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Abstract

For the efficient management of large image databases, the automated
characterization of images and the usage of that characterization for
searching and ordering tasks is highly desirable. The purpose of the project
SEMACODE is to combine the still unsolved problem of content-oriented
characterization of images with scale-invariant object recognition and model-
based compression methods.

To achieve this goal, existing techniques as well as new concepts related
to pattern matching, image encoding, and image compression are examined.
The resulting methods are integrated in a common framework with the aid of
a content-oriented conception. For the application, an image database at the
library of the university of Frankfurt/Main (StUB; about 60000 images), the
required operations are developed. The search and query interfaces are
defined in close cooperation with the StUB project “Digitized Colonial
Picture Library” .

This report describes the fundamentals and first results of the image
encoding and object recognition algorithms developed within the scope of the
project.

The project SEMACODE is supported by the German Research Foundation (Deutsche Forschungs-
gemeinschaft DFG) within the strategic research initiative “V3D2”  (“Distributed Processing and Exchange
of Digital Documents” ).
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1 Scale-invariant Recognition of Objects in Images

The main purpose of the project SEMACODE is the investigation and development of the fundamental
principles and methods needed for an autonomous system which is able to recognize objects in digital
images. Potential applications of such a system are content-based retrieval and automated indexing of
large multimedia databases or digital libraries. For the example of the image database (about 60000
images) of the former “German Colonial Institution”  (Deutsche Kolonialgesellschaft) at the university
library of Frankfurt/Main (Stadt- und Universitätsbibliothek Frankfurt/Main StUB), the achieved results
should be demonstrated. Furthermore, the interfaces of the developed search and query operations should
be adapted to ease their integration into a standard database environment.

This report covers the recent theoretical and experimental research done within the scope of the
project and concentrates on the efficient encoding of images for object recognition purposes. It also
describes the principles and first results of the developed recognition algorithms.

1.1 Image Query System
The object recognition system will be integrated into an image query system which provides the
necessary procedures and interfaces for searching digital images in multimedia databases or the internet.
The image query system is principally based on the query-by-example approach: The user submits text
search criteria and example images. The retrieved results are generated by the databases for images, text,
and meta data, and the query mechanism itself. Thus, the whole system can be organized in a client-server
structure as shown in Figure 1.

textual search
key word

country

author

type

server

search
agent

search
agent

search
agent

database
control

imagesmeta datatextual data

result

image example

painted example

Figure 1: Data and control flow of the image query system.

The design of the system has to meet the following requirements:

•  Intuitive and efficient handling of the tools for entering the search criteria; as an internet
application, the tools should be used together with standard browsers;

•  Fast and correct image query algorithms;

•  Suitable representation of the retrieved search results.

The input of key words allows a conventional search for images using standard query methods of the
database server. Thus, a previous classification of the images is required. However, the user should be
able to search for objects or images which are possibly unknown to the system.

This can be accomplished by a technique called query-by-example (as used by other image query
systems, see e.g. QBIC [QBC95]), i.e. the user may paint an object with a graphical editor or select it
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from a given image. The resulting image is an example for the requested object. The system now
identifies all images that are similar to the example or contain similar objects. This is done by starting
several server processes (search agents) which perform the object recognition task. To obtain a
reasonable performance the search agents operate on the encoded image data (meta data) instead of the
images themselves. After completing the recognition task the systems returns the resulting images as
preview versions in reduced size (thumbnails) ordered according to a suitable similarity measure. The
user may now accept the results or select one of the images as an example to start another query.

The image database is expected to be globally accessible via internet. The query procedures were
realized as Java-applets or CGI-scripts running at the corresponding WWW-server. Thus, global access of
the query and representation operations via internet is possible. Figure 2 shows the interaction layers of
the image query system, the web server, and the database server.
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Java application
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Java client HTML client
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Figure 2: Layer structure of the distributed image query system.

A demonstration version of the system is accessible at „http://seco.asa.cs.uni-frankfurt.de/seco.html“.
Currently, only simple search criteria such as textual information and intensity distribution of pixel data
are implemented. Future improvements include the integration of new developed object recognition
methods which are described in the following of this paper.

1.2 Object Recognition System
The main subject of the project SEMACODE is the application of semantic image encoding. Here the
necessary compression and semantic description of images can be combined by using the concepts of
“ image primitives”  and “ image elements” . This kind of encoding is suitable for both storage and object
recognition tasks and therefore allows an efficient processing of images.
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Figure 3: Structure of the object recognition system.

Figure 3 shows the structure of the object recognition system. The images are already encoded offline and
stored in the (meta) database. At the beginning of the query only the requested object has to be encoded
online. The system searches for identical image elements and predicts the possible location and size
(scale) of the object in the image. If such elements exist and the prediction is correct the system
“recognizes”  the object. Otherwise a new prediction is calculated or (if the system cannot predict the
object’s location and/or scale) the output “object not recognized”  is given.

According to the difficulties of recognizing objects in images described in section 1.3 the system has
to meet several requirements:

•  Scale invariance
Since the size of a requested object is a priori unknown the system must be able to recognize
objects regardless of their scale.

•  Translation invariance
Objects have to be recognized regardless of their location in the actual image.

•  Robustness against individual parameters of images
Individual parameters of images such as illumination or contrast must not affect the system’s
functionality.

•  Correctness and reliability
The image query system has to be correct and reliable. There are two classes of possible errors:
The incorrect recognition of objects which are not included in a given image, and the failed
recognition of objects which are included.

•  Efficiency
The system has to be efficient and fast.

•  Further invariance
If possible, the system should also recognize objects which are moderately rotated, mirror-
inverted, distorted, or partially occluded by other objects or image borders.

1.3 The Problem of Recognizing Objects in Images
An object is a real-life item (e.g. a chair, a house), an abstract entity, or a symbol (e.g. a character or
letter). Objects may have different instances (e.g. block houses or skyscrapers, Latin or Chinese letters)
and can be composed of other objects (a house is “composed”  of walls, a roof, windows, doors,…).

Here, an object is assumed to be given by an entity which is consistent according to the actual
semantic context (semantic entity). Each object possesses certain features or attributes describing the
object with more or less accuracy. In their own semantic context attributes can be objects themselves.

The automated recognition of objects is a very hard image processing task. In the following sections a
brief summary of the various problems which make recognizing objects in images difficult is given.
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1.3.1 Ambiguity

The goal of an object recognition system is the identification of real-life objects by their two-dimensional
representations or images respectively. Paradoxically, this leads to the conclusion that the unambiguous
recognition of objects without additional information and explicit knowledge is impossible – recognizing
objects in images is an ill-posed problem. In Figure 4 this is illustrated by a simple example.

a    b    c 

Figure 4: Using additional image features and explicit information
to remove ambiguity of an object representation.

It is not possible to infer unambiguously if Figure 4a represents a sphere, a circle, a rectangle with a hole,
or something different. Figure 4b contains an additional image feature: The shadow suggests a three-
dimensional appearance of the object. However, Figure 4b might also represent a gray circle partially
occluded by a white circle. The lines in Figure 4c emphasize the impression of the object’s plasticity and
with high probability one recognizes a three-dimensional sphere although other interpretations of the
image might exist.

Thus, implicit information contained in images in general is not sufficient to identify objects
unambiguously. Obviously, a mechanism exists which enables human beings to assign different
probabilities to various interpretations of an image: The object will be recognized if its representation is
the most probable one. Here, explicit knowledge about real world examples is used which cannot be
derived from the image alone (e.g. knowledge about the shadow of a three-dimensional sphere as seen in
a two-dimensional image). The mathematical counterpart is given by regularization theory (see [PT85])
where additional rules and/or restrictions are used to transform ambiguous and incompletely formulated
problems into well-posed problems.

1.3.2 Scale and Position of Objects

The system has to recognize objects in a given images regardless of their location and size. This turns out
to be a very difficult tasks, especially since it is unknown if an image contains a special object.

Besides the computational complexity caused by the search for objects in a large scale of possible
sizes and image locations, a systematical problem has to be considered: An unambiguous correspondence
between images showing the same object at different size or scale does not exist in general.

For example, decreasing the size may remove some details of the image or merge them into new
details which do not correspond to any elements of the original image. Furthermore, small shifts
(translations) in the range of a few pixels may result in a different encoding of an object. Thus, the
recognition system has to take care of these effects.

1.3.3 Rotation and Deformation

Another requirement could be that the system is able to recognize rotated, mirror-inverted, and distorted
instances of an object as well. However, in some cases this is not an appropriate constraint: Human beings
do distinguish between the letters “M”  and “W”  although both are rotated versions of each other (ignoring
the various typefaces). On the other hand, a pebble should be recognized regardless of its orientation.
Similar examples also can be found for reflected or distorted objects.

The problem gets even more complicated if the orientation of the image itself is unknown. This is a
typical situation in multimedia databases where images are stored in different orientations to fit a given
image size and are erroneously scanned upside down or mirror-inverted.
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1.3.4 Individual Parameters of Images and Objects

Images may differ in various parameters such as intensity, contrast, and sharpness. Other parameters are
disturbances due to noise or scanning of already corrupted images. Furthermore, the represented objects
themselves may differ in their appearance because of varying illumination. Although it is possible to
compensate variations of overall image parameters the problem of object illumination is rather difficult
and requires non-trivial solutions.

1.3.5 Occlusion

Another difficulty arises from the typical occlusion of objects in two-dimensional images. A 3D-object
may occlude parts of itself (e.g. as a result from its three-dimensional nature) or other objects. Often parts
of objects are occluded by image borders as well.

In the presence of occlusion the identification of objects often becomes ambiguous or impossible
because salient object parts are invisible. In addition, the recognition of the occluding object is affected
e.g. by erroneously interpreting parts of an occluded object as parts of the current object.

The problem of self-occlusion is related to the theory of view-based recognition. Here the main
subject of investigation is the question if objects could be recognized when looking at them from different
viewing angles. There are several indications that this is indeed possible, even if only a few different
views are used [BRE93] [LVH94].

1.3.6 Elements of Images

Until now it was assumed that parts of a given image (image elements) could be identified with objects or
parts of objects. However, the nature or properties of image elements is still unclear.

For example, connected image regions (segments) sharing similar features may assumed to be image
elements; therefore an image can be decomposed into non-overlapping segments. The borders of
segments are often determined by edges or lines (edge-oriented segmentation). Another technique results
from merging small parts of an image if they contain similar patterns or textures (texture-based
segmentation). However, for a successful segmentation the choice of the operators detecting the required
image features is crucial. Here the use of regularization techniques (e.g. relaxation of broken segment
borders) is mandatory. Typical problems of image segmentation are shown in Figure 5.

a b c

d e

Figure 5: Example of segmentation problems: The original image (a)
and three segments (b); typical results of texture-based segmentation (c)

and edge-oriented segmentation with different thresholds (d, e).

v

w

x
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Figure 6:
The representation of a chair and
its possible image elements
(marked by dotted ellipses).
Every image element results from
the grouping of not necessarily
connected image features (circles)
as shown in the magnification.

Perfect segmentation of the cube in Figure 5a would result in three regions (the visible sides of the cube
as shown in Figure 5b). In most cases texture-based segmentation produces only two regions: The sides 2
and 3 have nearly identical textures and therefore are merged into one segment (Figure 5c). In contrary,
edge-based segmentation techniques determine the borders of segments while searching for significant
changes in local pixel intensity and/or color. The determination of segment borders usually depends on
the strength of the intensity (or color) gradient and is therefore threshold-driven. For images with high-
contrast textures, this often leads to incorrect segmentation as shown in Figure 5d+e.

A different approach is the identification of image elements with groups of image features that do not
necessarily need to form connected regions (see Figure 6); considering occlusion effects this is of
particular interest. However, in general it is not obvious which image features should be grouped to the
same image elements or what “ typical”  image features are.

1.3.7 Image Features and Image Primitives

Independent of the methods used to extract objects or image elements from images an encoding scheme is
needed which mediates between the pixel data and the abstract representation level of objects. This
scheme is given by the image features already considered above. The intention of (low-level) image
features is to locally characterize small areas of a given image; this could be lines, edges, textures, or
something similar.

An approach widely used in image processing tasks is the representation of small image parts by
mixtures of image features (image primitives). Image primitives may be applied to edge or texture
segregation as well. Again, the choice of suitable image primitives is a non-trivial problem.

1.3.8 Object Recognition and Computational Complexity

A typical digital image is about a few Kilobytes to some Megabytes in size. Considering the difficulties
mentioned above and the expected computational complexity of the algorithms, the amount of underlying
image data has to be reduced dramatically or the automated recognition of objects in images can not be
done efficiently in real-time.

Here, the focus is set on the encoding of images by only a few salient primitives, which provides a
more compact representation than the original pixel data. This is a critical task: In general, to achieve a
high compression ratio a lossy encoding scheme is mandatory, i.e. redundant and unimportant information
is removed from the image data by using the image primitives and can not be used by subsequent
processing stages. Obviously, special care has to be taken of the choice of the image primitives.

Furthermore, one has to pay attention to the computational complexity of high-level processing tasks
as well: Image database queries have to be executed correctly and as fast as possible.
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2 Encoding Scaled Images

This chapter describes the work of the project SEMACODE to derive an efficient image encoding
strategy which is needed to develop a successful object recognition system. Following a brief introduction
of the fundamental concepts, recent research results are given in detail.

2.1 Image Encoding Using Image Primitives
Many approaches concerning the recognition of objects in digital images are based on the idea of
representing an image by suitable image features or image primitives. Because of the following reasons,
an actual search or recognition task does not use the pixel data but the primitives:

•  Image primitives provide a (low-level) content-based characterization of an image. A primitive
usually has a straightforward semantic equivalent such as line, edge or texture. Thus, the content-
based analysis done by subsequent processing stages (e.g. segmentation or grouping) will be
simplified.

•  Ideally, image primitives represent “salient”  information, i.e. the information needed for the actual
image processing task; noise or redundant information will be removed from the data.

•  Image primitives provide a compact representation (encoding) of images; the amount of the image
data will be reduced (compression). This is a mandatory precondition for many image processing
tasks.

Thus, the encoding of images by image primitives is an important preprocessing step to simplify and
speed up subsequent stages. The choice of the set of primitives substantially contributes to the efficiency
of this encoding.

2.1.1 Existing Methods

There exist many methods to extract simple image elements such as lines or edges from images, which,
for example, can be used to track contours of objects. Most important are those methods where the
associated feature detectors or filters (such as Scale-Space filters [LIN94] and regularization operators
[PT85]) are robust against the influence of noise.

Another class of image primitives is given by Gabor filters [GAB46]. Gabor filters provide a local
representation of images in the frequency domain and have been successfully used in texture
segmentation tasks [GRE96] [HPB98] [PZ89]. Standard edge detectors often fail to decompose an image
into separated regions (segments) because the region borders consist of different adjacent textures instead
of large intensity gradients.

Besides there are adaptive techniques extracting the associated image primitives according to
statistical properties of the image data. A widely used method is Principal Component Analysis (PCA; see
for example [BRA95]) based on transform coding principles. Here an image is subdivided into small non-
overlapping “patches”  (subimages) that are about 8×8 to 16×16 pixels in size. Each subimage is
represented by a linear mixture of a set of orthonormal image primitives. The primitives correspond to the
eigenvectors of the covariance matrix of the subimages and thus are sometimes called eigenimages. It can
be proved that the representation of an image reconstructed by the first eigenvectors with the highest
eigenvalues is optimal in the mean square error sense.

An important property of the PCA is that the mixture components representing the influence of the
associated eigenvectors on each subimage are decorrelated. Decorrelation is a necessary but not sufficient
condition for statistical independence, i.e. statistical independent components have to be decorrelated.
However, decorrelated components do not have to be statistical independent, except if their probability
density functions (PDF) are Gaussians.

The goal of Independent Component Analysis (ICA; see for example [COM94]) is the derivation of
components which are as statistical independent as possible. In general, the resulting primitives are not
orthonormal, and the associated filters derived from “natural”  image data are very similar to Gabor filters
or the oriented receptive fields of the visual cortex, respectively [BS96] [OF96].

Independent components of natural images have two advantageous properties: Ideally, they are not
redundant and sparsely coded [OLS96], i.e. only a few components are active at the same time. From the
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viewpoint of information theory, both properties allow an efficient compression of the image data.
Furthermore, independent components are assumed to represent causal independent image elements and
thus provide the “most salient”  information of an image.

2.2 Adaptive Image Encoding
This section gives a brief introduction to the mathematical fundamentals and properties of the PCA and
ICA based on a technique known as transform coding.

2.2.1 Transform Coding

Transform coding of image data (see for example [HW71]) is a general encoding framework where
images are decomposed into small non-overlapping subimages (about 8×8 to 16×16 pixel in size).
Writing its pixel rows or columns in a sequential order, each subimage corresponds to an image vector
x = (x1,…,xn)

T (see Figure 7). The coefficients xi of x represent the value (intensity, color) of the
associated pixels. Here, the average 〈x〉  of the image vectors x is assumed to be zero, otherwise any non-
zero average has to be subtracted from the whole ensemble.

The image vectors x are transformed into component vectors or jets ξ = (ξ1,…,ξ n)
T by a matrix A:

ξ = A⋅x. The rows of A are often called analysis filters. Ideally, only a small number of components
ξ 1,…,ξ m , m < n, is sufficient to represent the image vectors (data compression by sparse coding) and to
process them in subsequent stages (object recognition, storage, transmission, or others) 1.

In general it is possible to reconstruct the vectors x by the transform x ≈ x’ = A†⋅ξ where the matrix A†

is not necessary identical to the inverse matrix of A. The columns of A† are called synthesis filters (or
base images if they constitute a basis of the reconstructed image vectors x’). Figure 8 shows the
processing scheme of encoding images based on the transform coding framework.

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x13 x12

x13 x14 x15 x16

x1

x2

y

x16

image subimage image vector

Figure 7: Image, subimage, and image vector.

x x’

image vector reconstructed
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Figure 8: Processing scheme of transform coding. The image vector x is transformed into
the jet ξ by a matrix A. The actual processing of the image data (e.g. object recognition,
storage, transmission) is executed on the first m components ξ 1,…,ξ m of ξ. In general,

the image vector can be reconstructed from these components by the transform A†.

                                                       
1 The same technique is used in conjunction with a Discrete Cosine Transform to compress JPEG images.
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2.2.2 Principal Component Analysis (PCA)

To calculate the PCA encoding of the image vectors x according to the above scheme, their covariance
matrix C has to be determined first. Since 〈x〉  = 0 the covariance matrix results from the expected outer

product of the image vectors: C = 〈 (x–〈x〉 )⋅(x–〈x〉 )T〉  = 〈x⋅xT〉. The normalized eigenvectors ei of C are
called the PCA primitives or eigenimages of the vectors x. Because of the symmetry of C they constitute
an orthonormal basis; their eigenvalues λi are real and non-negative.

The first m ≤ n eigenvectors ei ordered according to their descending eigenvalues λ i and written as
column vectors of a matrix Km allow the PCA transformation

u = KT
m⋅x (1)

The transformed image vectors u = (u1,…,um)T are called PCA jets.
Since the columns of Km are orthogonal the inverse is given by (Km)–1 = KT

m if m = n. However, Km

can not be inverted if m < n. In this case KT
m represents the pseudo inverse of Km . The reconstruction

x’ = Km⋅u ≈ x of an image vector is optimal in the sense of the mean square error (MSE):

MSE(x,x’) = 〈  (x − x’)2 〉 (2)

Comparing to the notation in section 2.2.1 the correspondences ξ ≡ u, A ≡ KT
m , and A† ≡ Km are obtained.

The components ui of the PCA jets u = (u1,…,um)T are centered since 〈u〉  = KT
m⋅〈x〉  = 0. Furthermore,

they are decorrelated:

〈u⋅uT〉  = 〈  KT
m⋅x⋅xT⋅Km 〉  = KT

m⋅〈x⋅xT〉 ⋅Km = KT
m⋅C⋅Km = KT

m⋅Λ⋅Km = Λ (3)

The covariance matrix Λ = diag(λ1,…,λn) of the ui is a diagonal matrix and the variances var (ui) are
given by the eigenvalues λi  . Thus, the components ui (the principal components) are ordered according to
their descending variances.

2.2.3 Independent Component Analysis (ICA)

The ICA is based on a mixture model: The image vectors x are assumed to be generated by a linear
mixture of n unknown, statistically independent, and centered sources s = (s1,…,sn)

T, where 〈s〉  = 0 and
p(s) = p(s1) ⋅ p(s2) ⋅…⋅ p(sn). Here, p(.) represents the probability density function (PDF). The mixture
matrix M is unknown as well but has to be non-singular (i.e. invertible):

x = M⋅s (4)

The goal is to determine the inverse matrix M–1 and to reconstruct the sources s from the given image
vectors: M–1⋅x = M–1⋅M⋅s = s. However, the ICA is an ill-posed problem: If at most one source si is a
Gaussian, the inverse mixture process can only be identified up to an unknown diagonal matrix D and a
permutation matrix P (see for example [AB98a]):

y = B⋅x = B⋅M⋅s = D⋅P⋅s (5)

The matrix B and the vectors y are called the demixing matrix and the reconstructed sources respectively.
Since it is impossible to identify D and P unambiguously, the sources are assumed to have unit variances
var (si) ≡ 1 for all i, and P is set to the identity matrix: P ≡ I. Thus the reconstructed sources y equal the
original sources s up to their signs. According to section 2.2.1 the following correspondences hold: ξ ≡ y,
A ≡ B, and A† ≡ B–1.

A simplification of the calculation of B is obtained if the image vectors x are whitened, i.e. if they are
transformed by a whitening matrix Z. The whitened image vectors v = Z⋅x satisfy the equation

〈v⋅vT〉 = 〈ZT⋅x⋅xT⋅Z〉  = ZT⋅〈x⋅xT〉 ⋅Z = ZT⋅C⋅Z = I (6)
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The whitening matrix Z can be derived 2 from the PCA transform of the vectors x: Z ≡ Wpca = Λ–½ ⋅KT
n

with Λ–½ = diag(λ1
–½,…,λn

–½) (see equation (3)). Thus, the determination of B reduces to the determina-
tion of an orthogonal matrix Wica with B = Wica⋅Wpca ; since the reconstructed sources yi are decorrelated
(because of their statistical independence), centered (i.e. 〈y〉 = 〈s〉  = 0), and have unit variances var (yi) = 1
for all i, the following equation holds:

I = 〈y⋅yT〉 = B⋅〈x⋅xT〉 ⋅BT = Wica⋅Wpca⋅〈x⋅xT〉 ⋅WT
pca⋅WT

ica

= Wica⋅〈v⋅vT〉 ⋅WT
ica = Wica⋅I⋅WT

ica = Wica⋅WT
ica

⇒ WT
ica = (Wica)

–1 ⇒ Wica is orthogonal. (7)

Methods to calculate Wica can be found for example in [COM94], [HO97], or [ARL97]. Figure 9 shows
the block structure of the different processing stages of the ICA.

s M x Wpca v Wica y

mixing whitening + demixing

B

Figure 9: Processing stages of ICA.

2.3 New Methods for Encoding Images

A combination of PCA and ICA called Principal Independent Component Analysis (PICA) [AB98a]
[AB98b] [AB98c] results from the calculation of the m independent components from the first m
principal components (the m components of the PCA with highest variance). Here, the mean square error
of the reconstruction is equal to the one of the PCA, but the derived principal independent components
(PIC) are “more independent” than the principal components. Thus, PICs provide better encoding
properties.

Because of the following advantages, especially PCA and PICA techniques have been investigated in
the scope of the project SEMACODE:

•  In contrary to other techniques such as Discrete Fourier, Cosine, or Gabor Transform (DFT, DCT,
DGT), PCA and PICA implicitly utilize the statistical properties of the image data; therefore an
efficient encoding scheme is derived.

•  PCA and PICA are optimal in the mean square error sense because the primitives are adapted to
the given image data.

A drawback of PCA and PICA is that (in theory) the primitives have to be calculated separately for each
image. Nevertheless, in case of the PCA this problem can be overcome by utilizing a simple and reliable
heuristic.

The investigation of PCA and PICA primitives has been expanded to overlapping subimages as well.
A special technique where a two-dimensional Gaussian weighting function is applied to the subimages
prior to the calculation of the primitives leads to the Gaussian-windowed PCA or PICA (GPCA, GPICA)
respectively. The idea of applying the weighting function is to accentuate the center and to attenuate the
borders of subimages which is a well-known property of oriented receptive fields. Here, the resulting
image primitives turned out to be independent of the size of the analyzed images.

                                                       
2 Of course, other methods to derive the whitening matrix Z exist. For example, Bell and Sejnowski use a
matrix Z satisfying the condition ZT⋅Z = C−1 [BS96].



2 Encoding Scaled Images

15

2.3.1 Independent Components Analysis of the PCA Subspace (PICA)

The number of the independent sources si is equal to the number n of the components of an image vector
x. The question is whether all sources or just a few “salient”  are needed to accomplish a given image
processing task (for example the recognition of objects).

The measure of the “saliency”  of a PCA component ui is implicitly given by its variance var (ui): The
variance corresponds to the amount of the associated eigenvector ei in the mixtures representing the
image vectors. In case of the ICA no such measure is given: The variances of the sources are identical
(= 1), and even the average content of information (marginal entropy) or the virtual variance 3 do not
provide a significant indication for the saliency of an ICA component [AB98a].

However, the independent sources can be calculated for the subspace Um , which is spanned by the
eigenvectors e1,…,em (m < n) of the covariance matrix C. This is done by using the whitening matrix
Wpca,m = Λm

–½⋅KT
m with Λm

–½ = diag(λ1
–½,…,λm

–½) instead of the matrix Wpca = Λ–½ ⋅KT
n . Um constitutes the

m-dimensional subspace with maximum variance (PCA subspace) of the vector space spanned by the
image vectors x. Since Wica is orthogonal, the rows bi of the ICA matrix B = Wica⋅Wpca span Um as well.
Thus, only the “most salient”  sources yi with highest influence, the principal independent components
(PIC), are extracted; the mean square error of the reconstruction is identical to the one of the correspond-
ing PCA transform. Further details can be found in [AB98a], [AB98b], and [AB98c].

2.3.2 Image Encoding Using Gaussian-weighted Subimages

The different encoding techniques described in section 2.2 are based on the analysis of small rectangular
patches (subimages) of a given image. Thus, the extracted image primitives have the same rectangular
shape as the subimages. Since primitives are assumed to represent certain image features, their
rectangular shape appears to be somehow artificial and unnatural. Furthermore, rectangular primitives
lead to undesirable reconstruction effects of the whole image as shown by theoretical and experimental
results (tiling; see for example [GW93] and Figure 16b).

Tiling can be avoided by reasonable choice of the subimages. The column vectors of an inverse or
pseudo inverse transform A† are considered to be image features or primitives whereas the row vectors of
the transform A represent their corresponding detectors or filters. The coefficients ξk (1 ≤ k ≤ m) of the
jets ξ specify the influence of the k th primitive on the current subimage.

In biological visual systems, the receptive fields are known to extract certain image features as well.
Here, points at the center of a receptive field have a higher influence on the output of the associated cell
than points at the borders. The shape of the corresponding weighting function often resembles a two-
dimensional Gaussian (see Figure 11b below) as used by the Gabor transform [GAB46]. In contrary,
techniques based on standard transform coding apply a uniform weighting function (see Figure 11a).

The generation of the subimages can be visualized by sliding a window F over a given image: Pixels
inside the window belong to a new subimage (sliding window technique [KK92] [VAI93]; see Figure 10).
The weighting of the pixels results from the multiplication of the pixel values and specific window
weights at the associated window locations.

Mathematically, this procedure is described as follows: Let B be an image which is Nx×Ny pixels in
size with pixel values B(x, y) (intensity, gray values) at horizontal position x∈ { 0,…,Nx−1}  and vertical
position y∈ { 0,…,Ny−1} . A r×r window Fi , j at position (i, j), i∈ { 0,…,Nx−1} , j∈ { 0,…,Ny−1} , is defined by
its window weights Fi, j (x, y):

Fi , j (x, y) = 
î

 <−≤<−≤

else0

0  and  0  iff1 rjyrix
(8)

                                                       
3 In contrary to the PCA transform KT

m the rows bi of the ICA transform B are in general not normalized.
The virtual variance var* (yi) ≡ || bi ||

−2 of an ICA component yi = bi⋅x equals the variance of yi if bi will be
normalized.
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Figure 10: Schematic visualization of the sliding window technique. A window F (r×r pixel
in size) is moved over the image B by q = r−s pixels. The content of F defines a subimage
located at the corresponding window position. Note that the subimages overlap by s pixels;

if s = 0 the subimages are non-overlapping.

The corresponding subimage Ui, j at position (i, j) results from the application of Fi , j to B:

Ui, j (x, y) = Fi , j (x, y) ⋅ B(x, y) (9)

Obviously, Ui , j (x, y) is non-zero at most at those positions where the window weights Fi , j (x, y) are equal
to unity; the associated r×r pixels define the “content”  of the window and constitute the coefficients of an
r⋅r-dimensional image vector x. The remaining pixels values of Ui , j (x, y) are equal to zero and will be
ignored.

Equation (8) defines a rectangular window (see Figure 11a): The pixels inside the window are
weighted with unity. Another window type which is often used in image processing tasks is the Gaussian
window (see Figure 11b):

Gi, j, σ (x, y) = Fi , j (x, y) ⋅ 




























 −−−+





 −−−⋅−

22

2 2

1

2

1

2

1 r
jy

r
ixexp (10)

In contrary to the rectangular window, the pixels inside the Gaussian window are weighted with a two-
dimensional Gaussian function. Here, the parameter σ defines the “width”  of the Gaussian.

The Gaussian weighting of the subimages has several advantages: Center pixels are emphasized and
discontinuities at the borders of subimages causing tiling effects (as known from JPEG or PCA encoded
images; see Figure 16b) can be avoided.
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Figure 11: a) Rectangular window Fi , j and b) Gaussian window Gi , j, σ .
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2.3.3 Overlapping Subimages

The use of Gaussian windows requires the subimages to overlap, or else the information of pixels with
low window weights near the borders of the subimages is lost by superimposed background noise. For
instance, during the generation of the subimages all pixel values B(x, y) of the image B should be
weighted at least with a minimum window level c. The c-support of a Gaussian window Gi , j, σ defined by

support (Gi , j, σ , c) = {  (x, y) | Gi , j, σ (x, y) ≥ c } (11)

consists of the positions (x, y) with associated window weights Gi , j, σ (x, y) which are at least as large as c.
Thus, the c-support represents a circular conic section of Gi , j, σ .

If the Gaussian windows (and with it the generated subimages) do not overlap, the requirement of a
minimum weighting stated above will not be met (see Figure 12a). Thus, the Gaussian windows have to
overlap (see Figure 12b).

a) 

Gi, j, σGi−1, j, σ

Gi−1, j+1, σ

Gi−1, j−1, σ

Gi+1, j+1, σ

Gi+1, j−1, σ

Gi+1, j, σ

Gi, j−1, σ

Gi, j+1, σ
b) 

Gi, j, σGi−1, j, σ

Gi−1, j+1, σ

Gi−1, j−1, σ

Gi+1, j+1, σ

Gi+1, j−1, σ

Gi+1, j, σ

Gi, j−1, σ

Gi, j+1, σ

s

s

Figure 12: The c-supports of several Gaussian windows. If the windows do not overlap (a),
some of the pixels of the image B will be weighted with a value smaller than c (shaded area).

If the windows do overlap (b), this case will be excluded.

Arranging the Gaussian windows in a lattice structure according to Figure 12, the windows have to
overlap in horizontal and vertical direction by s pixels respectively. Given the width r of the windows, the
variance parameter σ, and the minimum weight factor c, it can be shown that the overlap parameter s is

s  =   r − 2⋅σ⋅ )(cln−  (12)

2.3.4 Image Reconstruction

Regardless if the subimages do overlap or not, their reconstruction follows the same principle: First the
centered image vectors x’ are reconstructed by the (pseudo) inverse transform A† and the encoded vectors
ξ according to section 2.2.1. In the next steps, the average 〈x〉  is added and the image vectors are
converted into subimages.

In the case of non-overlapping subimages weighted by unity, the whole image B is derived by
merging the subimages at their original location. Mathematically, this is defined in analogy to equation
(9) by the addition of subimages Ui , j :

B(x, y)  = ∑
j,i

Fi , j (x, y) ⋅ B(x, y) = ∑
j,i

Ui , j (x, y) where i mod r = 0,  j mod r = 0 for all i, j (13)

The positions (i, j) of the rectangular windows Fi , j and the subimages Ui , j are integer multiples of r since
the subimages do not overlap.

If the Ui , j do overlap and/or are weighted with a Gaussian function, the addition of the Ui , j in general
will not result in the correct image reconstruction. Here, an additional procedure is required. Assuming
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that the subimages were generated by a Gaussian window Gi, j, σ overlapping by s pixels in horizontal and
vertical direction respectively, the reconstructed pixel values of the image B are calculated by

B(x, y)  = 
∑

∑ ⋅

j,i
ji

j,i
ji

yxG

yxByxG

),(

),(),(

,,

,,

 = 
∑
∑

j,i
ji

j,i
ji

yxG

yxU

),(

),(

,,

,

 , i mod q = 0,  j mod q = 0 for all i, j (14)

where q = r−s. Thus, the sum of the subimages Ui, j has to be divided by the sum of the windows. Note
that equation (14) holds for both overlapping Gaussian and overlapping rectangular windows.

2.4 Experimental Results
Following the investigations in [ARL97] and [AB98a], the PCA and PICA based on non-overlapping
subimages were compared to the GPCA and GPICA (Gaussian-weighted GPCA/GPICA) based on
overlapping, Gaussian-weighted subimages.

2.4.1 Encoding an Image

The purpose of this comparison was the characterization of the techniques according to their various
properties (content of information, compression ratio, reconstruction error). The data consisted of gray
scaled images with different content (natural scenes, “artificial”  objects such as houses or technical gear,
computer-generated graphics); their pixel values (256 gray values) ranged from “0”  (black) to “1”
(white). For a discussion of the results, the test image Leaves (see Figure 13) will be used.

Figure 13: The test image Leaves.

According to section 2.3.2, the image was decomposed into two sets of subimages UR and UG : UR

consisted of the subimages generated by a rectangular window (8×8 pixels in size). The subimages of UG

were derived from a Gaussian window (16×16 pixels in size) overlapping by 8 pixels in horizontal and
vertical direction respectively. The parameter σ = 3 was empirically chosen to achieve a small reconstruc-
tion error (see section 2.4.2). Both UR and UG contained about 5100 subimages.

From these sets the image vector sets XR and XG were generated according to section 2.2.1. By
subtracting the respective average 〈xR〉 and 〈xG〉 the image vectors were centered. Figure 14 shows the
corresponding subimages of a small detail of the image Leaves.
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a) Small detail
of Leaves

(40×32 pixels)

b) Image vectors of XR

(non-overlapping
subimages, 8×8 Pixel)

c) Image vectors of XG

(Gaussian-weighted subimages, 16×16
pixels, 8 pixels overlap, σ = 3)

Figure 14: Decomposition of a small detail (a) into non-overlapping (b)
and Gaussian-weighted, overlapping subimages (c).

Next, the covariance matrices CR and CG of the image vector sets XR and XG were calculated. The
eigenvectors eR, i of CR represent the PCA primitives of XR (see section 2.2.2). Consequently, the eigen-
vectors eG, i of CG are called the GPCA primitives of XG .

After the extraction of the first sixteen principal components, the PICA and GPICA components of XR

and XG were calculated using the fixed point algorithm in [HO97] (see section 2.3). The rows of the
corresponding ICA matrices BR and BG represent the PICA and GPICA filters respectively. Since BR and
BG are not invertible, the associated primitives were derived from the columns of the pseudo inverse
matrices B†

R and B†
G . According to section 0, the pseudo inverse B† of an ICA matrix B is calculated by

B† = W†
pca⋅WT

ica = Km⋅ Λm
½ ⋅WT

ica where Λm
½ = diag(λ1

½,…,λm
½) = (Λm

–½)−1.
In Figure 15 the first sixteen PCA/GPCA primitives and PICA/GPICA primitives/filters are shown.

Note that it is not possible to calculate the GPCA/GPICA primitives from the PCA/PICA primitives
directly. In fact, the statistical properties of subimages generated by a rectangular and a Gaussian window
are different; thus the primitives have to be different as well (see also section 2.5).

2.4.2 Quality of Coding and Reconstruction

The image vectors of the sets XR and XG were transformed by their corresponding transform matrices. To
determine the encoding quality, the expected information content (marginal entropy) H(ξ i) of the
resulting components ξ i of each encoding scheme was calculated [AB98a]:

H(ξ i)  = –∑
iξ
p(ξ i) ⋅ log(p(ξ i)) (15)

p(ξ i) represents the occurrence probability of ξ i  . To get comparable results for the different components,
the ξ i were scaled to an identical interval (here: [0, 255]) and rounded to integer values (quantization).
This procedure allowed the approximation of the occurrence probabilities by the relative frequencies and
the calculation of H(ξ i) according to equation (15). The sum of the H(ξ i) of all components (cumulated
entropy) is a measure for the encoding quality and results in the expected number of bits (if the dual
logarithm is used in equation (15)) needed for the encoded image vector ξ.

Table 1 shows the cumulated entropy of the different encoding schemes and the expected error (MSE;
see equation (2)) of the reconstructed images. The results are similar to those found in [AB98a], i.e. PICA
and GPICA have the same reconstruction error but a smaller cumulated entropy than PCA and GPCA.
Thus, the compression properties of the PICA and GPICA encoding are slightly better.
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Figure 15: The sixteen PCA/PICA and GPCA/GPICA primitives and filters of the image Leaves.
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encoding PCA PICA GPCA GPICA

∑i
H(ξ i) 104.1 bits 100.1 bits 104.7 bits 100.4 bits

MSE 0.0041 0.0041 0.0063 0.0063

Table 1: Cumulated entropy and reconstruction error of the image Leaves.

The mean square error of the GPCA/GPICA reconstruction is higher than the one of the PCA/PICA.
Furthermore, the GPCA/GPICA reconstructed images appear to be slightly blurred. However, the
subjective reconstruction error of the GPCA/GPICA perceived by the human visual system is lower: As
mentioned in section 2.3.2, tiling effects will be reduced if the image encoding is based on Gaussian-
weighted, overlapping subimages.

In Figure 16 the different reconstruction results are presented for the example of a small detail of the
image Leaves in magnification. To show that the overlapping of the subimages alone does not reduce the
tiling effect, an additional PCA encoding was calculated: Here, the subimages were generated in the same
way as the subimages of the GPCA/GPICA (16×16 pixels, 8 pixels overlap in horizontal and vertical
direction) with the difference of using a rectangular window instead of Gaussian window (Figure 16c).

a)     b)

 c)     d)

Figure 16: Reconstructing a small detail of the image Leaves by sixteen components.
a) Original detail (120×80 pixels),
b) reconstruction by PCA (subimages are 8×8 pixel in size and do not overlap),
c) reconstruction by PCA (subimages are 16×16 pixel in size and overlap by 8 pixels),
d) reconstruction by GPCA (subimages are 16×16 pixel in size and overlap by 8 pixels, σ = 3).



2 Encoding Scaled Images

22

2.5 Primitives of Scaled Images
One of the biggest problems of automated object recognition tasks is that the size (scale) of objects
included in images is unknown. Ideally, objects and images can be encoded independently of their scale.
However, the scale-invariant encoding of objects and images is impossible until a rather abstract, high-
level representation scheme is used (for example the encoding of objects by complex geometric
structures). Low-level encoding methods based on the analysis of small subimages are in general not
scale-invariant: Images are represented globally in the spatial domain by encoded image vectors, even if
the image vectors are encoded locally in a different domain (e.g. the PCA subspace).

Another question is if the low-level representation of an image and its scaled versions have identical
or at least similar properties which are independent of scaling. For example, the amplitudes of the Gabor
representation of natural images are proportional to the reciprocal spatial frequency of the corresponding
Gabor primitives [FIE87]. This property allows the adaptation of the encoding to the typical frequency
distribution of the image data.

Consequently, one might ask if primitives which are adaptively derived for a given image are suitable
for scaled versions of the same image as well, or if the corresponding image representations have similar
properties. As shown in the following sections, this is true for PCA and GPCA: The primitives remain
constant and can be used for a large range of scaled image versions.

The PCA/PICA and GPCA/GPICA primitives of scaled versions of the image Leaves were calculated
according to section 2.4; Figure 18 shows the resulting GPCA/GPICA primitives. Here, the scaling factor
t represents the width or height of the current image version related to the original width or height. Thus,
a smaller value of t corresponds to a smaller image size.

In contrary to the PICA/GPICA primitives, the PCA/GPCA primitive sets resemble each other, i.e.
they are independent of the size of the image. Further experiments with other image data gave the same
results. Some primitives are inverted versions of the primitives of other sets; since the primitives generate
a basis of the PCA/GPCA subspace, this is of no importance in case of image encoding tasks.

2.5.1 Analysis of PCA Primitives of Natural Images

The similarity of PCA primitives calculated from different image data was already mentioned in previous
work (see for example [FIE87], [SAN89], or [OF96]). However, to us no other work is known which
captures the phenomenon of scale-invariant shape of image primitives.

Now, this aspect is investigated in detail. To obtain a suitable image model, Habibi and Wintz give an
approximation of the correlation between the gray values B(x, y) and B(x’, y’) of nearby pixels [HW71]:

ρ[B(x, y), B(x’, y’)]  ≈  exp(−α⋅| x−x’ | −β⋅| y−y’ |)  =  exp(−α⋅| x−x’ |) ⋅ exp(−β⋅| y−y’ |) (16)

Thus, the approximated correlation function depends only on the parameters α, β > 0 and the spatial
distance of the pixels. Note that the approximated correlation function is separable, i.e. the horizontal and
vertical terms in equation (16) are independent from each other. Figure 17 shows the actual correlation of
the pixels of the image Leaves in horizontal direction and the approximated correlation in (16).
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Figure 17: Numerically calculated correlation of pixels of the image Leaves (dots)
and its approximation (line; α = 0.0782) in horizontal direction.
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Figure 18: GPCA and GPICA primitive sets of scaled versions of the image Leaves.
For a large scaling range (t = 0.5 … 2), the GPCA primitive sets are almost identical.

In some sets, primitives no.7 to no.16 are inverted; this is of no importance for
image encoding tasks. In contrary, the GPICA primitive sets are not identical.

From equation (16) and the standard deviations σ[B(x, y)] and σ[B(x’, y’)] of the pixels, the covariance
can be approximated:

cov[B(x, y), B(x’, y’)]  ≈  σ[B(x, y)] ⋅ σ[B(x’, y’)] ⋅ exp(−α⋅| x−x’ |) ⋅ exp(−β⋅| y−y’ |) (17)

In the following, natural images are assumed to have a covariance given by equation (17). Furthermore,
their associated PCA primitives are calculated from subimages which are r×r pixels in size and generated
by a rectangular window. Because of the uniform window weights, the standard deviations of the pixels
are equal, i.e. σ[B(x, y)] = σ[B(x’, y’)] = σB . Thus, the covariance function in equation (17) differs from
the correlation function in equation (16) only by the constant factor σB .

In this case the PCA primitives can be represented as two-dimensional eigenfunctions ϕα, β (x, y) of the
covariance function with eigenvalues λα, β and x, y ∈  { 0,…, r−1}  4. ϕα, β (x, y) satisfies the condition
                                                       
4 Here, the covariance function cov[B(x, y), B(x’, y’)] and the eigenfunctions ϕα, β (x, y) correspond to the
covariance matrix C and the eigenvectors ei respectively (see section 2.2.2).
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cov[B(x, y), B(x’, y’)] ⋅ ϕα, β (x’, y’)  =  λα, β ⋅ ϕα, β (x, y) (18)

Because of the separability of the covariance function cov[B(x, y), B(x’, y’)], ϕα, β (x, y) is given by the
product of two one-dimensional eigenfunctions ϕα (x) and ϕβ (y); the eigenvalues λα, β are the product of
the eigenvalues λα and λβ of ϕα (x) and ϕβ (y). This results from equations (17) and (18) combined with
the assumption σ[B(x, y)] = σ[B(x’, y’)] = σB :

λα, β ⋅ ϕα, β (x, y)  =  λα ⋅ λβ ⋅ ϕα (x) ⋅ ϕβ (y)

where ∑
−

=

1

0

r

’z

σB ⋅ exp(−γ⋅| z−z’ |) ⋅ ϕγ (z’)  =  λγ ⋅ ϕγ (z) (19)

Here, the parameter γ and the variable z are placeholders for α, β and x, y respectively. The solution of
equation (19) is given by

ϕγ (z)  =  a ⋅ cos ( )( )
2
1−−⋅γ⋅ rzb and ϕγ (z)  =  a’ ⋅ sin ( )( )

2
1−−⋅γ⋅ rzb (20)

(see [HW71] [DR87] [BRA95]). a and a’ are suitable constants to normalize ϕγ (z); the parameters b and
b’ have to be calculated numerically to satisfy the equations

b ⋅ tan(½⋅b⋅γ⋅ r) = 1 and b’ ⋅ cot (½⋅b’⋅γ⋅ r) = −1 (21)

The eigenvalues are

λγ  =  
)1(

2
2 +⋅ b

and λγ  =  
)1(

2
2 +⋅ ’b

(22)

The shape of an eigenfunction ϕγ (z) in equation (20) is given by a trigonometric function with frequency
fγ ; here, the frequency is equal to the products fγ = b⋅γ or fγ = b’⋅γ. The eigenfunctions with the smallest
possible parameters b or b’ have the largest eigenvalues λγ . Thus, the first, “most salient”  PCA primitives
have the smallest possible spatial frequency, since the principal components are ordered according to their
descending eigenvalues.

To determine the influence of the size of a given image B on the frequency fγ of the eigenfunctions
ϕγ (z) (i.e. the shape of the PCA primitives), the discrete lattice structure of the pixels is ignored. In this
case, the pixel values of an image Bt , which is derived by scaling the image B with a factor t, are
calculated by

Bt (x, y)  = 






t

y

t

x
B , (23)

Applied to equation (16), the correlation of the pixels is given by

ρ[Bt (x, y), Bt (x’, y’)]  ≈  exp(−t −1⋅α⋅| x−x’ |) ⋅ exp(−t −1⋅β⋅| y−y’ |) (24)

Note that the reciprocal of the scaling factor t is multiplied with the original parameters α and β. Thus,
the new model parameters of the scaled image Bt are equal to the products −t −1⋅α and −t −1⋅β, and the
frequency ft⋅γ of the corresponding eigenfunctions ϕ t⋅γ (z) are calculated by

ft⋅γ = b⋅t −1⋅γ , b ⋅ tan(½⋅b⋅t −1⋅γ⋅ r) = 1 and ft⋅γ = b’⋅t −1⋅γ , b’ ⋅ cot (½⋅b’⋅ t −1⋅γ⋅ r) = −1 (25)



2 Encoding Scaled Images

25

0

0.2

0.4

0.6

0.8

1

1.2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

fr
eq

ue
nc

y
ft⋅γ

scaling
factor t

1st eigenfunction

2nd eigenfunction

3rd eigenfunction

4th eigenfunction

Figure 19: The frequency ft⋅γ of the first four eigenfunctions ϕγ (z) in equation (20)
with largest eigenvalues λγ as a function of the scaling factor t (r = 8, γ = 0.0782).

If the size of the subimages is fixed, the frequency of the eigenfunctions will remain almost constant for a
large scaling range (see Figure 19): The frequency shift caused by the scaling factor t will be compen-
sated by the parameters b and b’. This property explains the similarity of the PCA primitives derived from
versions of the same image which differ in size (compare to Figure 20).
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Figure 20: The first two eigenfunctions ϕγ (z) in equation (20) with the
largest eigenvalues as a function of the scaling factor t (r = 8, γ = 0.0782).

2.5.2 Analysis of GPCA Primitives of Natural Images

In the previous section, the PCA primitives were represented by the product of two one-dimensional
eigenfunctions ϕα (x) and ϕβ (y). For GPCA primitives, a corresponding representation is given by the
product of the eigenfunctions ϕ’α (x) and ϕ’β (y). However, these eigenfunctions do not posses an analyti-
cal formulation comparable to equation (20) and have to be numerically approximated. The reason is, that
the product of the standard deviations of the pixel values in equation (17) is no longer a constant factor
σB , but (because of the Gaussian weighting function) equals to

σ[B(x, y)] ⋅ σ[B(x’, y’)]  =  σB ⋅ g r, σ (x, y) ⋅ g r, σ (x’, y‘ )

where  g r, σ (x, y)  =  ( ) ( ) 



 


 −+−⋅σ⋅− −−− 2

2
12

2
12

2
1 rr yxexp (26)

Note that the parameter σ represents the width of the Gaussian (see section 2.3.2). Combining equations
(17), (18) and (26), the eigenfunctions ϕ’α (x), ϕ’β (y) and their corresponding eigenvalues λ'α , λ'β have to
satisfy the condition (compare to equation (19) for the PCA)
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Again, γ and z are placeholders for α, β and x, y respectively. According to the latest findings, an
analytical formulation of the eigenfunctions ϕ’γ (z) similar to equation (20) can not be given. However, as
shown by a numerical analysis, the ϕ’γ (z) will vary even less than the eigenfunctions ϕγ (z), if the scaling
parameter t is changed (see Figure 21). Furthermore, the eigenfunctions ϕ’γ (z) with largest eigenvalues
resemble the derivatives of a Gaussian function which are used as filters in Scale-Space theory [LIN94].
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Figure 21: (above) The first four eigenfunctions ϕ’γ (z) for t = 0.5, 1, and 2 respectively.
(below) A Gaussian function and its first three derivatives.

2.6 Generalized GPCA Primitives
The analytical and experimental results of the previous section suggest the possibility of using only one
set of image primitives to encode scaled versions of an image as well as images which are different from
each other. Obviously, images with similar correlation parameters α and β in equation (16) have similar
eigenfunctions ϕγ (z) and ϕ’γ (z).

The advantage of generalized GPCA primitives (i.e. primitives suitable for different images) is, that
only the parameters α, β and the numerical solutions of equation (27) have to be calculated to generate
the primitives. Furthermore, GPCA primitives determined for certain parameters α and β can be reused to
encode images with similar correlation parameters.

At the beginning of section 2.5.1, some references were given concerning the similarity of PCA
primitives of different image data; the results therein could be verified for GPCA primitives as well.

Figure 22 shows the GPCA primitives of three different images and the two-dimensional
eigenfunctions ϕ’α, β calculated for the image Leaves. At first sight, the primitive sets seem to be
completely different; however, most of the primitives appear as rotated versions in varying order.

Particularly, the eigenfunctions ϕ’α, β are more similar to the GPCA primitives of the images Africa
and Room than to the primitives of the image Leaves themselves. The reason is that in equation (16) the
largest correlation is assumed along the horizontal and vertical axes of the image (see Figure 23a). This
assumption holds for Africa and Room, whereas the axes of largest correlation of Leaves are slightly
rotated against the horizontal and vertical image axes (see Figure 23b). Consequently, the GPCA
primitives are rotated as well.

A detailed analysis of these effects will be subject of future investigations. Possibly, a more precise
approximation of the correlation function could be derived by modeling the rotation of the largest
correlation axes with the aid of a parameter φ which represents the rotation angle.
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Figure 22: GPCA primitives (16×16 pixels in size) of three different images
and the eigenfunctions ϕ’α, β of the image Leaves.
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Figure 23: a) The axes of the largest pixel correlation in horizontal and vertical direction.
(b) The axes of pixel correlation rotated by the angle φ as compared to (a).

2.7 Discussion
The investigations so far have resulted in three novel methods for encoding images based on the
transform coding principle:

1) PICA encoding with minimum information content and minimum reconstruction error,

2) GPCA encoding by Gaussian-weighted subimages and minimum tiling effects, and

3) GPICA encoding which combines PICA and GPCA.

The advantages of these methods compared to other encoding strategies are:
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•  adaptive image primitives, i.e. primitives which are adjusted to the characteristics of the respective
image data;

•  decorrelated (in case of the GPICA even statistical independent) components allowing an efficient
encoding and compression of images;

•  low reconstruction error and a minimum of generated artifacts (tiling).

Further advantages of the GPCA compared to the GPICA are:

•  fast generation of the primitives since the ICA stage is omitted;

•  identical or similar primitives for scaled versions of an images or for different images with similar
statistical properties;

•  possibility of efficient calculation based on a reliable image model.

Because of the properties mentioned last, the analytically modeled GPCA is superior to the numerically
determined GPICA.

What are the drawbacks of the developed methods? A typical drawback of adaptive image encoding
strategies compared to static methods like DFT, DCT, or DGT is that in theory the image primitives have
to be recalculated for each image. However, the GPCA primitive sets of scaled images or different images
with similar correlation parameters resemble each other, and can therefore be reused as well.

Thus, if images are classified according to their correlation parameters α and β, the images of one
class and their scaled versions will be encoded by a common set of primitives which is calculated only
once. The reconstruction error of images with different parameters is slightly higher, but negligible for
practical purposes. Furthermore, it can be compensated by simple methods (e.g. reducing the degree of
compression).
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3 Object Recognition

Starting with a simple standard technique, the template matching, the recent steps in developing an object
recognition system for digital images are described in this chapter. The investigations concentrate on the
required invariance against scaling of the different methods; this invariance is a necessary condition to
recognize objects successfully.

3.1 Scale-invariant Object Recognition
In chapter 1 the most important problems of the automated object recognition were presented. The
research within the scope of the project SEMACODE focuses on the problem of a scale-invariant
recognition which is not solved in a satisfactory manner by already existing concepts.

Why is an efficient scale-invariant recognition of objects difficult? One of the main reasons is the
discrete structure of the image data: Images showing the same object but differing in size have a different
number of pixels. The number of pixels determines the resolution of images; the smaller the image, the
lower the resolution. The resolution of an image determines the quality of the representation of an object
and its details. Consequently, the classification of images showing the same object but differing in size
becomes ambiguous. Furthermore, the scaling of images showing different objects may result in identical
low-detailed images. This is demonstrated in Figure 24.

scaling

Figure 24: Example for the generation of an identical image by scaling two different images.

On the other hand, too many details may lead to erroneous recognition results. Humans have an intuitive
notion which details are “essential”  to characterize an object and which details can be neglected.
Additionally, humans are able to decide reliably if a detail belongs to an object or if it is a “disturbance”
(i.e. the detail of different object, a defect of the image, noise, etc.). Similar mechanisms to recognize
objects automatically do only exist in rudimentary form.

Thus, to obtain reasonable results, the recognition task has to be limited to a certain scaling range
which depends on the given object. The problem is to determine this scaling range, and how to use it
efficiently in the search process.

3.1.1 Existing and New Methods

Starting point of the investigations and developments was a classical, not scale-invariant technique, the
template matching [PRA78] [GW93]. It is based on the main idea of determining those parts of an image
most similar to the given object image. Since the exact recognition of an object is often impossible (see
chapter 1), the search for similar objects is the only reasonable alternative.

Many concepts exist to define a quantitative measure for the similarity of images; well-known are the
Euclidean distance and the correlation coefficient. Other measures can be found for example in [SJ99].
The current research concentrates mostly on the use of the correlation because of its advantageous
properties and its intuitive correspondence to the subjective concept of “similarity” . Future investigations
will include other similarity measures as well.

As an expansion of the classical template matching, the blurred template matching was developed by
us, which suites a limited scale-invariant object recognition. A variant of this approach integrates the
GPCA encoding of images which was introduced in chapter 2.

The main idea is to reduce the image data to a few salient details, the so-called points of interest (PoI)
of images. Their usage in an attention-based object recognition system were investigated and are
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described in this section. Furthermore, these points are the basis of an object or image model which is
ideally scale-invariant. First results show that this model can be used to successfully recognize objects.

3.2 Template Matching
Our research started with the investigation of a classical technique, the template matching, a very simple
and reliable method to recognize objects in images. However, it is assumed that the size of the object is
known, and that the object is at most slightly distorted or occluded by other objects. Especially the
missing invariance against scaling restricts the usage of the standard template matching. Although it is
possible to search for a version of the given object only differing in size, the resulting computational
complexity is not acceptable for most recognition tasks.

Thus, an expanded version of the template matching, the blurred template matching, was developed.
Here, both the object and the image are reduced in size to decrease the computational complexity and to
allow an “ imprecise”  comparison between the object and parts of the image: Because of the lower image
resolution, unimportant details are omitted, and the recognition process becomes more robust against
small scaling, deformation, or occlusion effects. However, this might lead to a recognition of objects
which are not included in the current image.

In further investigations the template matching was combined with the GPCA encoding described in
chapter 2. Compared to the blurred template matching, similar results were achieved while the degree of
“blurring”  could be regulated more precisely.

3.2.1 Classical Template Matching

In the following, an object is assumed to be given by an object image Obj which is nx×ny pixels in size.
The classical template matching (see for example [PRA78] or [GW93]) is based on the idea of moving a
nx×ny window F over the target image B which has to be processed (c.f. the sliding window technique
described in section 2.3.2). Mathematically, the pixels inside the window F at position (i, j) generate a
subimage Ui, j which is nx×ny pixels in size. The pixel values Ui , j (x, y) of the subimage are calculated
according to equation (9) by the product of the weights Fi , j (x, y) of the rectangular window and the pixel
values B(x, y) of B, i.e. Ui, j (x, y) = Fi, j (x, y) ⋅ B(x, y).

During every processing step of the template matching, the correlation coefficient ρi , j (Ui , j ,Obj) of the
current subimage Ui , j at position (i, j) and the pixel values Obj (x, y) of the object image (the template) is
calculated:
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Possible values of the correlation coefficient ρi , j (Ui , j ,Obj) are derived from the interval [−1,1]. Accord-
ing to the current value of ρi , j (Ui , j ,Obj), one of the following statements related to the similarity of the
subimage and the object image holds:

ρi , j (Ui, j ,Obj)  =  1 : object and subimage are identical up to a constant factor c1>0 and an
additive constant c2 , i.e. Ui, j (i+x, j+y)  =  c1⋅Obj (x, y) + c2

0 < ρi, j (Ui, j ,Obj) < 1 : the higher the value of the correlation coefficient, the more similar are Ui , j

and Obj

ρi , j (Ui, j ,Obj)  =  0 : object and subimage do not resemble each other

−1 < ρi , j (Ui, j ,Obj) < 0 : the lower the correlation coefficient, the more similar are Ui , j and the
inverted image of Obj

ρi , j (Ui, j ,Obj)  =  −1 : subimage and inverted object image are identical up to a constant factor
c1>0 and an additive constant c2 , i.e. Ui, j (i+x, j+y)  =  −c1⋅Obj (x, y) + c2

The advantages of the correlation coefficient are its distinctiveness and its invariance against the intensity
and average illumination of the object image and the subimages. Furthermore, the inverse object image
can be recognized as well.

A drawback is the high computational complexity, especially if the size of the object appearing in the
image is unknown: in this case the correlation coefficient has to be calculated for many versions of the
object image which differ in their size.

3.2.2 Decreasing the Resolution of Images

To decrease the computational complexity of the template matching, both the object image and the target
image were reduced in size. Furthermore, the robustness of the processing task against deformation,
distortion, scaling, and occlusion is expected to be increased, since the resulting lower resolution and the
corresponding “blurring” of the images should lead to a faster and less restrictive object recognition.

The correctness of these assumptions was verified using a few simple objects; the results are
demonstrated for the object images Stool, Stool-O, and Container (see Figure 25).

a) b) c) 

Figure 25: The object images Stool (a), Stool-O (b) and Container (c).

First, several versions of the image Stool (107×126 pixels) differing in their size were calculated (scaling
factor t = 0.2 … 5). Then the image and its scaled versions were reduced to the same size (for example
20×24 pixels; this corresponds to a scaling factor 5 of 0.19 in case of the original image). Figure 26 shows
some of the resulting images. At different image resolutions, the correlation coefficient of the original
image and the scaled versions as a function of the scaling factor t is reproduced in Figure 27.

                                                       
5 This factor is called the resolution factor tR , see next section (3.2.3).
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a) original
(20×24 pixels)

t = 0.5 t = 0.7 t = 1 t = 1.4 t = 2

b) versions of (a) scaled by the factor t and reduced to 20×24 pixels

Figure 26:The reduced image Stool (a) and its reduced, scaled versions (b).
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Figure 27: The correlation coefficient of the image Stool and its scaled versions as
a function of the scaling factor t at different resolution levels.

As expected, the correlation coefficient reaches its maximum value of unity at t = 1, since in this case the
compared images are equal. The correlation coefficients at a resolution of 20×24 pixels and the original
resolution of 107×126 pixels are nearly identical; in fact, a significant difference can not be found unless
the resolution is reduced to 10×12 pixels. Thus, lowering the image resolution up to a certain degree does
not affect the results, while the computational complexity is decreased: The number of pixel values
needed to calculate the correlation coefficient reduces from originally 107×126 = 13482 to 20×24 = 480.

Of particular interest is that the correlation coefficient will remain high if the scaling factor is varied
by a small amount: For a limited scaling range, the correlation coefficient is almost scale-invariant.

Next, the correlation coefficient of the image Stool and the scaled versions of both a “distorted”  image
Stool-O and a “similar”  image Container were calculated. In case of Stool-O, the “distortion”  results from
a background object to simulate an occlusion effect. The corresponding correlation coefficients are shown
in Figure 28.
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Figure 28: The correlation coefficient of the images Stool and the scaled versions of Stool-O (above)
and Container (below) as a function of the scaling factor t at different resolution levels.

For the image Stool-O, the correlation coefficient reaches its maximum at t = 0.97, i.e. the simulated
occlusion results both in a lower correlation and a small scaling error. Note that the correlation coefficient
is higher for a lower image resolution: This confirms the assumption that the tolerance against
deformation and distortion effects will be increased if the image resolution is reduced.

The interpretation of the results derived for the image Container is more difficult. At a large scaling
range (t = 1…2) the value of the correlation coefficient is higher than 0.5; the overall maximum is
reached at t ≈ 1.1 indicating that the object shown in the image Container is “ larger”  than the object Stool.
Thus, both objects are “similar”  in terms of the correlation measure. However, the exact scaling factor can
not be determined, since the graph of the correlation coefficient in the neighborhood of the maximum
value is relatively flat.

Here, the problem is if the two objects in fact are “similar”  in terms of human visual perception. This
question is difficult to answer since the subjective notion of similarity is based on individual parameters,
i.e. a person A states that two objects are similar, whereas person B does not. The perceived similarity will
become less ambiguous if more than two objects are compared and a statement like “object No.1 is more
similar to object No.2 than object No.3”  can be given. Thus, similarity highly depends on the context in
which the objects are presented. For a detailed discussion of these aspects see for example [SJ99].

3.2.3 Blurred Template Matching

After the investigations described in the previous section, the template matching with “blurring”  (blurred
template matching), i.e. with reduced image resolution, was used to recognize several objects in a real-
world image B. Therefore, the size of B and the object images was decreased by a factor tR << 1 called the
resolution factor.

The search for an object in the reduced image BR was done at different scales t ∈  [tmin , tmax], since the
correlation coefficient is scale-invariant only for a limited scaling range. Thus, the images of the objects
to be recognized were scaled by the product t⋅tR of the scaling factor and the resolution factor.
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Figure 29: Results of recognizing the object Stool in the target image Room. The marked image
details and the object image have the largest correlation coefficients (solid line: correlation

coefficient = 0.75 at t = 0.48; dotted lines: correlation coefficient = 0.72 at t = 0.4).

Figure 29 shows the results of recognizing the object Stool in the target image Room (301×223 pixels) by
using the blurred template matching. The stool visible in Room is about the factor 0.5 smaller in size than
the object image Stool; the size of the image Room at reduced resolution was 44×59 pixels (tR = 0.2). The
blurred template matching was performed at ten different scaling ranges (t = 0.4 , 0.48 , 0.57 , 0.68 ,
0.82 , 0.98 , 1.17 , 1.4 , 1.67 , and 2.0). Thus, the resolution of the reduced object image ranged from
8×10 to 42×50 pixels.

The image detail with maximum correlation coefficient (= 0.75) was found at a scale of t = 0.48 which
is the closest to the exact scaling range 0.5. The location of this image detail matched the location of the
stool visible in Room. Interestingly, the second largest coefficient (= 0.72) was calculated for the image
detail containing the object Container (see Figure 29). However, the object Stool could not be recognized
if none of the scaling ranges t was close to the exact scale of 0.5 .

Besides Stool, the objects Container and Container2 (see Figure 30a) were searched in Room as well,
but only Container could be found. Obviously, the “distortion”  of the object Container2 visible in Room,
which is caused by the background (dark floor and bright wall), prevented a successful recognition.

Further recognition tasks included the object images Chair and Box (see Figure 30b+c). These images
represent rough sketches of the contours of real-world objects and were used to simulate possible object
examples generated with the aid of a graphical editor by a hypothetical user. Since the inverted images of
these objects might be included in the target image as well, the absolute value of the correlation
coefficient was calculated (compare to section 3.2.1). In this case, the chair visible at bottom left in Room
could be recognized. In contrary, the search for the object Box was not successful: In Room, every object
with a shape similar to the sketched box has textures caused by illumination or reflection, which are not
visible in the object image Box.

a) b) c) 

Figure 30: The object images Container2 (a), Chair (b) and Box (c).



3 Object Recognition

35

To perform the recognition task, the object images as well as the target image have to be reduced in size
to achieve a lower image resolution. Does the utilization of scale-invariant GPCA primitives improve this
process? This will be investigated in the next section.

3.2.4 Template Matching of GPCA-encoded Images

So far, to recognize objects by template matching techniques, the pixel values of images were used.
However, a reduction of the computational complexity without decreasing the image resolution will also
be possible, if the images are encoded in a suitable manner (data compression!), and the correlation
coefficient is calculated from the encoding coefficients. Therefore, the GPCA encoding scheme described
in chapter 2 was used.

First, the GPCA primitives of the target images had to be calculated. Next, the target image, the object
image, and the scaled versions of the object image were encoded by the same set of these primitives. The
similarity of the object and different regions of the target image was determined by calculating the
correlation coefficients of the corresponding GPCA jets.

Here, the different variances of the GPCA components have to be considered. In most cases, the
ranges of the first components are significantly larger than the ranges of other components, i.e. the first
components have a higher influence on the correlation coefficient and dominate its value. Thus, the
GPCA components of the target image and the object images were scaled independently to obtain equal
variances. The resulting component ranges were nearly identical and allowed a reasonable determination
of the correlation coefficients.

The computational complexity can be varied by two parameters regulating the “blurring”  of an image:
The size of the subimages used to generate the GPCA jets, and the number of GPCA components. The
choice of the subimage size corresponds to the choice of the image resolution at the blurred template
matching. Furthermore, the number of GPCA components determines the detailed appearance of the
subimages. A smaller number of components and/or larger subimages reduce the number of encoding
coefficients needed to calculate the correlation coefficients and therefore the computational complexity.

The experimental results can be discussed in a few words: Compared to the blurred template
matching, the objects Stool, Container, and Chair were recognized at the same or less computational
complexity, while the objects Container2 and Box were not. The calculation of the correlation coeffi-
cients by only a few components, which are most important for the reconstruction of the object images,
improved the results for Container2 and Box, i.e. their correlation with regions showing these objects in
the target image increases, but does not become a maximum.

3.2.5 Discussion

The investigations described in this section 3.2 showed that a scale-invariant object recognition based on
template matching techniques is partly successful. Furthermore, the different methods can be optimized in
many ways to adapt them to specific recognition problems.

For example, the correlation coefficients could be calculated only for those pixels, which belong to the
object, instead for the whole object image. In this case, the recognition of Container2 by blurred template
matching was successful, because the interfering background pixels were removed. However, this
technique can not be applied to sketched objects like Chair or Box, since the pixels of these objects have
identical values. Consequently, they are highly correlated with regions of uniform illumination, and thus
are “recognized” at locations where the target image shows a wall or other large surfaces.

Other optimization strategies try to reduce the computational complexity. For instance, the correlation
coefficient might only be calculated for regions in the target image, where the variance of the pixel values
is larger than a given threshold. This prevents “empty”  parts of an image without “ interesting”  content
(like walls or other large surfaces) to be unnecessarily compared with the object image.

In spite of these additional measures, template matching techniques have fundamental drawbacks. A
main point is that recognition tasks, which are invariant against scaling, rotation, etc., demand multiple
searches of the object in the target image. Because of the resulting computational complexity, methods
based on template matching are not suitable for fast online processing, especially if the image data is very
large. For this reason, other approaches to object recognition will be investigated.
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3.3 Attention-based Object Recognition
Compared to the principles of the human visual system, the strategy of object recognition techniques
based on template matching appears to be rather “unintelligent” . Looking at an image, humans first search
for image details which attract the attention of the viewer: Such details are assumed to be more salient
than others. The viewer focuses one of these salient details and recognizes them (if possible) as objects or
parts of objects. Then the next detail is focused, and so on.

In contrary, methods based on template matching scan every detail of the whole image, regardless if
they are salient or not. If necessary, this procedure is repeated for every scaling range. Thus, the object
image is compared to image details even if they do not contain any interesting information and could
therefore have been omitted.

For this reason, a heuristic was developed to identify the salient and most interesting regions (points of
interest, PoI) in a given image. Image details containing points of interest are compared to the object
image, whereas other details are left out. This kind of attention-based object recognition is expected to
have a lower computational complexity than classical template matching methods.

3.3.1 Determination of Salient Regions in Images

The determination of salient image regions is a difficult task; in fact, no common definition of such
regions exists. Psychological investigations show that especially regions with a high degree of symmetry
attract the attention of a human viewer [LN87]. A technique based on this results is presented in
[HNM96]; however, the resulting methods are rather complex and computationally expensive.

A more simple approach by Itti and Koch [IK98] characterizes the attention-attracting points of
interest as the centers of image features with high intensity. To determine these centers, an image B is
filtered by n different filters (feature detectors like Gabor filters, etc.). The coefficient B (k) (x, y) of the
respective filter images B (k), k = 1,…, n, are normalized to the identical range [0,1] of intensity values,
weighted by a factor gk , and added to a so-called saliency map SB of the image B. The coefficients
SB (x, y) of this map represent a measure for the saliency of an image pixel B(x, y): The higher the value
of SB (x, y), the more salient is B(x, y).

Here, the weighting factors gk are of great importance. Itti and Koch propose to set gk = (Mk−mk )
2,

where Mk is the global maximum of the coefficients B (k) (x, y) of the k th filter image B (k), and mk

represents the average of all local maximums of B (k). The idea is, that a filter output B (k) shall have more
influence on the resulting saliency map, if it contains a few but relatively large coefficients (peaks). Such
peaks are possible points of interest and will be emphasized in SB . If many of the different filter images
contain a peak at the same position, the corresponding coefficient in SB will most probably represent a
point of interest.

3.3.2 Point of Interest in GPCA-encoded Images

The method of Itti and Koch can be used in combination with the GPCA encoding scheme as well.
Interpreting the GPCA primitives as filters, the coefficients ξk of the encoding jet ξ of subimage Ui , j at
position (i, j) correspond to the coefficients of the filter image B (k) generated by the k th primitive 6. Thus,
a saliency map SB can be generated according to the algorithm described in the previous section.
However, since the coefficients ξk (i, j) might be negative and therefore negative peaks are possible, their
absolute values |ξk (i, j)| have to be used. The generation process of SB including the normalization and
weighting of the (absolute) filter images is given by

SB (i, j)  =  ( )∑
=

⋅
n

k kj,i

k
k j,imax

j,i
g

1
)(

)(

ξ
ξ

(29)

Unfortunately, the determination of the weighting factors gk raises a fundamental problem: In contrary to
the global maximum, the calculation of the local maximums of an discrete, two-dimensional signal (e.g. a

                                                       
6 In the following, the notations ξ(i, j) and ξk (i, j) are used to emphasize that a jet ξ and its coefficients ξk

belong to a certain subimage Ui , j at position (i, j).
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digital image) is very expensive in terms of the computational complexity. For this reason, an alternative
method to determine the factors gk was developed.

The weighting factors gk will be expected to have large values, if a filter image B (k) contains isolated
but strong peaks. Furthermore, the gk should be small for filter images with many peaks which are nearly
identical. Assuming the coefficients of a filter image (i.e. the encoding coefficients ξk (i, j) of the GPCA)
to be samples drawn from a random variable Ξ, the distribution of the ξk (i, j) is given by the probability
density function p(Ξ) of Ξ. Typical measures to characterize this distribution are the variance, the
skewness and the kurtosis (excess) of Ξ (see for example [PUG84]).

The higher the kurtosis kurt (Ξ) ∈  [−3,∞] of a random variable Ξ, the more samples of Ξ are located
near the expected value 〈Ξ〉 and less samples deviate from 〈Ξ〉 . In contrary, the kurtosis will become
negative if many samples are scattered widely around 〈Ξ〉, and kurt (Ξ) = 0 if Ξ is Gaussian-distributed.
Thus, Ξ is sometimes called a super-Gaussian (kurt (Ξ) > 0) or a sub-Gaussian (kurt (Ξ) < 0) random
variable. Figure 31 reproduces some of the possible distributions of a Ξ with different kurtosis.

a)

0

0.2

0.4

-3 -2 -1 0 1 2 3

kurt (Ξ) = 0

p(Ξ)

b)

0

0.5

1

-3 -2 -1 0 1 2 3

kurt (Ξ) = 2

p(Ξ)

c) 

0

0.4

0.8

-3 -2 -1 0 1 2 3

kurt (Ξ) = −0.3

p(Ξ)

d) 

0

0.4

0.8

-3 -2 -1 0 1 2 3

kurt (Ξ) = −1.2

p(Ξ)

Figure 31: Examples for the probability density function p(Ξ) of a random variable Ξ
with different kurtosis: a) Gaussian, b) super-Gaussian, c) and d) Sub-Gaussians.

The kurtosis of the encoding coefficients ξk (i, j) provides a measure which is similar, but not identical to
the one proposed by Itti and Koch: It will deliver a high value if only a few of the ξk (i, j) represent a
strong peak. Thus, the kurtosis was chosen to calculate the weighting factors gk :

gk  =  kurt (ξk ) + 3  =  [ ]∑∑ −⋅⋅
⋅
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Note that the value 3 is added to the kurtosis; therefore the weighting factors will never get negative.
Figure 32 shows the saliency map SRoom of the image Room. The coefficients SRoom (i, j) are calculated

according to equation (29). The number of GPCA components was n = 16, and the encoding coefficients
ξk (i, j) were generated from Gaussian-weighted subimages (16×16 pixels, 8 pixels overlap, σ = 3).
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Figure 32: The image Room (left) and its saliency map SRoom (right).
Bright pixels in SRoom denote the points of interest.

Especially the contours of objects are marked as salient regions (bright pixels in SRoom), while large
surfaces in Room with low information content (dark pixels in SRoom), such as walls, floor, but also the top
of the operating table, are assumed to be less interesting. Here, a detailed discussion about the correspon-
dence of the derived points of interest to their psychological motivated equivalents is omitted. However,
image regions with high information content (edges, lines, etc.) are detected, which is an important image
processing task.

3.4 Development of a Scale-invariant Model for Objects
The technique to detect the points of interest as described in the previous section can be applied to object
images as well. Possibly, only those encoding jets representing the most salient image regions are needed
to recognize the object: Since the other jets encode “unimportant”  parts of the object image, they can be
omitted.

This idea leads to the development of an object model consisting only of the jets ξ of salient points.
Ideally, this model will be invariant to the size of the represented object, if the relative positions of the
jets alone are stored. However, because of the limited invariance of the jets against scaling, the model is
expected to be limited scale-invariant as well.

The investigations concerning this promising approach are still in progress and will be subject to
future research within the scope of the project SEMACODE. Comparable methods were used by others to
implement a successful system for face recognition purposes [WFK99].

3.4.1 Object Modeling Using Points of Interest

The idea of modeling an object by its points of interest will be demonstrated for the simple example of the
object image Stool. Figure 33 shows the object image with typical points of interest and the resulting
model. For instance, this model can be represented by a labeled graph: Each node in the graph describes a
point of interest and therefore holds the corresponding encoding jet, whereas each edge is labeled with the
relative position of the points at its two nodes.

Principally, this object model is invariant against the sizing of the object: Given the angle φ and the
distance δ between two nodes, the relative position of the nodes can be represented by a tuple (φ, δ) of
polar coordinates in dimensionless units. In case of the angle φ, this true by definition; the distance δ can
be calculated from the “real”  distance of the nodes divided by the average distance of all nodes.
Obviously, this relative distance is independent of the size of the object. Furthermore, rotated versions of
the object are easily represented by the model: The angle of rotation φ rot alone has to be added to the
angle φ of each edge in the model graph.
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Figure 33: Typical points of interest of the object image Stool (left) and the resulting
model graph (middle). The label of the edge (V1 , V2) represents the relative position

of two nodes V1 and V2 in polar coordinates (φ, δ) (right).

Using the GPCA image encoding technique, several versions of the object image Stool differing in their
size were transformed into corresponding object models (multi-resolution object model). First, the points
of interest had to be calculated according to section 3.3.2. The nodes of the model graphs resulted from
those points with coefficients SB (i, j) of the saliency map SB , which were greater or equal than the
average 〈SB (i, j)〉.

However, many of these coefficients were located nearby and more or less identical. To achieve a
distribution similar to Figure 33, where the points of interest are located as widely as possible, and where
the number of points remains almost constant at each scaling range, only coefficients SB (i, j) and SB (i’, j’ )
with a distance

∆ [SB (i, j), SB (i’, j’ )]  = )()( ’jj’ii −+− (31)

at least greater or equal than the minimum dynamical distance dt = t ⋅ d1 were selected as points of
interest. Here, d1 is the smallest distance between two points of interest, which is allowed at the original
scale t = 1, and has to be chosen empirically.

For d1 = 2.5, Figure 34 shows the selected points of interest of the object image Stool at different
scaling ranges. The points of interest are marked by circles representing the support of the underlying
subimage; the subimages were 16×16 pixels in size (8 pixels overlap), and the number of encoding coeffi-
cients ξk (i, j) per jet ξ(i, j) was 16.

t = 0.75 t = 1 t = 1.5

Figure 34: Selected points of interest of Stool at different scaling ranges. Circles represent the support of
the underlying subimages Ui , j (16×16 pixels, 8 pixels overlap). The corresponding coefficients SB (i, j)

were greater or equal than the average 〈SB (i, j)〉, and their distance was at least dt pixels (d1 = 2.5).

Each node generated from the selected points was labeled with the encoding jet ξ(i, j) of its corresponding
subimage, while the attributes of the edges were set to the relative node positions. Unfortunately, as
mentioned above, the scale invariance of the resulting object model is limited to a small range, since the
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encoding jets ξ(i, j) remain constant only for slight changes in the size of the object image. For this reason
a separate object model was calculated at several scaling ranges.

3.4.2 Using the Model for Recognizing Objects

In analogy to the investigations in section 3.2, the developed object model was used to recognize several
objects in the target image Room. For efficiency reasons, minor modifications had to be applied to the
representation of the model graph.

For example, some edges of the graph in Figure 33 can be omitted: There exists a graph with a smaller
number of edges, which represents the relative position of all the nodes, i.e. where at least one edge is
attached to each node. A graph with the smallest possible number of edges will result, if at least one and
at most two edges are attached to each node: This graph is called a path graph or simply path 7, since it
resembles a path in the fully connected graph.

In case of the actual object model, the construction of a path is rather simple. Starting with a point of
maximum saliency (i.e. where the corresponding coefficient SB (i, j) is the maximum of the saliency map
SB ), the fixation point, which is transformed into the first node of the graph, the next point of interest with
a minimum distance dt = t⋅d1 and the highest remaining coefficient SB (i’, j’) is searched. The new point is
transformed into a node as well and connected to the previous node by an edge representing their relative
position. This procedure is repeated until no more point of interest satisfying the above conditions are left.
Figure 35 shows a simplified example path for the object Stool (the real path graph of Stool is much more
complex since there are more point of interest in the object image).

points of interest resulting path
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5 8
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Figure 35: Generation of a path by nine coefficients SB (i, j) ordered according to descending values.

After the generation of the path, the points of interest of the target image Room were determined. Of these
points, the point A with an associated encoding jet most similar to the encoding jet of the fixation point of
Stool was selected. Therefore the correlation coefficient of both jets had to be calculated. Here, the
differing variances of the encoding coefficients ξ k (i, j) were equalized by normalizing the components of
the jets according to section 3.2.4.

Beginning with the fixation point of Stool, the point P in the target image corresponding to the next
node in the model path was searched. The search could be reduced to a small part of the target, since the
relative position (φ, δ) in reference to the fixation point was given by the label of the connecting edge (see
Figure 36). This part resulted from a region where the inclination of the connecting line AP between the
first point A and the next point P differed at most about ± 7,5° from the predicted angle φ. Furthermore,
AP must not be shorter than one half and not longer than two times the length of the absolute distance
between the corresponding points in the object model. These restrictions arise from the following two
observations:

•  The object (possibly) appearing in the target image may be slightly rotated as compared to the
object given in the object image. Such a rotation is likely to result from the discrete pixel structure
of digital images and has to be compensated, even if the recognition task is not expected to be
invariant against rotation.

                                                       
7 Note that a path graph is not necessarily the only graph with a minimum number of edges.
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•  So far, the invariance of the object model against scaling is limited (see previous section). Thus,
the size of the searched object appearing in the target image (and with it the length of AP) has to
be within a limited scaling range.

φ
A

PAP

15°

Figure 36: Possible target image locations of the point P in reference to the point A (shaded).

A successful detection of the point P in the target image allowed a first approximation of the size and the
rotation of the object, which was used to improve the search for further points according to the technique
described above. If P could not be detected, subsequent points of the model path were searched, or else
the search task restarted at the next point of the target image, which was most similar to the fixation point
of the object image.

This method is more complex but faster and more robust than the rather simple blurred template
matching. Consequently, the experimental results included the successful recognition of the objects Stool,
Container, Chair, and even Container2. However, the object Box could not be recognized as well.

3.5 Discussion and Further Research
The development of an automated object recognition system resulted in an object model with a limited
invariance against scaling, which is based on the proper selection of salient image regions (points of
interest). Furthermore, the model is easily expanded to support a rotation-invariant object representation.
By utilizing points of interest, the robustness of the recognition process against several distortion effects
such as occlusion is enhanced.

Further research in the scope of the project SEMACODE will concentrate on the improvement of the
object model, especially its invariance against scaling. Additionally, the investigation of other similarity
measures is considered.

Besides, a general object recognition model shall be developed on the basis of the results and methods
described herein. For instance, latest neuro-biological and psychological findings should be considered to
improve the recognition task. Here, the main subject will be the investigation of Gestalt-theoretic
principles, which are only scarcely used in image processing.
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Appendix: Efficient Scaling of Images

Nearly all the methods described in chapter 3 require an image B, which is represented by pixel values
B(x, y), to be resized as fast and correct as possible. Trivial solutions, such as leaving out or copying
pixels in regular intervals, are too inaccurate and not acceptable. Instead, an efficient technique based on
signal-theoretic results was developed.

To simplify the investigations, images are first assumed to be one-dimensional signal. The case of
“real”  images, i.e. two-dimensional signals, will be considered later. The amount of resizing (scaling) is
denoted by the scaling factor t calculated from the quotient of the width/height of the scaled image Bt and
the width/height of the original image B. Note that in this case the area of Bt is t

 2 times the area of B.

Decimation and Expansion

The most simple operations to scale a finite, one-dimensional signal B consisting of N samples B(x),
where x∈ { 0,…,N–1} , are decimation and the expansion. They allow the downsizing of B by a factor M
and the upsizing of B by a factor L, respectively. Here, both M and L have to be real integer numbers. The
mathematical definitions of decimation and expansion are (according to [VAI93])

M-fold decimation: BD (x)  =  B(x⋅M) if  x⋅M ∈  { 0,…,N–1}

L-fold expansion: BE (x)  = 
{ }

î

 −∈=

else0

10  and  0if N,,LxLmodxLx z
(32)

The decimated signal BD consists of each M th sample of B, whereas the expanded signal BE results from
inserting L–1 zero samples between each pair of successive samples of B. Thus, BD is downsized by a
factor 1/M and BE is upsized by a factor L compared to the original signal B. Figure 37 shows the results
of applying decimation and expansion to a simple signal.

original signal decimiated signal (M = 2) expanded signal (L = 2)

Figure 37: Decimation and expansion of a signal.

However, neither BD nor BE are suitable approximations of a signal B to be scaled by a factor t = 1/M or
t = L, respectively: Previous to the decimation, the signal B has to be filtered by a decimation filter HD to
avoid the effect of aliasing (see below). Likewise, the expanded signal BE must be smoothed by an
interpolation filter HE to fill the “gaps”  resulting from inserted zero samples.

The appearance of frequency components in a decimated signal, which have no equivalent compo-
nents in the original signal, is called aliasing. For example, let Bν be a signal with Nν samples Bν (x)
where Bν (x) = 1 if x is a multiple of 2, and Bν (x) = 0 else. Obviously, Bν is periodical with the smallest
possible period Tν = 2 for integer coordinates x. In signal theory, the frequency ω of a signal is usually
given by ω = 2⋅π/T, where T denotes the period of the signal. Thus, the frequency ων of the signal Bν is
ων = 2⋅π / Tν = π. Since Tν can not get smaller than 2, ων = π represents the highest possible frequency,
which is called the Nyquist frequency.

Now, let Bν, D be the signal resulting from the M-fold decimation of Bν where M = 3. The samples of
Bν, D are given by Bν, D (x) = 1 if x is a multiple of 2, and Bν, D (x) = 0 else. Thus, Bν, D is identical to Bν but
contains only one third of the samples of Bν . Consequently, its frequency ων, D = π is equal to ων as well.
However, since Bν, D is a version of Bν resized by a scaling factor t = 1/M = 1/3, its period Tν, D should be
one third of the original period Tν resulting in a theoretical frequency of ων, D = 3⋅π. But this theoretical
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frequency is higher that the Nyquist frequency which is impossible. Therefore Bν, D is not a valid approxi-
mation of the M-fold decimated signal Bν .

It can be shown that each frequency component higher than π/M may lead to aliasing in a M-fold
decimated signal [VAI93]. For this reason, such frequency components are removed before decimating a
signal. This is done by applying a decimation filter HD with a cutoff frequency ωD = π /M. HD is a so-
called lowpass filter: Ideally, the output signal of HD contains only those frequency components which are
equal or lower than the cutoff frequency.

In the case of a L-fold expansion, the expanded signal has to be smoothed. This is be done by applying
a lowpass filter, the interpolation filter HE , with cutoff frequency ωE = π /L after the expansion stage.

Scaling Filters

Decimation and expansion operations can be combined with their corresponding filters HD and HE

respectively. For mathematical reasons, the signal to be processed and the filters consisting of the filter
coefficients HD (i) and HE (i) are expected to have an infinite support. This is done by “embedding”  a
finite signal B with N samples B(x), where x∈ { 0,…,N–1} , into an infinite number of zero samples, i.e.
B(x) = 0 if x∉ { 0,…,N–1} ; the same holds for finite filters. According to [VAI93], the improved M-fold
decimation and L-fold expansion operations are given by

M-fold decimation: BD (x) = ∑
∞

−∞=i

B(x⋅M – i) ⋅ HD (i)  = ∑
∞

−∞=i

B(i) ⋅ HD (x⋅M – i)

L-fold expansion: BE (x) = ∑
∞

−∞=i

B(i) ⋅ HE (x – i⋅L) (33)

Applying a M-fold decimation operation to the output of a L-fold expansion operation, the signal B can be
resized by any (rational) scaling factor t = L/M. With equation (33), the samples of the scaled signal Bt are

Bt (x) = ∑
∞

−∞=j

HD (j) ⋅ ∑
∞

−∞=i

B(i) ⋅ HE (x⋅M – i⋅L – j)

= ∑
∞

−∞=i

B(i) ⋅ ∑
∞

−∞=j

HD (j) ⋅ HE (x⋅M – i⋅L – j) (34)

The second row of equation (34) represents a combined decimation and expansion where the filter coeffi-
cients are given by convolutions of HD and HE : These coefficients generate a “new”  filter HF . Since HD

and HE are lowpass filters, HF is a lowpass filter with cutoff frequency 8 ωF ≈ min(ωD ,ωE ) = π/max(M, L).
Thus, the convolution summation over j in equation (34) can be replaced by the coefficients of the scaling
filter HF to obtain the classical one-dimensional t-fold scaling operation of a signal B (t = L/M):

Bt (x)  = ∑
∞

−∞=i

B(i) ⋅ HF (x⋅M – i⋅L) where HF (k)   = ∑
∞

−∞=j

HD (j) ⋅ HE (k – j) (35)

Efficient Scaling Filters

Considering that the coefficients B(k) are zero where k∉ { 0,…,N–1} , the summation in equation (35) has
to be computed for at most N indices i∈ { 0,…,N–1} . Usually, the scaling filter HF has a finite number of
non-zero filter coefficients which is significantly smaller than N. Thus, many of the filter coefficients
HF (x⋅M-i⋅L) are zero as well, and the number of summands in equation (35) is expected to be less than N.

                                                       
8 The cutoff frequency of HF is ωF = min(ωD , ωE ) for ideal lowpass filters HD and HE . However, real
lowpass filters might damp frequencies lower than the cutoff frequency and do not fully reject higher
frequencies: Depending on the used filter implementations, ωF will slightly differ from min(ωD , ωE ).



Appendix: Efficient Scaling of Images

44

For the purpose of image scaling, the filter HF is chosen to be symmetrical to the origin. This ensures
a uniform filter operation without phase shifting (i.e. the signal is not shifted or “delayed”  compared to
the origin x = 0). Consequently, the filter coefficients satisfy the properties HF (k) = HF (−k) where
k∈ { −K,…,K}  and HF (k) = 0 if k∉ { −K,…,K} . K is called the radius of the scaling filter; the total number
of filter coefficients is 2⋅K+1.

Following the above considerations, each summand in equation (35) with an associated index i satis-
fying neither i∈ { 0,…,N–1}  nor −K ≤ x⋅M−i ≤ K has to be zero and can be omitted. Thus, equation (35) is
equivalent to

Bt (x)   = ∑
=

)( 

)( 

N,K,L,M,xstop

K,L,M,xstarti

 B(i) ⋅ HF (x⋅M – i⋅L)

where start (x, M, L, K) = 



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
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 −⋅
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KMx
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
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L

KMx
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Scaling 2-dimensional Signals

Given a two-dimensional signal B with Nx×Ny samples (i.e. a “real”  image which is Nx×Ny pixels in size)
and a two-dimensional scaling filter H2F with (2⋅K–1)×(2⋅K–1) coefficients, equation (36) may be formu-
lated in the two-dimensional case:

Bt (x, y)  = ∑
=

)( 

)( 

N,K,L,M,xstop

K,L,M,xstarti

  ∑
=

)( 

)( 

N,K,L,M,ystop

K,L,M,ystartj

B(i, j) ⋅ H2F (x⋅M − i⋅L, y⋅M − j⋅L) (37)

Equation (37) will be simplified, if H2F is separable, i.e. H2F can be written as the product of two one-
dimensional filters. Given that H2F (x, y) = HF (x) ⋅ HF (y), equation (38) holds:

Bt (x, y)  = ∑
=

)( 

)( 

N,K,L,M,xstop

K,L,M,xstarti

 HF (x⋅M − i⋅L) ⋅ ∑
=

)( 

)( 

N,K,L,M,ystop

K,L,M,ystartj

B(i, j) ⋅ HF (y⋅M − j⋅L) (38)

First, the image columns are resized by an one-dimensional scaling operation. Next, the same is done with
the resulting, vertically scaled rows.

Choice of Filter Coefficients

As mentioned above, HF should be a separable lowpass filter which is symmetrical to the origin. For
image processing purposes, the two-dimensional Gaussian filter Gσ is a suitable choice:

H2F (x, y)  := Gσ (x) ⋅ Gσ (y) where Gσ (k)  = 






⋅
−⋅

⋅⋅ 2

2

22

1 k
exp  , k ∈  { −K,…,K} (39)

The frequency response of the Gaussian filter Gσ is given by its Fourier transform

Ĥ (ωx , ωy)  = Ĝσ (ωx) ⋅ Ĝσ (ωy) where Ĝσ (ω)  =  exp(−½⋅ω2⋅σ2) (40)

determined by the parameter σ [JÄH89]. Figure 38 reproduces this frequency response as a function of σ.
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Figure 38: Frequency response of a one-dimensional Gaussian filter Gσ as a function of σ.

Gσ is not an ideal lowpass filter, since frequency components of the signal B higher than the cutoff
frequency ωF = π / max(M, L) are not fully rejected and lower frequency components are slightly damped.
Therefore, an additional parameter d has to be given to obtain a suitable choice of σ. Here, d represents
the minimum factor used to attenuate frequency components higher than the cutoff frequency ωF . With
ωF ∈ [0, π], the parameter σ is calculated by

Ĝσ (ωF)  =  exp(−½⋅ωF
2⋅σ2)  ≤  d ⇒ σ  ≥ )( 2 dln⋅− ⋅ max(M, L) / π (41)

Applied to most real-life images, a parameter value of d = 0.5 is known to produce acceptable results. To
determine the number 2⋅K+1 of filter coefficients, a radius K, which is three times the value of σ, should
be sufficient:

K  =   3⋅ (42)
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