18 research outputs found

    An optimized conflict-free replicated set

    Get PDF
    Eventual consistency of replicated data supports concurrent updates, reduces latency and improves fault tolerance, but forgoes strong consistency. Accordingly, several cloud computing platforms implement eventually-consistent data types. The set is a widespread and useful abstraction, and many replicated set designs have been proposed. We present a reasoning abstraction, permutation equivalence, that systematizes the characterization of the expected concurrency semantics of concurrent types. Under this framework we present one of the existing conflict-free replicated data types, Observed-Remove Set. Furthermore, in order to decrease the size of meta-data, we propose a new optimization to avoid tombstones. This approach that can be transposed to other data types, such as maps, graphs or sequences.Comment: No. RR-8083 (2012

    On reducing the complexity of matrix clocks

    Full text link
    Matrix clocks are a generalization of the notion of vector clocks that allows the local representation of causal precedence to reach into an asynchronous distributed computation's past with depth xx, where x≥1x\ge 1 is an integer. Maintaining matrix clocks correctly in a system of nn nodes requires that everymessage be accompanied by O(nx)O(n^x) numbers, which reflects an exponential dependency of the complexity of matrix clocks upon the desired depth xx. We introduce a novel type of matrix clock, one that requires only nxnx numbers to be attached to each message while maintaining what for many applications may be the most significant portion of the information that the original matrix clock carries. In order to illustrate the new clock's applicability, we demonstrate its use in the monitoring of certain resource-sharing computations

    Execution replay and debugging

    Full text link
    As most parallel and distributed programs are internally non-deterministic -- consecutive runs with the same input might result in a different program flow -- vanilla cyclic debugging techniques as such are useless. In order to use cyclic debugging tools, we need a tool that records information about an execution so that it can be replayed for debugging. Because recording information interferes with the execution, we must limit the amount of information and keep the processing of the information fast. This paper contains a survey of existing execution replay techniques and tools.Comment: In M. Ducasse (ed), proceedings of the Fourth International Workshop on Automated Debugging (AADebug 2000), August 2000, Munich. cs.SE/001003

    Non-intrusive on-the-fly data race detection using execution replay

    Full text link
    This paper presents a practical solution for detecting data races in parallel programs. The solution consists of a combination of execution replay (RecPlay) with automatic on-the-fly data race detection. This combination enables us to perform the data race detection on an unaltered execution (almost no probe effect). Furthermore, the usage of multilevel bitmaps and snooped matrix clocks limits the amount of memory used. As the record phase of RecPlay is highly efficient, there is no need to switch it off, hereby eliminating the possibility of Heisenbugs because tracing can be left on all the time.Comment: In M. Ducasse (ed), proceedings of the Fourth International Workshop on Automated Debugging (AAdebug 2000), August 2000, Munich. cs.SE/001003

    Update Consistency for Wait-free Concurrent Objects

    Get PDF
    In large scale systems such as the Internet, replicating data is an essential feature in order to provide availability and fault-tolerance. Attiya and Welch proved that using strong consistency criteria such as atomicity is costly as each operation may need an execution time linear with the latency of the communication network. Weaker consistency criteria like causal consistency and PRAM consistency do not ensure convergence. The different replicas are not guaranteed to converge towards a unique state. Eventual consistency guarantees that all replicas eventually converge when the participants stop updating. However, it fails to fully specify the semantics of the operations on shared objects and requires additional non-intuitive and error-prone distributed specification techniques. This paper introduces and formalizes a new consistency criterion, called update consistency, that requires the state of a replicated object to be consistent with a linearization of all the updates. In other words, whereas atomicity imposes a linearization of all of the operations, this criterion imposes this only on updates. Consequently some read operations may return out-dated values. Update consistency is stronger than eventual consistency, so we can replace eventually consistent objects with update consistent ones in any program. Finally, we prove that update consistency is universal, in the sense that any object can be implemented under this criterion in a distributed system where any number of nodes may crash.Comment: appears in International Parallel and Distributed Processing Symposium, May 2015, Hyderabad, Indi

    Abstract unordered and ordered trees CRDT

    Get PDF
    Trees are fundamental data structure for many areas of computer science and system engineering. In this report, we show how to ensure eventual consistency of optimistically replicated trees. In optimistic replication, the different replicas of a distributed system are allowed to diverge but should eventually reach the same value if no more mutations occur. A new method to ensure eventual consistency is to design Conflict-free Replicated Data Types (CRDT). In this report, we design a collection of tree CRDT using existing set CRDTs. The remaining concurrency problems particular to tree data structure are resolved using one or two layers of correction algorithm. For each of these layer, we propose different and independent policies. Any combination of set CRDT and policies can be constructed, giving to the distributed application programmer the entire control of the behavior of the shared data in face of concurrent mutations. We also propose to order these trees by adding a positioning layer which is also independent to obtain a collection of ordered tree CRDTs

    Replicated Data Types

    Get PDF
    International audienceA CRDT is an abstract data type that implements some familiar object, such as a counter, a set or a sequence. Internally, a CRDT is replicated, to provide reliability, availability. A CRDT supports concurrent updates, and encapsulates some strategy that provably ensures that replicas of the CRDT will converge despite this concurrency

    Replicated Data Types

    Get PDF
    International audienceA CRDT is an abstract data type that implements some familiar object, such as a counter, a set or a sequence. Internally, a CRDT is replicated, to provide reliability, availability. A CRDT supports concurrent updates, and encapsulates some strategy that provably ensures that replicas of the CRDT will converge despite this concurrency
    corecore