62 research outputs found

    Separability by Short Subsequences and Subwords

    Get PDF
    The separability problem for regular languages asks, given two regular languages I and E, whether there exists a language S that separates the two, that is, includes I but contains nothing from E. Typically, S comes from a simple, less expressive class of languages than I and E. In general, a simple separator SS can be seen as an approximation of I or as an explanation of how I and E are different. In a database context, separators can be used for explaining the result of regular path queries or for finding explanations for the difference between paths in a graph database, that is, how paths from given nodes u_1 to v_1 are different from those from u_2 to v_2. We study the complexity of separability of regular languages by combinations of subsequences or subwords of a given length k. The rationale is that the parameter k can be used to influence the size and simplicity of the separator. The emphasis of our study is on tracing the tractability of the problem

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, I⊆SI \subseteq S and S∩E=∅S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    Separating Regular Languages by Locally Testable and Locally Threshold Testable Languages

    Get PDF
    A separator for two languages is a third language containing the first one and disjoint from the second one. We investigate the following decision problem: given two regular input languages, decide whether there exists a locally testable (resp. a locally threshold testable) separator. In both cases, we design a decision procedure based on the occurrence of special patterns in automata accepting the input languages. We prove that the problem is computationally harder than deciding membership. The correctness proof of the algorithm yields a stronger result, namely a description of a possible separator. Finally, we discuss the same problem for context-free input languages

    Regular Separability of Parikh Automata

    Get PDF
    We investigate a subclass of languages recognized by vector addition systems, namely languages of nondeterministic Parikh automata. While the regularity problem (is the language of a given automaton regular?) is undecidable for this model, we surprisingly show decidability of the regular separability problem: given two Parikh automata, is there a regular language that contains one of them and is disjoint from the other? We supplement this result by proving undecidability of the same problem already for languages of visibly one counter automata
    • …
    corecore