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Abstract: In this study a new semistatic data compression model that has a fast coding process and that allows

compressed pattern matching is introduced. The name of the proposed model is chosen as tagged word-based compression

algorithm (TWBCA) since it has a word-based coding and word-based compressed matching algorithm. The model has

two phases. In the first phase a dictionary is constructed by adding a phrase, paying attention to word boundaries, and

in the second phase compression is done by using codewords of phrases in this dictionary. The first byte of the codeword

determines whether the word is compressed or not. By paying attention to this rule, the CPM process can be conducted as

word based. In addition, the proposed method makes it possible to also search for the group of consecutively compressed

words. Any of the previous pattern matching algorithms can be chosen to use in compressed pattern matching as a black

box. The duration of the CPM process is always less than the duration of the same process on the texts coded by Gzip

tool. While matching longer patterns, compressed pattern matching takes more time on the texts coded by compress

and end-tagged dense code (ETDC). However, searching shorter patterns takes less time on texts coded by our approach

than the texts compressed with compress. Besides this, the compression ratio of our algorithm has a better performance

against ETDC only on a file that has been written in Turkish. The compression performance of TWBCA is stable and

does not vary over 6% on different text files.
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1. Introduction

Although data compression was an old notion, the entropy concept was first introduced in the work by Claude

E. Shannon named A Mathematical Theory of Communication [1] in 1948. Besides this, Shannon introduced

the mathematical background of coding theory. In the information theory area of computer science, data

compression or source coding is storing information by using fewer bits. Nowadays, data compression is used

in operations such as increasing the data transfer ratio or reducing the occupied storage space. Thus, many

lossless and lossy data compression methods were developed. In lossless data compression, data are coded and

when they are decoded the original data are acquired [2]. However, in lossy compression, data are compressed

with some acceptable loss in original data. When decoding is done the original data are acquired with some

acceptable loss [3].

Pattern matching algorithms have a significant role in the fields that information retrieval is used in.

In programming methods used in computer science fields like system and software design, pattern matching
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BULUŞ et al./Turk J Elec Eng & Comp Sci

algorithms are widely used as well. Furthermore, pattern matching algorithms are used in the fields like search

engines, molecular biology, and image recognition systems.

Pattern matching without decoding the compressed data or with partial decoding on compressed data is

called compressed pattern matching (CPM).

The CPM problem was formally defined by Amir and Benson [4]. Let c be a given compressor,

σ = s1. . . .su be a text string of length u over alphabet
∑
{a1, . . . ,aq} , c(P ) be the compressed form of the

pattern P = p1. . .pm , and σ . c = t1. . . tn be the compressed form of σ of length n ≤ u .

Input: Compressed text σ . c = t1. . . tn and compressed pattern c(P )

Output: All locations in σ where pattern P occurs [5,6]

Let the text σ . c be the compressed form of text T and pattern is P; the compressed pattern matching

problem finds all occurrences of c(P ) in T by using only σ . c and c(P ). In normal compressed pattern matching

this process was taking O (u + m) time, where u = |T | and m = |P | . However, in an optimal CPM algorithm

this process should take O (n + m) time, where n = |σ . c | [7].
The main goal of the pattern matching algorithms (whether they are compressed or not) is to find all the

patterns in the text with minimum processing time and minimum additional memory usage. Pattern matching

on compressed data is generally faster than on uncompressed data because it works on a smaller size. Many

researchers in the literature have found inferences on time complexity rather than complexity of CPM in their

works [4,5,7].

In this paper, the presented method allows existing algorithms to perform CPM without any major

change. It makes the CPM process available with some small modifications on them.

In a dynamic compression algorithm, the compressed form of a word or a phrase varies in different

positions of a file. This may lead to an improvement or a revision on CPM to update the codeword, which has

been searched according to the position of the compressed text. As opposed to this, TWBCA has been designed

as a semistatic model to avoid this update process.

Our approach has two passes on data to be compressed. In the first pass, the algorithm builds a new

alphabet and a dictionary. In the second pass, the data are compressed via this dictionary and alphabet. Hence,

this approach can be thought of as a semistatic method.

In section 2 of the paper, previous studies on CPM are given. Algorithm details in the compression and

decompression phase and some definitions are given in section 3. Section 4 has the experimental results of the

proposed algorithm in compression duration, decompression duration, compressed pattern matching duration,

and compression rates.

2. Related works

This section gives a brief summary of compression algorithms to which CPM can be applied directly or with

some little modifications to them. We also give brief descriptions of some new compression algorithms that have

been designed for CPM.

While some works [7–9] deal with the problem of CPM over known compression algorithms, some other

studies [10–17] present a new compression algorithm that is suitable for CPM.

LZ77 and LZ78 are the best-known dictionary-based compression algorithms, developed by Lempel and

Ziv in 1977 [18] and 1978 [19]. Navarro and Raffinot presented a general method to search in texts that are

compressed with LZ77 and LZ78 algorithms [7]. They also gave a hybrid compression technique that allows

searching as fast as in LZ78 and as good to compress as LZ77 in the paper.
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The LZW (Lempel–Ziv–Welch) algorithm is based on LZ78 and was presented by Welch in 1984 [20].

Navarro and Tarhio proposed a new CPM method that can be used over texts that are compressed with LZW-

based Unix Compress [8].

Byte pair encoding (BPE), which was described by Philip Gage in 1994 [21], is a simple algorithm that

uses digram coding recursively. BPE’s compression speed is somewhat slower than LZW’s, but its decompression

is faster. Although BPE cannot become a popular algorithm, Shibata et al. have shown the advantage of BPE

from the point of view of CPM [9].

End-tagged dense code (ETDC) and (s,c)-dense code (SCDC) are word-based semistatic compression

methods that were proposed by Brisaboa et al. in 2003 [10,11]. Because they use a word-based strategy,

both of them are suitable for CPM especially when searching words in a compressed text. Dynamic ETDC

(DETDC) and dynamic SCDC (DSCDC), which were developed a few years later, are better than semistatic

ones in terms of compression speed, but they are worse in terms of decompression speed [12]. The subsequently

developed dynamic lightweight ETDC (DLETDC) and dynamic lightweight SCDC (DLSCDC) are able to

perform decompression as fast as semistatic dense codes [13]. Although the compression speed of dynamic

lightweight dense codes is worse than that of dynamic dense codes, it is still better than that of semistatic

dense codes. On the other hand, dynamic lightweight dense codes are not better than dynamic dense codes,

and dynamic dense codes are not better than semistatic dense codes in terms of compression ratio.

Carus and Mesut created a compression algorithm that uses a semistatic model and a dictionary that

contains the most frequently used trigrams [14]. The main dictionary consists of several subdictionaries that

contain the most frequently used trigrams after a particular digram. The algorithm selects the corresponding

subdictionary by looking at the last encoded digram. They also showed that word-based compression methods

like dense codes are not efficient for agglutinative languages like Finnish and Turkish, because the number of

different words in these languages is more than those of other languages.

In the study by Horspool and Cormack in 1992 [15], the idea was using words in text as a dictionary entry.

This approach was applied to the LZW compression algorithm to make it word based. The main difference of

our approach from this work is in our study the alphabet and the generated tries are composed of characters,

not words.

In the study by Zhang et al. in 2004 [16], the LZW compression algorithm has been converted to

an algorithm that performs compression in two passes similar to the algorithm in this paper. However, our

algorithm has a separator mechanism at the end of words and so it is a word-based algorithm and, apart from

this disparity, our algorithm uses two-byte-long codewords, but in LZW and [16] this codeword length is not a

definite value; it is parametric. Moreover, our algorithm has differences in pattern matching phase from [16].

The first difference is using one of the codeword bytes as a tag value instead of writing additional tag values on

the output text. In standard LZW or LZ78 the compressed form of a phrase is changing during the compression

phase since new entries are made while reading a phrase. In our approach only one compressed form of a phrase

(a word with a separator) is used in the compression phase. This form changes neither at the beginning nor at

the end of the file. Our compression schema is a two-pass schema and compression is performed in the second

pass by using the output of the first pass, and so only the control of byte numbers is done instead of doing a

partial decompression.

de Moura et al. presented an efficient compression technique for natural language texts that allows fast

and flexible searching of words and phrases [17]. Our approach has similarities with this work, like both of
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them have byte-based coding and word-based pattern matching. However, our work is not a variant of Huffman

coding as it is in [17].

3. Algorithm details

Our algorithm uses a text factorization as LZ78 does. The main rule of factorization in LZ78 and variants of

LZ78 is constructing a prefix tree. Let
∑

be a finite alphabet and an element of
∑∗

is called a string. The

LZ78-factorization of a string S is the factorization f1. . .fm of S, where each LZ78-factor fi∈
∑

+(1 ≤ i ≤ m)

is the longest prefix of f1. . .fm , such as fi∈ {fjc| 1 ≤ j < ic ϵ
∑
}∪

∑
[22]. According to this definition our

algorithm and LZ78 construct the dictionary in the same way. The disparities of our algorithm from LZ78

are found in the output codeword. The output codeword of LZ78 has two parameters. The first parameter of

the LZ78 output is a dictionary pointer and the second parameter is a character added to the longest prefix.

However, our algorithm has an output codeword that includes only a dictionary pointer. In that sense it acts

like LZW. Besides this, our algorithm has a one-byte-long codeword for uncompressed characters. Moreover, as

a disparity from LZ78, our algorithm has a dictionary including all characters in the text in the initial case.

The dictionary construction, new code assignments of the characters, and the compression phase of the

proposed algorithm are explained in this section.

In the first pass of the algorithm, the modeler performs two important tasks. The first of these tasks

is constructing a new alphabet that is composed of all different characters used in the data and the second is

constructing a dictionary by using appropriate strings. In the following section, these two tasks are defined

separately but in practice these tasks are taken simultaneously in the first pass.

As seen in Figure 1 the modeler of the method constructs the dictionary based on original text in the

first pass (Phase I). In the compression phase (Phase II) codewords of phrases in the original text are found in

the dictionary ignoring the word boundaries. In the decompression phase (dashed line) a one- or two-byte-long

phrase depending on the tag value is read from the compressed text as dictionary index. The string in the node

of the dictionary is written as a decompressed phrase.

ORIGINAL TEXT DICTIONARY  

COMPRESSED TEXT 

PHASE I 

Modeler 

PHASE II PHASE II 

Compression Process Compression Process 

Decompression Process 

Figure 1. A general schema for two phases of the proposed model.

3.1. Alphabet construction

On a string σ = s1. . .su of length u over the alphabet
∑

= {a1, . . . , aq} , for every member of the alphabet∑
= {a1, . . . , aq} , instead of using standard ASCII codes, a new code assignment is used. The assigned codes

should take place in [0 , q − 1] for q ≥ 0 sequentially. Thus, the codes in [q , 255] can be used with the
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consecutive byte for strings in the dictionary. Algorithm 1 and Figure 2 represent the steps of constructing

alphabet phase of the algorithm.

START 

Open File 

q = 0; i=0; Alphabet[256]={-1}; 

inv_alphabet[256]={-1}; 

alphabet[q]=Yi; 

inv_alphabet[Yi]=q; 

q=q+1; 

i=i+1

End of File 

Y 

N 

FINISH 

Read Yi 

inv_alphabet[Yi]=-1 

Y 

N 

Figure 2. Assigning new code values to characters in data.

Constructing a new alphabet task includes assigning a new code for each different character in one byte

range and it allows unassigned values to be used for dictionary entries. This process gives some space in one

byte range for dictionary entries.

As seen in Algorithm 1, number of different characters in the text has an important role in dictionary

editing. Generally, a natural language text file has approximately 100 different characters (see Table 1).

Therefore, we have nearly 155 empty nodes left to store phrases in the dictionary. Although not a common

situation, if a text has 256 different characters, then there will be no space for any dictionary entry. This would

cause no compression in this algorithm.

Example 1 Text: abracadabra abracadabra ( indicates the space character)
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Algorithm 1 Assigning new code values to characters in data

Input: Text to be compressed

Output: New code values for each member of the alphabet
∑

= {a1, . . . , aq}

1: Start initialization process

2: q = 0, i = 0, Alphabet [256] = {−1} , inv alphabet[256] = {−1}

3: While not EOF do
4: Read character Yi from file

5: If inv alphabet[Yi] = {−1} then

6: alphabet [q] = Y i

7: inv alphabet[Yi] = q

8: q = q + 1

9: End if
10: i = i + 1

11: End While
12: End

Table 1. Number of different characters in each file used in calculating compression ratio.

File name
Number of different Total number of characters
characters (file size)

dickens.txt 101 10192446
Eng.txt 102 15866246
odtu.txt 126 15828594
bible.txt 64 4445255
britannica.txt 96 1945731
world192.txt 95 2473400

The new alphabet and inverse alphabet is shown respectively below after the text had been read. In

initial state it is known that all nodes of the two arrays are empty [6].

alphabet[0] = a, alphabet[1] = b, alphabet[2] = r, alphabet[3] = c, alphabet[4] = d, alphabet[5] = sp;

inv alphabet[32] = 5, inv alphabet[97] = 0, inv alphabet[98] = 1, inv alphabet[99] = 3,

inv alphabet[100] = 4, inv alphabet[114] = 2.

3.2. Dictionary construction

Let ω be the word that ends with a delimiter; i is the index of the last read character from word ω . The

longest ω[p , i] prefix is found in the dictionary, where 3 ≤ i ≤ |ω| and p = 1. If i = |ω| then no addition to

the dictionary is made and a new word ω is read from the text. If i ≤ |ω| then Kj character where j = i + 1

is attached to ω[p , i] prefix and string ω[p , i]Kj is added to the dictionary. Then ω ← ω [j + 1 , |ω|] is done
and the process is started as if ω is a new word. The algorithm that uses the idea of adding a dictionary entry

by attaching a character to a prefix in dictionary is LZW [20]. However, as a difference our algorithm makes a

word-based addition to the dictionary.
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The dictionary has 65,536 nodes since the output is two bytes long. As additions to dictionary are made

according to the size of the alphabet and the maximum number of elements in the alphabet can be 256, each

dictionary node has 256 internal nodes.

The point to notice in addition to the dictionary is the situation that |ω| > 2. Since the output is a

two-byte-long string, it does not give any positive compression ratio to add the strings that have two characters

or less.

Addition to the dictionary starts with three-character phrases. Thus the first two characters are tagged

as a digram in the array digram [256] [256] . Then the dictionary index is calculated by using the codes of

two characters in a new alphabet. A hash function without any collision is used to calculate the index value.

Tagging of a digram is made tagging when the digram is first read. There is no more tagging afterwards.

Example 2 Text:”abracadabra ”

Tagged Digrams: “a ”, “ab”, “br”, “ca”, “da”, “ra”

When the string “abracadabra” is read in the text the second time, the following steps are made. “ab” is

the first digram and “a” and “b” take place in the new alphabet. The “ab” digram has been read before since

it was tagged. The consecutive character “r” is attached to the digram “ab”. Now the “abr” string is searched

in the dictionary. To search in the dictionary a hash value of the first two characters has to be calculated by

(1).

hash (ω1 , ω2)= alphabet[inv alphabet[ω1]] × 256 + alphabet[inv alphabet[ω2]] (1)

This hash value determines the dictionary index to be looked for.

index = hash (ω1 , ω2) (2)

After calculating the index value, the node of the character that follows the digram in the indexed dictionary

node is searched as to whether it is empty or not. If it is empty, a dictionary adding value named dictionary

index that has a value of 65535 as initial state is written to this node. Then 1 is subtracted from the dictionary

index value. If the node is not empty this means a dictionary index has been written before; the value in the

node is accepted as a new index value. A new character is read from the word and processes are started again

with the new index value [6].

Example 3 Assume that the word “abracadabra” is read a second time in the text.

The digram “ab” is read. It is seen that “a” and “b” have a new code value and the digram “ab” has

been tagged. Now the following character “r” is read and the hash value of “ab” is calculated.

hash (a , b)= 0 × 256 + 1 = 1

This value is the index of the dictionary node to be searched. In the dictionary node, if the internal node of

character “r” has a value –1, it means the internal node is empty and the string “abr” does not take place in

the dictionary. If it is empty the dictionary index (initial value is 65535) is written, and the dictionary index is

decreased by 1. In each insertion to the dictionary, this value is decreased by 1.

dictionary [hash (a , b)] [inv alphabet[r]] = 65535 (3)

After the insertion of the string “abr” to the dictionary, it is removed from the word “abracadabra”. The

substring “acadabra” is accepted as a new word. The digram “ac” is tagged since it has not been tagged and
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then it is removed from the word. Also the following digram “ad” is not tagged either. It is tagged and removed.

Then the string “abra” remains in the word.

The digram “ab” is tagged. The hash value is calculated from the characters. The internal node “r” of

the dictionary node, which has an index number equal to the hash value, now has a value 65535 (3). It means

the internal node is not empty. Then the index number is changed to 65535. The following character “a” is

read and the internal node “a” in dictionary node numbered 65535 is taken. It is empty and the value 65534 is

written there.

dictionary [65535] [inv alphabet[a]] = 65534. Algorithm 2 and Figure 3 represent the steps of the dictio-

nary insertion phase of the algorithm.

Y N 

START  

Next word ω from file 

|ω|=2 

k=3 

N 

|ω|≤2 

digram[ω1][ω2]=-1 

index=hash(ω1,ω2) 

|ω|=k 

dictionary[index][ωk]=-1 

index=dictionary[index][ωk]; 

k=k+1 dictionary[index][ωk]=dict_index; 

dict_index=dict_index-1 

N 

dict_index≥n x 256; 

EOF  

FINISH 

N 

digram[ω1][ω2]=-1; 

Y 

Y 

N 

digram[ω1][ω2]=hash(ω1,ω2) 

Y 

Y 

digram[ω1][ω2]=hash(ω1,ω2); 

ω← [ωk,ωn] 

Y 

N 

N 

Y 

Figure 3. Dictionary insertion.
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Algorithm 2 Dictionary Insertion

Input: Text to be read to construct dictionary, n to be the number of different characters in T.

Output: Dictionary used in compression

1: Start
2: While not EOF or dict index ≥ n × 256 do

3: Read next word ω from file
4: If |ω| = 2 then

5: If digram [ω1] [ω2] = −1 then

6: digram [ω1] [ω2] = hash(ω1 , ω2)

7: End if
8: go to step 2

9: Else
10: k = 3
11: If |ω| ≤ 2 then

12: go to step 2

13: Else
14: If digram [ω1] [ω2] = −1 then

15: digram [ω1] [ω2] = hash(ω1 ω2)

16: ω ← [ωk , ωn]

17: go to step 4

18: Else
19: index = hash(ω1 ω2)

20: If |ω| = k then

21: go to step 4

22: Else
23: If dictionary [index] [ωk] = −1 then

24: dictionary [index] [ωk] = dict index

25: dict index = dict index − 1

26: Else
27: index = dictionary [index] [ωk]

28: k = k + 1
29: go to step 20

30: End if
31: End if
32: End if
33: End if
34: End While
35: End
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3.3. Compression phase

In the second pass or in other words in compression phase, there is no need to read the data in a word-based

manner since the dictionary has been constructed in a word-based manner. The compression phase is quite

simple. A character is read and attached to the string until the string has no dictionary node. When an empty

node is found, the compressed output is the two-byte code of the value of the last dictionary index that the

string has [6]. Algorithm 3 and Figure 4 represent the compression phase of the algorithm.

START  

p=0 

bu!er = 2 

index = hash(tp , tp+1) 

dictionary index  ωp+2   

≠ -1 

index  =  dictionary index  ωp+2  

p = p + 1 

bu!er = bu!er + 1 
bu!er ≠2 

N 

out 0  = index / 256 

out 1  = index mod 256 

p = p + 2 

Y 

out 0  = alphabet[tp] 

p = p + 1 

N 

EOF 

Y 

FINISH 

N 

Figure 4. Compression phase.

The compression phase is started after the modeler constructs arrays and dictionary. The same string

“abracadabra abracadabra” is compressed through the following steps.

• The digram “ab” is read. It is a tagged digram and so the hash value is calculated.

• The following character “r” is searched in the dictionary that has an index calculated by the hash function.

• Node is not empty. It has value 65535. Thus this value is a new index value to look for.

• The value 65535 expresses the string “abr”. The following character “a” is looked for in this index.

• The node 0 of the index 65535 (“abra”) has a value 65534. New index value is 65534 from now on. The

following character “c” is read.
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Algorithm 3 Compression Phase

Input: T be the text to be compressed

Output: Compressed text

1: Start initialization process p = 0

2: While not EOF do
3: buffer = 2

4: index = hash(tp tp+1)

5: If not dictionary [index] [ωp+2] = −1 then

6: index = dictionary [index] [ωp+2]

7: p = p + 1

8: buffer = buffer + 1

9: go to step 5

10: Else
11: If not buffer = 2

12: out [0] = index / 256

13: out [1] = indexmod 256

14: p = p + 2

15: go to step 4

16: Else
17: out [0] = alphabet[tp]

18: p = p + 1

19: End if
20: End if
21: End While
22: End

• The code value in new alphabet for “c” is 3. The node 3 of the index 65534 has value –1, which means

it is empty. Thus the string “abrac” has no entry in the dictionary. The last dictionary index 65534 is

coded in two bytes as an output.

• The string “abra” (65534) is removed from the text but the character “c” is not.

• The following character “a” is read and attached to the character “c”. Now the processes start from

calculating the hash value of “ca”.

• “ca” is a tagged digram and the hash value is:

hash (c, a) = 3 × 256 + 0

• The following character “d” has a code value 4 in the new alphabet. When the node 4 of index 768 of

the dictionary is looked up, it is seen that the node has –1 value. Thus the string “cad” is not coded as

output.

• The code value 3 for the character “c” is coded as an output and “c” is removed from text.

• These operations are performed for the whole text to achieve the compression process.
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The text is compressed by the end of the second pass. The length of the dictionary, dictionary entries,

and new alphabet are written into the compressed text.

In this study a structure similar to de Moura’s work [17] in 2000 named spaceless word model is used. It is

assumed in [17] that each word is followed by a space character, and so in the coding phase these space characters

can be ignored. If a word is followed by a separator character, word and character are coded separately. In

our study, each word that has different separators is treated as a different word, but the common parts of them

take place only once in the dictionary.

In our approach, the first byte value of the output is greater than the number of different characters

used in text. This gives us a tag value to perform pattern matching. In addition, our approach is a word-based

approach and so the name of the approach is tagged word-based compression algorithm (TWBCA) [6].

4. Searching in compressed text

Storing or transferring data in compressed form has some issues to notice. One of them is the necessity

of decompressing the metadata/dictionary to process. Especially text data retrieval systems have to allow

users to search patterns in text. This issue is an example for pattern matching. For a particular string pair

{(X (i) , Y (i))} , if it is possible, an r value that makes X (r) = Y (r) is found [23].

For a native description of the issue, an example for linear pattern matching: Let the pattern and the

text be respectively

X =x1x2.. .xn xi ∈ {0, 1}

Y = y1y2.. .ym yi ∈ {0, 1}

and

Y (i) = yiyi+1. . .yi+n−1. If X = Y (i) exists, a matching occurs [23].

Let m be the compressed text, ω be a word from uncompressed text, n be the number of different

characters in the text, and alphabet[] be the new code list of characters in the text. Thus the maximum index

of the list is (n − 1).

Also let cj be an uncompressed character in compressed text in position j, where 0 ≤ j ≤ |m| , and
fi is a digram code of a compressed string in position i, where 0 ≤ i ≤ |m| . The code fi is a digram or in

other words it is composed of two bytes. The values of these bytes would be respectively n ≤ fi0≤ 255 and

0 ≤ f i1≤ 255; in addition, cj would be 0 ≤ cj≤ n− 1.

From the expressions above, any cj may have a same value with any fi1 , but fi1 code may have different

values than cj in the range of [n , 255]. Moreover, fi1 code may have the same values with fi0 in the range of

[n , 255]. However, there are no common values between cj and fi0 . Hence this is the control mechanism for

false matching of the pattern.

Therefore, a combination of a compressed form of a word ωz in the position z and compressed form of

ωz−1 may be a compressed form of word ωp .

Here is an example: assume n = 100 and the words of the string “the real world” respectively have the

compressed codes

the : 130 65, real : 192 127, world : 95 208 160

In this situation, the string “the real world” has a compressed output “130 65 192 127 95 208 160”. A

pattern “world” would be coded as “95 208 160” and easily found in 5th position.
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Let a different string, e.g., “compress” have a “127 95” value in compressed form. It can be seen in 4th

position of the coded string above. It would match although it does not exist in the string “the real world”.

When a pattern matching occurs, the number of the bytes previously consecutive to the position whose

value is in the range [n , 255] is counted. If an odd number is found, it is obviously seen that a comparison with

fi1 has been made since the code of any cj cannot be equal to any fi0 code. This means a false match has

been made. A routine that counts the previously consecutive bytes is added to pattern matching algorithms to

overcome the false match problem.

5. Experimental results

The approaches used in comparison are ETDC, Compress, and Gzip. ETDC performs word-based compressed

pattern matching since it performs word-based compression [10].

One of the compared compressors in our experiments is Compress, which is the standard compression

utility of the UNIX operating system. The LZW compression algorithm is the basis of it. Software called Lzgrep

is used to perform CPM on the files compressed with Compress [8].

In addition to these utilities, Gzip has been used for experiments. Gzip is a standard UNIX data

compression utility as well. Lzgrep is also used for compressed pattern matching on files compressed with Gzip.

odtu.txt, which has been used in experiments in this section, is the work of Say et al. in 2002 [24].

The test files bible.txt and world192.txt are from the Canterbury Corpus, dickens is from the Silesia

Corpus, and britannica.txt is from Project Gutenberg. The file named Eng.txt is the combination of the files

“1musk12.txt”, “alice29.txt”, “asyoulik.txt”, “bible.txt”, and “dickens.txt”.

In Table 2, the averages of durations of 10 tries for different groups of patterns on 2 different files are

given. The same pattern groups and the same text files were used for 4 different algorithms.

Table 2. The average compressed pattern matching durations of patterns grouped by number of characters they have

(s).

File name ETDC Lzgrep/Gzip Lzgrep/Compress TWBCA

15 Char. 75 Patterns
Eng.txt 0.0081 0.1688 0.0899 0.1300
odtu.txt 0.0136 0.1770 0.1028 0.1329

12 Char. 100 Patterns
Eng.txt 0.0119 0.1709 0.0889 0.1135
odtu.txt 0.0136 0.1786 0.1009 0.1419

9 Char. 100 Patterns
Eng.txt 0.0124 0.1736 0.0944 0.1283
odtu.txt 0.0150 0.1785 0.1033 0.1328

6 Char. 100 Patterns
Eng.txt 0.0125 0.1754 0.1291 0.1274
odtu.txt 0.0167 0.1813 0.1292 0.1239

3 Char. 100 Patterns
Eng.txt 0.0151 0.1803 0.2240 0.1424
odtu.txt 0.0182 0.1855 0.2333 0.1428

In Table 2 it is seen that TWBCA has better results than Gzip for each pattern group. Besides this,

TWBCA has better results than Compress for shorter (3–6 characters) pattern groups. However, in longer

pattern groups TWBCA has worse results than Compress. ETDC has the best results for each pattern group.

In Table 3, the compression durations of ETDC, Gzip, and TWBCA for sample files are given. As seen

in Table 2, TWBCA has minimum durations against the other two algorithms. This is important for processes

that need fast compression.
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Table 3. Compression and decompression durations (s).

File name
ETDC Gzip TWBCA
Comp. Decomp. Comp. Decomp. Comp. Decomp.

Eng.txt 0.55 0.20 1.67 0.21 0.41 0.36
odtu.txt 0.79 0.22 1.56 0.20 0.52 0.37
dickens.txt 0.37 0.13 1.15 0.14 0.32 0.24

Table 3 shows the decompression durations of compressed files. As seen in Table 2, TWBCA has the

worst results in the decompression process. The dictionary is written at the beginning of the compressed file in

compressed form. Each dictionary entry is three bytes long but can express longer strings. These three-byte-long

entries are made up with a hash function described in section 3. While decompressing the text, the first thing

to do is to extract the dictionary. Each entry is referring to another in the compressed dictionary. Therefore

an entry is read many times to get uncompressed strings that use that entry.

Table 4 gives the compression ratio of TWBCA on some texts that are used in testing the compression

algorithms. Our approach has a 50% compression ratio on average. An important reason for this is having

maximum 2562 dictionary nodes since the codewords are two bytes long. Moreover, in a text that has n

different characters, n × 256 dictionary nodes remain empty according to the method. Furthermore, to add a

z-character-long word into the dictionary, the word has to be read z − 1 times in the original text, and z − 2

prefix entries have been made until the whole word takes place in the dictionary. These reasons reduce the

efficiency of the dictionary. On the other hand, as a disparity from other word-based methods, if a word that

has not been placed in the dictionary is read, it does not remain in fully uncompressed form and is compressed

by using the longest prefix. This gives us a gain in compression ratio. In addition, the experiments show us in

Table 4 that our approach is independent of the language in which the text is written [6].

Table 4. Compression ratios of Compress, ETDC, and TWBCA (%).

File name Original size (bytes) Compress ETDC TWBCA
dickens.txt 10192446 39.32 34.40 49.91
Eng.txt 15866246 38.11 33.87 49.75
odtu.txt 15828594 42.72 50.67 49.04
bible.txt 4445255 30.98 28.85 47.37
britannica.txt 1945731 43.17 43.65 52.90
world192.txt 2473400 37.20 37.48 48.25

The compression ratios of Compress, ETDC, and TWBCA are given in Table 4. While calculating

the compression ratio of ETDC, the size of the dictionary that is made for each separate file is added to the

compressed file.

The main difference of TWBCA and tagged Huffman [17] is in the phase of constructing the dictionary.

TWBCA constructs the dictionary in a character-based way but regarding the word boundary. However, in

tagged Huffman complete words are written into the dictionary by sorting them in descending order of frequency.

Also in TWBCA codewords have constant length. In contrast, tagged Huffman has Huffman coding manner

that is assigning shorter codes to the frequent ones and tagged Huffman has no tagging value like TWBCA to

express uncompressed codes.
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6. Conclusion

Two main properties make pattern matching effective. One of them is correct matching and the other one

is fast matching. Before the 90s, pattern matching was performed only on uncompressed text. After that,

many algorithms that perform fast and correct compressed pattern matching were developed or modifications

were added to the previous compression algorithms to perform pattern matching. It is seen that most of the

developed algorithms or methods are at the center of dictionary-based algorithms. Since our dictionary-based

compression algorithm uses a semistatic model, it is efficient for CPM, because using a semistatic model ensures

that a particular word is compressed all over the text in the same way. When you use a dynamic model, you

may need to store extra information to do so (like in DLETDC). If you do not store such extra information,

the compression ratio will be better (like in DETDC). However, the compression ratio of DETDC is still worse

than its semistatic counterpart ETDC [12].

Our experiments have shown that our approach has an average compression ratio and average compressed

pattern matching durations. Although TWBCA is slow at decompression, it is better than ETDC and Gzip in

compression speed, which is one of the efficient algorithm properties.
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