2,575 research outputs found

    Fast and accurate NN approach for multi-event annotation of time series

    Get PDF
    technical reportSimilarity search in time-series subsequences is an important time series data mining task. Searching in time series subsequences for matches for a set of shapes is an extension of this task and is equally important. In this work we propose a simple but efficient approach for finding matches for a group of shapes or events in a given time series using a Nearest Neighbor approach. We provide various improvements of this approach including one using the GNAT data structure. We also propose a technique for finding similar shapes of widely varying temporal width. Both of these techniques for primitive shape matching allow us to more accurately and efficiently form an event representation of a time-series, leading in turn to finding complex events which are composites of primitive events. We demonstrate the robustness of our approaches in detecting complex shapes even in the presence of ?don?t care? symbols. We evaluate the success of our approach in detecting both primitive and complex shapes using a data set from the Fluid Dynamics domain. We also show a speedup of up to 5 times over a na?ve nearest neighbor approach

    Efficient High-Resolution Template Matching with Vector Quantized Nearest Neighbour Fields

    Full text link
    Template matching is a fundamental problem in computer vision and has applications in various fields, such as object detection, image registration, and object tracking. The current state-of-the-art methods rely on nearest-neighbour (NN) matching in which the query feature space is converted to NN space by representing each query pixel with its NN in the template pixels. The NN-based methods have been shown to perform better in occlusions, changes in appearance, illumination variations, and non-rigid transformations. However, NN matching scales poorly with high-resolution data and high feature dimensions. In this work, we present an NN-based template-matching method which efficiently reduces the NN computations and introduces filtering in the NN fields to consider deformations. A vector quantization step first represents the template with kk features, then filtering compares the template and query distributions over the kk features. We show that state-of-the-art performance was achieved in low-resolution data, and our method outperforms previous methods at higher resolution showing the robustness and scalability of the approach

    Fast PRISM: Branch and Bound Hough Transform for Object Class Detection

    Get PDF
    This paper addresses the task of efficient object class detection by means of the Hough transform. This approach has been made popular by the Implicit Shape Model (ISM) and has been adopted many times. Although ISM exhibits robust detection performance, its probabilistic formulation is unsatisfactory. The PRincipled Implicit Shape Model (PRISM) overcomes these problems by interpreting Hough voting as a dual implementation of linear sliding-window detection. It thereby gives a sound justification to the voting procedure and imposes minimal constraints. We demonstrate PRISM's flexibility by two complementary implementations: a generatively trained Gaussian Mixture Model as well as a discriminatively trained histogram approach. Both systems achieve state-of-the-art performance. Detections are found by gradient-based or branch and bound search, respectively. The latter greatly benefits from PRISM's feature-centric view. It thereby avoids the unfavourable memory trade-off and any on-line pre-processing of the original Efficient Subwindow Search (ESS). Moreover, our approach takes account of the features' scale value while ESS does not. Finally, we show how to avoid soft-matching and spatial pyramid descriptors during detection without losing their positive effect. This makes algorithms simpler and faster. Both are possible if the object model is properly regularised and we discuss a modification of SVMs which allows for doing s

    Project SEMACODE : a scale-invariant object recognition system for content-based queries in image databases

    Get PDF
    For the efficient management of large image databases, the automated characterization of images and the usage of that characterization for searching and ordering tasks is highly desirable. The purpose of the project SEMACODE is to combine the still unsolved problem of content-oriented characterization of images with scale-invariant object recognition and modelbased compression methods. To achieve this goal, existing techniques as well as new concepts related to pattern matching, image encoding, and image compression are examined. The resulting methods are integrated in a common framework with the aid of a content-oriented conception. For the application, an image database at the library of the university of Frankfurt/Main (StUB; about 60000 images), the required operations are developed. The search and query interfaces are defined in close cooperation with the StUB project “Digitized Colonial Picture Library”. This report describes the fundamentals and first results of the image encoding and object recognition algorithms developed within the scope of the project
    corecore