yInstitute of Informatics� Warsaw University� Banacha �� �����	 Warszawa� Poland�
�Throughout the paper log n usually means max�
� log

�
n�

�

Vishkin ���� generalized Galil�s algorithm and obtained an O�logm	 time
algorithm that uses only n� logm processors� regardless of the alphabet size�
Breslauer and Galil ���� gave an O�log logm	 time string�matching algorithm
that uses n� log logm processors� Breslauer and Galil ���� proved that if n �
O�m	� then this is the best time bound achievable by an optimal�speedup string�
matching algorithm that has access to the input strings only by pairwise symbol
comparisons�

Vishkin ���� presented an optimal�speedup string�matching algorithm that
takes O�log�m	 time for the pattern preprocessing and then only O�log�m	
time to �nd all occurrences of the pattern in the text� Galil �
�� improved the
text processing step to constant time� Goldberg and Zwick �
�� presented an
algorithm with a tradeo� between the the time spent in the pattern preprocess�
ing and the text processing steps� Recently� Crochemore et al� ���� discovered
an algorithm that takes O�log logm	 time to preprocess the pattern and then
constant time to �nd all occurrences of the pattern in the text� Crochemore et
al� also gave a randomized version of their pattern preprocessing algorithm that
takes only constant expected time� These algorithms access the input strings
by pairwise symbol comparisons and do not require any special assumption on
the alphabet size�

This paper gives a variant of Breslauer and Galil�s ���� string�matching
algorithm that takes O�log log�m��		 time making only O�n��	 operations�
after the input strings are coded in O�n��	 memory cells� The parameter
� � O�logn	� The input symbols� which are assumed to be taken from a
constant size alphabet� are encoded in O�log�	 time using n� log� processors�
Notice that the encoding step dominates the number of operations made� Thus
the new algorithm is inferior to the previously known parallel string�matching
algorithms since it has the additional restriction on the alphabet size� However�
the advantages of the algorithm become clear if the input strings are given in
their coded form�

Apostolico� Breslauer and Galil gave ecient parallel algorithms for testing
if a string is square�free and for �nding all palindromes in a string ��� �� ���
Their algorithms share a similar structure� take O�log logn	 time utilizing
n logn� log logn processors� and rely on a procedure that is used to solve sev�
eral string�matching problems� Observing that it suces to encode the input
string only once and use the coded string as input to many string�matching
problem instances� we improve the processor bounds of these algorithms and
obtain optimal�speedup O�log logn	 time n� log logn�processor algorithms for
the two problems� We assume that the reader is familiar with these algorithms
and with the Breslauer�Galil string�matching algorithm�

The paper is organized as follows� Section
 introduces the computation
model� Section � describes how the input strings are encoded and how the coded
strings are manipulated� The string�matching algorithm is given is Section �
and its applications for testing if a string is square�free and for �nding all
palindromes in a string are given in Section �� Concluding remarks and open
problems are given in Section ��

� The computation model

The computation model we use in this paper is the common concurrent�read
concurrent�write parallel random�access�machine� In this model� processors are
allowed to read and write simultaneously at the same memory location� If many
processors write to the same memory cell at the same time they are guaranteed
to write the same value� The arithmetic operations �� �� �� and integer division
� can be performed by each processor in constant time on any memory words�
Notice that the memory words must be able to hold numbers which are as large
as the lengths of the input strings�

The following lemma is often used in parallel algorithms� The claimed
bounds hold also in the weaker exclusive�read exclusive�write parallel random�
access�machine model�

Lemma ��� �Lander and Fischer ����� Given a sequence x�� � � � � xh	 and an
associative binary operation �	 one can compute the pre
x sums x��x��� � ��
xg	 for all g � �� � � � � h	 in O�log h	 time using h� log h processors�

In the CRCW�PRAM model� certain computations can be carried out much
faster�

Lemma ��� �Fich	 Ragde and Wigderson ����� Given a collection of h integers
from the range �� � � � � h	 it is possible to
nd their minima value in constant time
using an h�processor CRCW�PRAM�

The last lemma will be used mainly to �nd the leftmost non�zero entry in
an array� We shall also use the following general theorem without going into
the details of the assignment of processors to their tasks�

Theorem ��� �Brent ���� Any parallel algorithm of time t that consists of a to�
tal of x elementary operations can be implemented on p processors in O�dx�pe�
t	 time�

� Encoding strings

Throughout the paper we assume that the input alphabet is � � f�� �� � � � � c��g�
for some �xed positive constant c� Since the memory words in our model are
able to store numbers as large as n� where n is the length of the string S����n�
being encoded� we could represent at least blogc nc symbols in each memory
word as a number in base c that has the symbols as its digits�

The new string�matching algorithm takes advantage of the coded represen�
tation of strings in two ways� fast comparison of blocks of several symbols and
table lookup of precomputed information� While the �rst use would bene�t
from packing as many symbols as possible in each memory word� the second
might require a substantial use of computational resources �time� processors�
space	 to compute and store the tables� The balance is achieved by packing
only � � max��� b�

�
logc nc	 symbols in each word� The parameters c and � will

be used throughout the paper�

�

Given a string S����n�� we break the string into consecutive blocks of �
symbols and encode each block into a memory word� Thus� a string of length
n is encoded into a sequence of dn��e memory words� We shall continue to
refer to the symbols� the indices and the length of the original string� using the
encoded representation only when we wish to compare substrings fast or when
we wish to look up some information that we have precomputed for the coded
strings�

To manipulate the coded strings eciently we extend the repertoire of oper�
ations supported by our model to include the powers ch� for h � �� � � � � �� and to
support the modulo operation� The modulo operation can be implemented as
a mod b � a� b � ba�bc� and the powers ch are implemented by a table lookup�

Lemma ��� Given a string S����n� over a constant size alphabet	 one can en�
code the string into O�n��	 memory words in O�log�	 � O�log log n	 time
using n� log� � O�n� log logn	 processors�

Proof� The encoding consists of the string representation as a sequence of base
c numbers together with some lookup tables� Most of these tables are described
only later at the place where they are used� but their creation takes place when
the string S����n� is being encoded and they are considered part of the encoded
representation�

The table of powers of c mentioned above is precomputed by Lemma
��
in O�log�	 time making O��	 operations� It occupies O��	 space� Notice that
the power table and other tables that are described later depend only on the
parameters c and �� The size of each table will not exceed O�n��	 and the time
to create each table will not exceed O�log�	 making at most O�n	 operations�

The string representation is created by encoding each consecutive block of
symbols S�g�� � � � �S�g������ as a base c number S�g��S�g����c� � � ��S�g�
�� �� � c���� By Lemma
��� this computation is done in O�log�	 time making
O��	 operations� Since all the dn��e ��blocks are encoded simultaneously� the
encoding takes O�log�	 time making O�n	 operations� By Theorem
��� the
whole encoding step takes O�log�	 time using n� log� processors� �

Using the encoded representation� we can save a factor of � in the number
of operations needed to compare two strings�

Lemma ��� It is possible to compare two coded strings of original length l and
to
nd the position of the
rst mismatch between them if they are not equal	 in
constant time and O�dl��e	 operations�

Proof� The algorithm will use a precomputed table CMP��a��b� that gives the
position of the �rst mismatch between the strings �a and �b� We use the notation
�a and �b to refer to both the integers that code � symbols and to the string
formed by these symbols� The size of the CMP table is O�c��	 � O�n��	 and
it can be computed in constant time making O�c����	 � O�n	 operations� We
describe how the computation of this table is carried out� The computation of
the other tables that are mentioned later is similar and will not be described in
such detail�

�

Each entry of the table CMP��a��b� is computed independently and simulta�
neously by � processors� Notice that if symbols are indexed from � to �� then

the kth symbol of �a is given by the formula� b�a�ck��c mod c� The symbols of
�a and �b are extracted from the integer representation of these strings and the
corresponding symbols are compared simultaneously� The position of the �rst
mismatch is found by Lemma
�
 in constant time making O��	 operations�
and is assigned to CMP��a��b��

Observe that the strings being compared might be speci�ed by indices in
some longer coded strings� Thus� their coded representations do not necessarily
starts on the boundaries of the memory words� Therefore� the algorithm �rst
extracts proper dl��e words that constitute the coded representation of each of
the two strings� Notice that the coded representation of the substring of length
� starting at position k �
 of the string coded as �a followed by �b is given as�
b�a�ck��c� c��k � ��b mod ck��	�

The algorithm then compares the extracted coded representations and �nds
the leftmost coded words where the strings disagree in constant time and
O�dl��e	 operations by Lemma
�
� Then� using the table CMP it �nds the
actual symbol within this memory words where the strings disagree� �

� String matching with coded strings

In this section we describe an algorithm that �nds all occurrences of a pattern
P ����m� in a text T ����n�� The input strings are assumed to be given in their
coded form with the coding parameter �� The algorithm takes O�log log�m��		
time and makes O�dn��e	 operations� If the strings are not already coded� one
can encode them as the single string S����n�m� � P ����m�T ����n��

Observe that for any text position t� � � t � n �m� �� where there is no
occurrence of the pattern� there must be at least one text position WT

t � such
that T �WT

t � 	� P �WT
t � t � ��� The position WT

t is called a witness for the
non�occurrence of the pattern at text position t�

The output of the string�matching problem consists of a length n boolean
vector whose entries indicate if there are any occurrences of the pattern start�
ing at each of the corresponding text positions� This boolean vector will be
encoded the same way as the input strings� with the same parameter �� and
the alphabet symbols � and �� In addition to the boolean vector the algorithm
provides witnesses for the non�occurrences of the pattern� Notice that since our
algorithm makes only O�dn��e	 operations it is not possible to list all witnesses
as in other string�matching algorithms�

The main idea in the new string�matching algorithm is that the witnesses
are given implicitly where any speci�c witnesses can be computed from the
output of the algorithm by a single processor in constant time whenever needed�
The algorithm is otherwise similar to the parallel string�matching algorithm
of Breslauer and Galil ���� with certain modi�cations that allow it to take
advantage of coded strings in order to match short patterns by table lookup�

Theorem ��� The string�matching problem on coded pattern and text strings
can be solved in O�log log�m��		 time making O�dn��e	 operations and using

�

O�dn��e	 space�

We outline the structure of the algorithm next� Initially� there are n�m��
text positions at which an occurrence of the pattern might start� These positions
are called potential occurrences� Using Lemma ��
� one can verify in constant
time making O�dm��e	 operations if any given potential occurrence is a real
occurrence� However� verifying all O�n	 potential occurrences this way is too
costly if the pattern is long� The strategy followed by most ecient parallel
string�matching algorithms �rst eliminates many potential occurrences and then
veri�es which of the remaining potential occurrences are real occurrences�

De�nition ��� A string S����k� has a period of length p if S�i� � S�i� p�	 for
i � �� � � � � k� p�

The shortest non�zero period length of a string S����k� is called the period
length of S����k�� Denote by � the period length of the pattern P ����m�� If p is
not a period length of the pattern P ����m�� then there must exist some pattern
position WP

p � such that P �WP
p � 	� P �WP

p � p�� The positions WP
p are called

witnesses for non�periods of the pattern� Notice that the witnesses WP
p are

de�ned for all p � �� � � � � � � ��
Vishkin ���� suggested the duel method to eliminate potential occurrences

eciently� His method� which is described next� has been used in all ecient
parallel string�matching algorithms afterward as well as in sequential and par�
allel two�dimensional matching algorithms ��� ��� ���
��� The idea in duels is
that if there are two potential occurrence of the pattern at positions p and q
of the text� such that � � q � p � �� then since P �WP

q�p� 	� P �WP
q�p � �q � p	��

the text symbol T �p � WP
q�p � �� can not be equal both to P �WP

q�p� and to

P �WP
q�p� �q� p	�� Therefore� text position p�WP

q�p� � must be a witness for
the non�occurrence of the pattern at text position p or at text position q �pos�
sibly at both positions	 and the algorithm can eliminate one of the potential
occurrences at p or at q by making a single pairwise symbol comparison�

Observe that if the pattern occurs at positions p and q of the text� such that
� � q � p � m� then it has a period of length q � p and therefore � � q � p�
Thus� there can be no more than n�� occurrences of the pattern in the text�
Using duels� it is possible to eliminate eciently potential occurrences that
are close to each other� leaving at most n�� potential occurrences� Still� there
might be too many occurrences to verify separately if the period length � is
much smaller than the pattern length� In this case the algorithm must follow a
di�erent strategy� The algorithm proceeds in few steps�

�� If the pattern length m �
�� then the string�matching problem is solved
by table lookup as described in Lemma ����

� If the pattern length m �
�� then the pattern preprocessing step de�
scribed in Section ��
 is invoked� It �nds the period length of the pattern�
�� and the witnesses WP

p �

�

�a	 If the pattern is found to be non�periodic� namely� if m �
�� then
the algorithms �nds the occurrences of the pattern directly� as de�
scribed in Lemma ����

�b	 If the pattern is periodic� namely� if m �
�� then the algorithm only
searches for occurrences of the non�periodic pattern pre�x P ����
���
This is done as described in Lemma ��� if this pattern pre�x is short
or as described in Lemma ��� if it is long�

The algorithm then reconstructs from the occurrences of this pattern
pre�x and by matching some short pattern sux� the occurrences of
the complete pattern as described in Lemma ����

In the description below we show how the algorithm computes the witnesses
WP

p for non�periods of the pattern� We do not specify exactly how the witnesses

WT
t for non�occurrences of the pattern can be computed since their computation

is similar to the pattern witnesses and they can be easily reconstructed by
tracing the steps of the algorithm�

��� Text processing

The saving in the number of processors used by the algorithm is achieved mainly
by matching short patterns by table lookup�

Lemma ��� One can
nd all occurrences of the pattern P ����m�	 such that
m � d�	 for some
xed constant d � �	 in the text T ����n�	 in constant time
making O�dn��e	 operations and using O�dn��e	 space�

Proof� We show how the pattern occurrences can be found making a constant
number of operations when the text length n � m��� �� If the text is longer�
then the same procedure is applied simultaneously in overlapping text blocks of
length m� �� �� which start � positions apart� making O�dn��e	 operations�

The algorithm precomputes the lookup table SM� �t�� �t�� �p� l� that gives the
answer to the string matching problem with the pattern �p of length l� � � l � ��
in the text of length l���� that is coded in �t� and �t�� The SM table provides
the coded boolean vector representing all occurrences together with witnesses
for all non�occurrences that are represented in an array of size �� This table
requires O�c����	 space�

If the pattern is a longer string that is coded as �P����m� � �P�
�P� � � � �Pd�

�d � �	� � m � d�� and the text is coded as �T � �T� �T� � � � �Td��� then the
algorithm solves the string�matching problem by d table lookups� This is done
by observing that there is an occurrence of the pattern at position q of the text
�T � � � q � �� if and only if there are occurrences of �Pi at position q of �Ti �Ti���
for all i � �� � � � � d � �Pi�s have length � except for �Pd that might be shorter	�

The coded boolean vector representing all occurrences is computed bymask�
ing the coded representation of the solutions to the d smaller string�matching
problems� This can be done eciently by precomputing the lookup table
MASK��a��b� that gives the coded boolean vector that represents the occur�
rences that are represented in both boolean vectors �a and �b� The witnesses for

�

the non�occurrences will not be combined and when there is a need for a speci�c
witness it can be found in constant time by looking it up in the output of the
d smaller string�matching problems sequentially� �

����� Periodic patterns

In this section we describe how the string�matching algorithm deals with long
periodic patterns� Namely m � max�
��
�	� As mentioned above� in this
case the general strategy of eliminating potential occurrences and verifying the
remaining ones is too costly since there might be too many real occurrences�
The algorithm searches only for occurrences of the pattern pre�x P ����
��� which
is non�periodic by the following lemma� and then �nds the occurrences of the
whole pattern by �counting� consecutive occurrences of this pre�x� Recall that
the occurrences of P ����
�� are found by Lemma ���� if � � �� and by Lemma
��� otherwise�

Lemma ��� �Lyndon and Schutzenberger ���� If a string of length k has two
periods of lengths p and q and p � q � k	 then it also has a period of length
gcd�p� q	�

Breslauer and Galil ���� suggested the following method to �nd occurrences
of the full pattern given the occurrences of the pattern pre�x P ����
��� Assume
without loss of generality that the text length n � �m�
� Call an occurrence
of the pattern pre�x P ����
�� at text position i an initial occurrence if there
is no occurrence of this pre�x at position i � � and a
nal occurrence if there
is no occurrence of this pre�x at position i � �� Let I be the largest initial
occurrence in the �rst m�
 positions of the pattern and let F be the smallest
�nal occurrence that is larger than I� It is not dicult to verify that the only
occurrences of the pattern pre�x P ����
�� that are occurrences also of the entire
pattern are those between positions I and F � � � �bm��c � �	 and possibly
also the occurrence at position F � � � �bm��c�
	 if there is an occurrence of
the pattern pre�x P ����l�� l � m� � � bm��c� at position F �
��

Lemma ��	 Given the occurrences of the pattern pre
x P ����
�� in the text
T ����n�	 it is possible to
nd the occurrences of the entire pattern in constant
time making O�n��	 operations and using O�n��	 space�

Proof� Recall that n � �m�
� If the pattern period � � �� then the ini�
tial and �nal occurrences are found by the lookup tables INIT ��t�� �t�� �� and
FINAL��t�� �t�� �� that give for the boolean vectors �t� and �t� that represent
the occurrences of the pattern pre�x P ����
��� the boolean vectors representing
only the initial or �nal occurrences� respectively� If the pattern period � � ��
then the occurrences of the pattern pre�x P ����
�� must be spread at least �
positions apart from each other and the initial and �nal occurrences are found
by examining for each occurrence of the pattern pre�x P ����
�� if there is an
occurrence � position before and after it� In both cases the initial and �nal
occurrences can be clearly found in constant time and O�n��	 operations�

�

The important initial and �nal occurrences I and F are then found similarly
to Lemma ��
� Using I and F and after verifying if there is an occurrence of
the pattern pre�x P ����l�� l � m � � � bm��c� at position F �
�� by Lemma
��
� the algorithm knows which occurrences of the pattern pre�x P ����
�� are
actually occurrences of the whole pattern� Notice that the output boolean
vector representing the occurrences of the pattern can be created eciently since
these occurrences are a contiguous subset of the occurrences of the pattern pre�x
P ����
��� Thus� the whole computation takes constant time� makes O�n��	
operations and uses O�n��	 space� �

����� Non
periodic patterns

In this section we describe how the string�matching algorithm deals with long
non�periodic patterns� Namely
� � m �
� and therefore � � ��

Lemma ��� If the pattern P ����m� has period length � � �	 then it contains a
substring P �z��z�
�� ��	 called a synchronizing block	 with period length that
is at least ��

Proof� Recall that m �
�� Let �� be the period length of the pattern pre�x
P ����
��� If �� � �� then this pre�x is the required substring� Otherwise� let
P ����l� be the longest pre�x of the pattern whose period length is ��� By Lemma
���� the period length of P �l �
� �
��l� is also �� and the period length of
P �l�
��
��l� �� is at least �� �

The pattern preprocessing described in the next section computes the period
length of the pattern� the witnesses WP

p and a synchronizing block which are
used in the next lemma�

Lemma ��� The string matching problem with the coded pattern P ����m� and
text T ����n�	 such that
� � m �
�	 is solved in O�log log�m��		 time making
O�n��	 operations and using O�n��	 space�

Proof� The algorithm starts eliminating potential occurrences by �nding all
occurrences of the synchronizing block P �z��z �
� � �� in the text using the
table lookup in Lemma ���� Observe that there might be an occurrence of the
pattern at text position q only if there is an occurrence of the synchronizing
block P �z��z �
� � �� at text position q � z � �� Since the period length of
the synchronizing block is at least �� the remaining potential occurrences must
be spaced at least � positions apart and there can be at most dn��e potential
occurrences left� Namely� at most one potential occurrence left within each
coded word representing the text� The positions of the remaining potential
occurrences are written into an array of size O�n��	� Notice that the witnesses
for the non�occurrences of the potential occurrences eliminated in this step are
given implicitly by matching the synchronizing block� The other witnesses that
are computed later will be stored explicitly in an array�

The elimination of the remaining potential occurrences continues as in the
algorithm of Breslauer and Galil ����� Notice that� for technical reasons� the pat�
tern preprocessing step computes the witnesses WP

p � only for p � �� � � � � dm�
e�

�

The algorithm �rst partitions the text into consecutive blocks of length
� log log�m��	� There are at most log log�m��	 potential occurrences left in
each such block� By performing duels� the algorithm eliminate all but at most
one potential occurrence in each block� This takes O�log log�m��		 time using
a single processor per block� The entire computation makes O�n��	 operations�

The algorithm then partitions the text into blocks of length dm�
e and
proceed in each block simultaneously using m�� log log�m��	 processors per
block� In each block there are at most m�� log log�m��	 potential occurrences
left� The algorithm recursively partitions blocks with h potential occurrences
into

p
h blocks with

p
h potential occurrences� giving

p
h processors to handle

each block� The recursive step leaves at most one potential occurrence in each
of the

p
h blocks� Then� using h processors for performing duels between all

pairs of the remaining
p
h potential occurrences in the block� the algorithm

eliminates all but one potential occurrence in the block� The depth of the
recursion� which is the time spent� is O�log log�m��		�

After the elimination of potential occurrences described above there are at
most O�n�m	 potential occurrences left� The algorithm veri�es these potential
occurrences to be real occurrences using Lemma ��
� The entire computation
takes O�log log�m��		 time making O�n��	 operations and using O�n��	 space�
�

��� Pattern preprocessing

The pattern preprocessing is invoked only if m �
�� It has to �nd the
period length � of the pattern and the witnesses WP

p � For technical rea�

sons� the pattern preprocessing step computes only the witnesses WP
p � for

p � �� � � � �min�dm�
e� � � �	� In addition� if � � �� then the pattern pre�
processing step �nds also a synchronizing block�

Notice� that if the period length of the pattern � � dm�
e� then it is not
computed precisely� In this case the pattern is non�periodic and the period
length � is not used by the algorithm�

Lemma �� The pattern preprocessing step with the coded pattern P ����m�	
such that m �
�	 takes O�log log�m��		 time making O�m��	 operations and
using O�m��	 space�

Proof� The pattern preprocessing step �rst �nds a synchronizing block and
then uses this block and witnesses that it has already computed to compute
more witnesses in iterations that resemble the text processing step� The indices
p for which the witnesses WP

p are not yet computed are called potential period

lengths� The witnesses WP
p � p � �� � � � �min�dm�
e� �� �	� will be given implic�

itly� where any speci�c witness can be produced from the information computed
in constant time by a single processor�

The pattern preprocessing uses a precomputed lookup table� similarly to
the SM table from Lemma ���� that gives the boolean vector representing the
period lengths and the witnesses for the non�periods of a short string� If the
pattern length m � ��� then the pattern preprocessing step will be solved

��

directly by this table lookup�� Thus� from here on we assume that the pattern
length m � ���

Our �rst goal is to �nd a synchronizing block and to reduce the number of
potential period lengths to O�m��	� Recall the constructive nature of the proof
of Lemma ���� Using the precomputed table of period lengths of short strings�
the algorithm �nds the period length �� of the pattern pre�x P ����
��� If �� � ��
then the algorithm has found the synchronizing block P ����
��� Otherwise� if
�� � �� the algorithm checks if the whole pattern has period length ��� by Lemma
��
� If �� turns out to be the period length of the whole pattern� then the
only information required from the pattern preprocessing step is this period
length � � ��� and the pattern preprocessing is completed� Otherwise� the
synchronizing block P �z��z�
�� �� has been found�

If z � �� � � dm�
e� then by the construction of the synchronizing block
in Lemma ���� the pattern pre�x P ����z �
� �
� has period length �� and
P ����z �
� � �� does not have this period length� Thus� by Lemma ���� full
occurrences of the pattern pre�x P ����
�� that start in the �rst dm�
e positions
of the pattern� start at positions k�� � �� Matching the pattern pre�x P ����
��
by Lemma ���� one obtains the witnesses WP

p � except for the multiples p � k���
The position z �
�� � where the period of length �� terminates provides the
witness WP

�� � and since the pattern pre�x P ����z �
� �
� has period length
��� WP

p � z �
� � �� for all the multiples p � k��� such that � � p � dm�
e�
Thus� the witnesses WP

p can be reconstructed either by matching the pattern

pre�x P ����
��� by Lemma ���� if p is not a multiple of ��� or WP
p � z �
�� �

otherwise�
If z���� � dm�
e� then the algorithm �nds all occurrences of the synchro�

nizing block P �z��z�
���� in the pattern� by Lemma ���� Observe that the wit�
ness to the non�occurrence of the synchronizing block at pattern position p� z

correspond to the witnessWP
p � The occurrences� which must be spaced at least

� positions apart� leave at most O�m��	 potential period lengths in the �rst half
of the pattern� �This is not completely true� If dm�
e � z�
��� � dm�
e���
then there can be no occurrences of the synchronizing block at positions that
are larger than or equal to m � z �
�� However� it is possible to achieve
the goal by searching for occurrences of the pattern pre�x P ����
�� at position
m�z�
�� � � �� dm�
e�	 The positions of the remaining potential period lengths
are written into an array and their witnesses will be computed and stored ex�
plicitly as we show next� Observe that when a speci�c witness is called for�
it can be either reconstructed by matching the synchronizing block again or it
will be stored explicitly in a table�

The computation of the remaining witnesses proceedings in the same fash�
ion as the string�matching algorithm of Breslauer and Galil ����� We sketch
here only a non�optimal version of the algorithm making O�m log log�m��	��	
operations� The algorithm can be made optimal similarly to the algorithm of
Breslauer and Galil�

�An alternative implementation would match these short patterns by the table lookup in
Lemma ���� This would reduce the size of the lookup table we use here to �nd the period
lengths of short strings� but would not eliminate completely the need for this lookup table�
since this table is still used later to �nd the period length of the pattern pre�x P�
������

��

The algorithm proceeds in iterations and maintains the invariant that at the
beginning of iteration number i� there is at most one potential period length
�yet�to�be�computed witness	 in each block of length ki� where�

ki � m
�� �

�i � � �

�i for i � �� � � � � log log�m��	�

Clearly� the invariant holds at the beginning of iteration number �� since
the potential period lengths remaining after the �rst part of the computation
are spaced at least k� � � positions apart�

At the beginning of iteration number i� there are at most ki���ki potential
period length in each block of length ki��� The algorithm checks using Lemma
��
� which of the potential period lengths in the �rst ki�� block is a period
length of the pattern pre�x P ����
ki���� Those potential period length which
are eliminated have their witness determined� while the remaining potential
period lengths� if any� are multiples of the shortest remaining period length� by
Lemma ���� This computation takes constant time and O�ki����	 operations
for each potential period� or O�k�i���ki�	 � O�m��	 operations in total�

If there are any potential period lengths remaining in the �rst ki�� block�
then the algorithm veri�es whether the shortest one is the period length of the
whole pattern by Lemma ��
� If it is found to be the period length then the
computation is complete�

Otherwise� the smallest position at which this periodicity is terminated is a
witness for all multiples of the shortest period in the �rst ki�� block� Now� it
remains only to eliminate all but at most one potential period length in each
ki�� block� before proceeding to the next iteration�

It is possible to eliminate all but at most one potential period length in each
ki�� block using duels� since at this point we have the witnesses WP

p � for all
p � �� � � � � ki��� The duels� however� are slightly di�erent from those used in the
text processing step� since occurrences might be overhanging� a duel that has
to produce one of the witnesses WP

i or WP
j � for i � j � dm�
e� will normally

produce the witness i�WP
j�i ��� if it is within the pattern� otherwise the duel

produces the witnesses WP
i �WP

j�i � j � i or WP
j �WP

j�i�
The duels are carried out in the same fashion as in the text processing

step� However� we allow the algorithm to use m�� log log�m��	 processors�
The duels will take at most O�log log�m��		 time in the �rst two iterations
of the pattern preprocessing� after which they take constant time since the
number of remaining potential period lengths will be small enough relatively to
the number of available processors�

The whole pattern preprocessing step described above takesO�log log�m��		
time� The overall number of operations used is O�m��	 except at the step
that veri�es if the shortest remaining potential period length in each iteration
is the period length of the whole pattern� This step uses O�m��	 operation
in each iteration and thus O�m log log�m��	��	 operations over all iteration�
However� this step can be implemented more economically� making only O�m��	
operations ����� �

�

� Applications

In this section we present two application of the string�matching algorithm
described above in reducing the number of processors used in known parallel
algorithms for testing if a string is square�free and for �nding all palindromes
in a string� The reduction in the number of processors is achieved since the
input string S����n� has to be encoded only once while its encoded substrings
are presented several times as input to the string�matching algorithm� Recall
that the input string S����n� is encoded with the parameter � � O�logn	�

��� Testing if a string is square�free

A non�empty string of the form xx is called a repetition� A square is de�ned
as a repetition xx� where x is primitive� or in other words x 	� vh for all strings
v and integers h � �� Strings that do not contain any substring that is a
repetition are called repetition�free or square�free� For example �aa�� �abab� and
�baba� are the repetitions which are contained in the string �baababa�� It is not
dicult to verify that any string with at least four symbols over alphabets with
two symbols contains a square� However� there exist in�nite length strings on
three letter alphabets that are square�free as shown by Thue ���� ����

In the sequential setting� algorithms for testing if a string is square�free and
for �nding all repetitions in a string were designed by Apostolico and Preparata
���� Crochemore ���� ���� Kosaraju �
��� Main and Lorentz ���� �
� and Rabin
����� Main and Lorentz ���� proved that it is possible to �nd all repetition in a
string in O�n logn	 time using pairwise comparison of input symbols that test
for equality� They have also shown that �n logn	 equality tests are necessary
even to decide if a string is square�free� Main and Lorentz ��
� have shown using
the �four Russians technique� that if the input alphabet has constant size� then
it is possible to test if a string is square�free in O�n	 time� The same bound
was obtained by Crochemore ���� using a di�erent method� Notice that it is not
possible to list all squares in O�n	 time since there might be too many squares
�
� ����

In the parallel setting� Crochemore and Rytter ���� ��� test if a string is
square�free in O�logn	 time using n processors and O�n���	 space� Apostolico
��� designed an algorithm that tests if a string is square�free and also detects all
squares within the same time and processor bounds using only linear auxiliary
space� If the input alphabet has constant size� then Apostolico�s algorithm can
use the �four Russians technique� to tests if a string is square�free in O�logn	
time utilizing only n� logn processors�

Apostolico and Breslauer ��� gave a parallel implementation of the sequential
algorithm of Main and Lorentz ��
� to test if a string is square�free and �nd all
square in a string using equality tests in O�log logn	 time using n log n� log log n
processors� If the input alphabet has constant size� then the number of proces�
sors used by their algorithm to test if a string is square�free can be reduced to
n� log logn by using the new string�matching algorithm� These bounds com�
pare favorably also with the O�logn	 time algorithm given by Apostolico ��� for
testing if a string over a constant size alphabet is square�free� Notice that all

��

the parallel algorithms mentioned above achieve an optimal speedup since their
time�processor product is the same as the time complexity of the fastest known
sequential algorithm under the same assumptions on the input alphabet�

Theorem 	�� There exists an algorithm to test if a string S����n� over a con�
stant size alphabet is square�free in O�log logn	 time using n� log logn proces�
sors and O�n	 space�

The details of the algorithm can be found in Apostolico and Breslauer�s
paper ���� The necessary modi�cations to take advantage of the coded strings
are similar to� and simpler than those of the palindrome detection algorithm
that is discusses in more details next�

��� Finding all palindromes in a string

Palindromes are symmetric strings that read the same forward and backward�
Formally� a non�empty string w is a palindrome if w � wR� where wR denotes
the string w reversed� It is convenient to distinguish between even length palin�
dromes that are strings of the form w � vvR and odd length palindromes that
are strings of the form w � vavR� where v is an arbitrary string and �a� is a
single alphabet symbol�

Given a string S����n�� we say that there is an even palindrome of radius R
centered at position k of S����n�� if S�k � i� � S�k � i � ��� for i � �� � � � �R�
We say that there is an odd palindrome of radius �R centered on position k of
S����n�� if S�k� i� � S�k� i�� for i � �� � � � � �R� The radius R �or �R	 is maximal
if there is no palindrome of radius R�� centered at �on	 the same position� In
this section we will be interested in computing the maximal radii R�k� and �R�k�
of the even and the odd palindromes which are centered at �on	 all positions k
of S����n�� Notice that if we double each input symbol� then odd palindromes
become even and thus� without loss of generality� we can concentrate on �nding
only the maximal radii of the even palindromes ����

In the sequential setting� Manacher ����� and Knuth� Morris and Pratt �
��
presented linear�time algorithms that �nd the initial palindromes �palindrome
pre�xes	 of a string� Galil �

� and Slisenko ���� presented real�time algorithms
on multi�tape Turing machines to �nd all initial palindromes� A closer look at
Manacher�s algorithm reveals that it not only �nds the initial palindromes� but
it also computes the maximal radii of palindromes centered at all positions of
the input string using pairwise symbol comparisons that test for equality� Thus
it solves the problem we consider in this section in O�n	 time� Notice that
although the similarity between the de�nitions of squares and palindromes is
obvious� the computational complexities of detecting squares and palindromes
using equality tests are inherently di�erent� The parallel algorithms discussed
in this paper� however� are quite similar�

In the parallel setting� Crochemore and Rytter ���� presented an algorithm
that �nds all palindromes in a string in O�logn	 time using n processors and
O�n���	 space� Their algorithm assumes that the alphabet symbols are small
integers� Breslauer and Galil ��
�� using an observation of Fischer and Paterson

��

�
��� described an algorithm that �nds all initial palindromes in a string in
O�log logn	 time and n� log logn processors using equality tests�

Apostolico� Breslauer and Galil ��� gave an algorithm that can �nd all palin�
dromes in a string using equality tests in O�log logn	 time and n log n� log log n
processors� They also gave an optimal�speedup algorithm that �nds all palin�
dromes in a string over constant size alphabets in O�logn	 time and n� logn
processors� using the �four Russians technique�� We show next that if the
input alphabet has constant size then the number of processors used in their
O�log logn	 time algorithm can be reduces to n� log logn� achieving an optimal
speedup�

Theorem 	�� There exists an algorithm that
nds all even palindromes in a
string S����n� over a constant size alphabet in O�log log n	 time using n� log log n
processors and O�n	 space�

We outline the main parts of the algorithm of Apostolico� Breslauer and
Galil ��� and point out where we take advantage of coded strings� The miss�
ing proofs and a more complete description of the algorithm can be found in
Apostolico� Breslauer and Galil�s paper� Notice that the algorithm sometimes
refers to reversed substrings� and thus we have to encode both the original input
string and its reverse� Alternatively� we can precompute a table that will pro�
vide for each coded block of symbols� the coded representation of the reversed
block� To simplify the presentation� assume without loss of generality that the
algorithms can access symbols whose indices are out of the boundaries of the
input string� These symbols are considered to be di�erent from each other and
from the symbols of S����n��

The main observation that allows to �nd the radii of many palindromes
together is given in the following lemma�

Lemma 	�� Assume that the string S����n� contains an even palindrome whose
radius is at least r centered at position p� Furthermore	 let S��L���R� be the
maximal substring that contains S�p � r��p� r � �� and is periodic with period
length
r� Namely	 S�i� � S�i �
r�	 for i � �L� � � � � �R �
r	 and S��L � �� 	�
S��L �
r� �� and S��R � �� 	� S��R �
r � ���

Then the maximal radii of the palindromes centered at positions q � p� lr	
for integral positive or negative values of l	 such that �L � q � �R	 are given as
follows�

 If q � �L 	� �R � q � �	 then the radius is exactly min�q � �L� �R � q � �	�

 If q � �L � �R � q � �	 then the radius is larger than or equal to q � �L�
The radius is exactly q � �L if and only if S��L � �� 	� S��R � ���

The algorithm proceeds in independent stages which are computed simul�
taneously� In stage number 	� � � 	 � blog� nc � �� the algorithm computes all
entries R�i� of the radii array such that �l� � R�i� � �l�� for l� �
�� Notice
that each stage computes disjoint ranges of the radii values and that all possible
radii values are computed by some stage�

��

The remainder of this section describes a generic stage number 	� Partition
the input string S����n� into consecutive blocks of length l�� Stage number 	
consists of independent sub�stages that are assigned to each such block and
computed simultaneously� Each sub�stage �nds the radii of all palindromes
which are centered in the block that it is assigned to and whose radii are in
the range computed by stage 	� Sometimes palindromes whose radii are out of
this range can be detected� but these radii do not have to be written into the
output array since they are guaranteed to be found in an other stage�

The sub�stage that is assigned to block number h starts with a call to
the string�matching algorithm to �nd all occurrences of the four consecutive
blocks S��h � �	l� � ���hl��� reversed� in S��h �
	l� � ����h � �	l� � ��� Let
p� � p� � � � � � pr denote the indices of all these occurrences� The next lemma
states that we essentially found all �interesting� palindromes�

Lemma 	�� There exists a correspondence between the elements of the fpig
sequence and all palindromes that are centered in block number h and whose
radii are large enough�

 If pi � hl� is odd	 then pi corresponds to an even palindrome which is
centered at position �pi � hl� � �	�
�

 If pi � hl� is even	 then pi corresponds to an odd palindrome which is
centered on position �pi � hl�	�
�

Each palindrome whose radius is at least �l�� � has some corresponding pi	
while palindromes that correspond to some pi are guaranteed to have radii that
are at least �l��

Lemma 	�	 The sequence fpig	 which is de
ned above	 forms an arithmetic
progression�

By the last lemma the sequence fpig can be represented by three integers�
the start� the di�erence and the sequence length� This representation can be
computed from the output of the string matching algorithm in constant time
and O�dl���e	 operations since it suces to �nd the positions of the �rst� second
and last occurrences� De�ne the sequence fqig� for i � �� � � � � l� to list all centers
of the even palindromes that correspond to elements in fpig� By Lemma ����
the sequence fqig also forms an arithmetic progression and therefore it can also
be computed and manipulated eciently�

If the fqig sequence does not contain any element� then there are no even
palindromes whose radius is at least �l� that are centered in the current block�
If there is only one element q�� then by Lemma ��
� we can �nd in constant time
and O�dl���e	 operations what is the radius of the palindrome that is centered
at q� or we can conclude that it is too large to be computed in this stage� If
there are more elements� let q denote the di�erence of the arithmetic progression
fqig� The next lemma shows how to �nd the radii of the palindromes centered
at fqig eciently�

��

Lemma 	�� It is possible to
nd the radii of all even palindromes centered
at positions in fqig	 which are in the range that is computed in this stage	 in
constant time and O�dl���e	 operations�

Proof� Let
L be the smallest index such that q���l� �
L � q� and S�
L��q��
�� � S�
L�
q��q��
q���� and
R be the largest index such that ql �
R � ql��l�
and S�ql �
q��
R �
q� � S�ql��
R�� The indices
L and
R are computed in
constant time and O�dl���e	 operations by Lemma ��
� By Lemma ���� the
radius of the palindrome centered at position qi is at least �i � min�qi�
L�
R�
qi��	� If �i � �l�� then the radius of the palindrome centered at qi is too large
to be computed in this stage and it does not have to be determined exactly�
Otherwise� the radius is exactly �i except for at most one of the qi�s which
satis�es qi�
L �
R� qi��� For this particular qi� by Lemma ��
� we can �nd
in constant time and O�dl���e	 operations what is the radius of the palindrome
or we can conclude that it is too large to be computed in this stage� �

The number of radii that are computed in some given sub�stage can be as
large as O�l�	� This might cause a scheduling problem since even if the overall
algorithm can make enough operations to update the whole radii array� it can
not make more than O�dl���e	 operations in the given sub�stage� To overcome
this problem we agree that the algorithm will output only few representatives for
each group of radii that are found in the same sub�stage� These representative
will contain enough information to reconstruct the radii of all palindromes later�

The algorithm partitions the output array R�h� into contiguous blocks of
length �� When some palindromes are discovered� it writes only one representa�
tive for each palindrome group per each block� The representative will contain a
description of the part of the fqig sequence that falls within the block together
with
L and
R� Thus� the algorithm does not write more than O�dl���e	
representatives�

After all stages and sub�stages are completed� in each ��block of the output
array R�k�� the number of palindromes to be reconstructed from the represen�
tatives is counted� This can be done in O�log�	 time using �� log� processors
per block by Lemma
��� Then� the � processors that are available in each
block of length � can be properly assigned to create the complete output array
with the radii of all palindromes�

Proof of Theorem	��� Stage number 	 has bn�l�c sub�stages� Each sub�stage
solves a string�matching problem and then by Lemma ���� it �nds the palin�
dromes that correspond to the occurrences discovered� Thus� each sub�stage
takes O�log log�l���		 time and makes O�dl���e	 operations using O�dl���e	
space� Therefore� stage number 	 takes T� � O�log log�l���		 time and makes
O�dl���e � bn�l�c	 operations using O�dl���e � bn�l�c	 space�

Recall that � � O�logn	� The algorithm takes maxT� � O�log log n	 time�
In all the log n stages� the algorithm makes O�n	 operations and uses O�n	
space� The last step that reconstructs all entries of the output radii array from
their representatives also takes O�log logn	 time making O�n	 operations and
using O�n	 space� �

��

� Conclusions

The string�matching algorithm presented in this paper takes advantage of the
bounded alphabet size to reduce the number of processor used� Since the
lower bound of Breslauer and Galil ���� �
� does not hold if the alphabet has
constant size� one can hope to design an optimal�speedup algorithms for sev�
eral string problems� such as the string�matching� the square�detection and the
palindrome�detection problems� that will achieve faster running times over con�
stant size alphabets�

An other interesting open question remaining is whether there exists a fast
optimal�speedup palindrome detection algorithm using only pairwise symbol
comparisons�

References

��� A� Amir� G� Benson� and M� Farach� An alphabet�independent approach
to two�dimensional pattern�matching� SIAM J� Comput��
��
	����!�
��
�����

�
� A� Apostolico� On context constrained squares and repetitions in a string�
R�A�I�R�O� Informatique theorique� ���
	����!���� �����

��� A� Apostolico� Optimal Parallel Detection of Squares in Strings� Algorith�
mica� ��
��!���� ���
�

��� A� Apostolico and D� Breslauer� An Optimal O�log logn	 Time Parallel
Algorithm for Detecting all Squares in a String� Technical Report CUCS�
�����
� Computer Science Dept�� Columbia University� ���
�

��� A� Apostolico� D� Breslauer� and Z� Galil� Optimal Parallel Algorithms for
Periods� Palindromes and Squares� In Proc� ��th International Colloquium
on Automata	 Languages	 and Programming� number �
� in Lecture Notes
in Computer Science� pages
��!���� Springer�Verlag� Berlin� Germany�
���
�

��� A� Apostolico� D� Breslauer� and Z� Galil� Parallel Detection of all Palin�
dromes in a String� Theoret� Comput� Sci�� ����� To appear�

��� A� Apostolico and F�P� Preparata� Optimal o��line detection of repetitions
in a string� Theoret� Comput� Sci��

�
��!���� �����

��� V�L� Arlazarov� E�A� Dinic� M�A� Kronrod� and I�A� Faradzev� On eco�
nomic construction of the transitive closure of a directed graph� Soviet
Math� Dokl�� ����
��!�
��� �����

��� R�P� Brent� Evaluation of general arithmetic expressions� J� Assoc� Com�
put� Mach��
��
��!
��� �����

���� D� Breslauer and Z� Galil� An optimal O�log logn	 time parallel string
matching algorithm� SIAM J� Comput�� ����	�����!����� �����

��

���� D� Breslauer and Z� Galil� A Lower Bound for Parallel String Matching�
SIAM J� Comput��
���	����!��
� ���
�

��
� D� Breslauer and Z� Galil� Finding all Periods and Initial Palindromes of
a String in Parallel� Algorithmica� ����� To appear�

���� R� Cole� M� Crochemore� Z� Galil� L� G"asieniec� R� Hariharan� S� Muthukr�
ishnan� K� Park� and W� Rytter� Optimally fast parallel algorithms for
preprocessing and pattern matching in one and two dimensions� In Proc�
�th IEEE Symp� on Foundations of Computer Science� pages
��!
���
�����

���� M� Crochemore� An optimal algorithm for computing the repetitions in a
word� Inform� Process� Lett�� �
��	�
��!
��� �����

���� M� Crochemore� Transducers and repetitions� Theoret� Comput� Sci��
�
���!��� �����

���� M� Crochemore� Z� Galil� L� G"asieniec� K� Park� and W� Rytter� Constant�
Time Randomized Parallel String Matching� Manuscript� �����

���� M� Crochemore� L� G"asieniec� R� Hariharan� S� Muthukrishnan� and
W� Rytter� A Constant Time Optimal Parallel Algorithm for Two Di�
mensional Pattern Matching� Manuscript� �����

���� M� Crochemore and W� Rytter� Ecient parallel algorithms to test square�
freeness and factorize strings� Inform� Process� Lett�� �����!��� �����

���� M� Crochemore and W� Rytter� Usefulness of the Karp�Miller�Rosenberg
algorithm in parallel computations on strings and arrays� Theoret� Comput�
Sci�� �����!�
� �����

�
�� F�E� Fich� R�L� Ragde� and A� Wigderson� Relations between concurrent�
write models of parallel computation� In Proc� rd ACM Symp� on Prin�
ciples of Distributed Computing� pages ���!���� �����

�
�� M�J� Fischer and M�S� Paterson� String matching and other products� In
R�M� Karp� editor� Complexity of Computation� pages ���!�
�� American
Mathematical Society� Prividence� RI�� �����

�

� Z� Galil� Palindrome Recognition in Real Time by a Multitape Turing
Machine� J� Comput� System Sci�� ���
	����!���� �����

�
�� Z� Galil� Optimal parallel algorithms for string matching� Inform� and
Control� ������!���� �����

�
�� Z� Galil� A Constant�Time Optimal Parallel String�Matching Algorithm�
In Proc� ��th ACM Symp� on Theory of Computing� pages ��!��� ���
�

�
�� Z� Galil and K� Park� Truly Alphabet�Independent Two�Dimensional Pat�
tern Matching� In Proc� th IEEE Symp� on Foundations of Computer
Science� pages
��!
��� ���
�

��

�
�� T� Goldberg and U� Zwick� Faster parallel string matching via larger de�
terministic samples� J� Algorithms� ���
	�
��!���� �����

�
�� D�E� Knuth� J�H� Morris� and V�R� Pratt� Fast pattern matching in strings�
SIAM J� Comput�� ���

!���� �����

�
�� S�R� Kosaraju� Computation of Squares in a String� In Proc� �rd Symp� on
Combinatorial Pattern Matching� number ��� in Lecture Notes in Com�
puter Science� pages ���!���� Springer�Verlag� Berlin� Germany� �����

�
�� R�E� Lander and M�J� Fischer� Parallel pre�x computation� J� Assoc�
Comput� Mach��
���	����!���� �����

���� R�C� Lyndon and M�P� Schutzenberger� The equation am � bncp in a free
group� Michigan Math� J�� ��
��!
��� ���
�

���� G�M� Main and R�J� Lorentz� An O�n logn	 algorithm for �nding all rep�
etitions in a string� J� Algorithms� ���

!��
� �����

��
� G�M� Main and R�J� Lorentz� Linear time recognition of squarefree strings�
In A� Apostolico and Z� Galil� editors� Combinatorial Algorithms on Words�
volume �
 of NATO ASI Series F� pages
��!
��� Springer�Verlag� Berlin�
Germany� �����

���� G� Manacher� A new Linear�Time �On�Line� Algorithm for Finding the
Smallest Initial Palindrome of a String� J� Assoc� Comput� Mach��

����!
���� �����

���� M�O� Rabin� Discovering Repetitions in Strings� In A� Apostolico and
Z� Galil� editors� Combinatorial Algorithms on Words� volume �
 of NATO
ASI Series F� pages
��!
��� Springer�Verlag� Berlin� Germany� �����

���� A�O� Slisenko� Recognition of palindromes by multihead Turing machines�
In V�P� Orverkov and N�A� Sonin� editors� Problems in the Constructive
Trend in Mathematics VI �Proceedings of the Steklov Institute of Mathe�
matics	 No� ����� pages ��!
�
� Academy of Sciences of the USSR� �����
English Translation by R�H� Silverman� pp�
�!
��� Amer� Math� Soc��
Providence� RI� �����

���� A� Thue� #Uber unendliche zeichenreihen� Norske Vid� Selsk� Skr� Mat�
Nat� Kl� �Cristiania�� ��	��!

� �����

���� A� Thue� #Uber die gegenseitige lage gleicher teile gewisser zeichenreihen�
Norske Vid� Selsk� Skr� Mat� Nat� Kl� �Cristiania�� ��	��!��� ���
�

���� U� Vishkin� Optimal parallel pattern matching in strings� Inform� and
Control� �����!���� �����

���� U� Vishkin� Deterministic sampling � a new technique for fast pattern
matching� SIAM J� Comput��
���	�

!��� �����

�

Recent Publications in the BRICS Report Series

RS-94-42 Dany Breslauer and Leszek Ga̧sieniec. Efficient String
Matching on Coded Texts. December 1994. 20 pp.

RS-94-41 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi
Wigderson. On Data Structures and Asymmetric Commu-
nication Complexity. December 1994. 17 pp.

RS-94-40 Luca Aceto and Anna Ingólfsdóttir. CPO Models for
GSOS Languages — Part I: Compact GSOS Languages.
December 1994. 70 pp. An extended abstract of the paper
will appear in: Proceedings of CAAP ’95, LNCS, 1995.

RS-94-39 Ivan Damgård, Oded Goldreich, and Avi Wigderson.
Hashing Functions can Simplify Zero-Knowledge Proto-
col Design (too). November 1994. 18 pp.

RS-94-38 Ivan B. Damgård and Lars Ramkilde Knudsen. Enhanc-
ing the Strength of Conventional Cryptosystems. Novem-
ber 1994. 12 pp.

RS-94-37 Jaap van Oosten. Fibrations and Calculi of Fractions.
November 1994. 21 pp.

RS-94-36 Alexander A. Razborov. On provably disjoint NP-pairs.
November 1994. 27 pp.

RS-94-35 Gerth Stølting Brodal. PartiallyPersistentData Structures
of Bounded Degree with Constant Update Time. November
1994. 24 pp.

RS-94-34 Henrik Reif Andersen, Colin Stirling, and Glynn
Winskel. A Compositional Proof System for the Modal
�-Calculus. October 1994. 18 pp. Appears in: Proceed-
ings of LICS ’94, IEEE Computer Society Press.

RS-94-33 Vladimiro Sassone. Strong Concatenable Processes: An
Approach to the Category of Petri Net Computations. Oc-
tober 1994. 40 pp.

RS-94-32 Alexander Aiken, Dexter Kozen, and Ed Wimmers. De-
cidability of Systems of Set Constraints with Negative Con-
straints. October 1994. 33 pp.

