-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Regular Separability of Parikh Automata

Lorenzo Clemente*!, Wojciech Czerwinski?, Stawomir Lasota'3,
and Charles Paperman*

1 University of Warsaw, Warsaw, Poland
l.clemente@mimuw.edu.pl

2 University of Warsaw, Warsaw, Poland
wczerwin@mimuw.edu.pl

3 University of Warsaw, Poland
sl@mimuw.edu.pl

4 University of Tiibingen, Tiibingen, Germany
charles.paperman@gmail.com

—— Abstract

We investigate a subclass of languages recognized by vector addition systems, namely languages
of nondeterministic Parikh automata. While the regularity problem (is the language of a given
automaton regular?) is undecidable for this model, we surprisingly show decidability of the reg-
ular separability problem: given two Parikh automata, is there a regular language that contains

one of them and is disjoint from the other? We supplement this result by proving undecidability
of the same problem already for languages of visibly one counter automata.

1998 ACM Subject Classification D.2.2 [Design Tools and Techniques] Petri Nets, F.1.1 [Theory
of Computation] Models of Computation, F.2.2 [Nonnumerical Algorithms and Problems] Com-
putations on Discrete Structures, F.3.1 [Specifying and Verifying and Reasoning about Programs]
Mechanical verification

Keywords and phrases Regular separability problem, Parikh automata, integer vector addition
systems, visible one counter automata, decidability, undecidability

Digital Object Identifier 10.4230/LIPIcs.JICALP.2017.117

1 Introduction

We investigate separability problems for languages of finite words. We say that a language U
is separated from a language V by S if U C S and VNS = . In the sequel we also often say
that U and V are separated by S. For two families of languages F and G, the F separability
problem for G asks for two given languages U,V € G whether U is separated from V' by some
language from F. The same notion of separability makes clearly sense if F and G are classes
of sets of vectors instead of classes of languages. In this paper, we consider the case where F
are regular languages and G languages recognized by Parikh automata, and the case where
F are the unary sets and G the semilinear sets.

Motivation. Separability is a classical problem in theoretical computer science. It was
investigated most extensively in the area of formal languages, for G being the family of all
regular word languages. Since regular languages are effectively closed under complement, the

* Partially supported by the Polish National Science Centre grant 2016/21/B/ST6/01505.
t Partially supported by the Polish National Science Centre grant 2016,/21/D/ST6/01376.
t Partially supported by the Polish National Science Centre grant 2016/21/B/ST6/01505.

© Lorenzo Clemente, Wojciech Czerwiniski, Stawomir Lasota, and Charles Paperman;
oy

licensed under Creative Commons License CC-BY L} <
44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). E
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 117; pp. 117:1-117:13 N

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/84869225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.117
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

117:2

Regular Separability of Parikh Automata

F separability problem is a generalization of the F characterization problem, which asks
whether a given language belongs to F. Indeed, L € F if and only if L is separated from its
complement by some language from F. Separability problems for regular languages attracted
recently a lot of attention, which resulted in establishing the decidability of F separability
for various families F such as the piecewise testable languages [7, 15] (recently generalized to
finite ranked trees [9]), the locally and locally threshold testable languages [14], the languages
definable in first order logic [17], and the languages of certain higher levels of the first order
hierarchy [16], among others.

Separability of nonregular languages attracted little attention till now. The reasons for
this may be twofold. First, for regular languages one can use standard algebraic tools, like
syntactic monoids, and indeed most of the results have been obtained with the help of such
techniques. Second, some strong intractability results have been known already since 70’s,
when Szymanski and Williams proved that regular separability of context-free languages
is undecidable [18]. Later Hunt [10] generalized this result for every class F closed under
finite boolean combinations and containing all languages of the form wX* for w € ¥*. This
is a very weak condition, so it seemed that nothing nontrivial can be done outside regular
languages with respect to separability problems. Furthermore, Szymanski and Williams’s
negative result has recently been strengthened by considering two incomparable subclasses
of pushdown automata. First, Kopczynski has shown that regular separability is undecidable
for languages of visibly pushdown automata [13], and then Czerwiriski and Lasota have
shown that the same problem is undecidable for one counter automata [6].

On the positive side, piecewise testable separability has been shown decidable for context-
free languages, languages of vector addition systems (VAS languages), and some other classes
of languages [8]. Another surprising result has been recently obtained by Czerwinski and
Lasota [6] who show that regular separability is decidable (and PSPACE-complete) for
languages recognized by one counter nets (i.e., one counter automata without zero test).
Notice that in all these examples regularity (resp. piecewise testability) is undecidable, but
regular (resp. piecewise testable) separability s decidable, and until recently there were not
many results of this kind.

Finally, in [5] we have shown decidability of unary separability of reachability sets of vector
addition systems (VASes). By unary sets we mean Parikh images of commutative regular
languages, and thus the latter problem is equivalent to commutative regular separability of
(commutative closures of) VAS languages. The decidability status of the regular separability
problem for the whole class of VAS languages remains open.

Our contribution. This paper is a continuation of the line of research trying to understand
the regular separability problem for language classes beyond regular languages. We report a
further progress towards solving the open problem mentioned above by providing a positive
decidability result and a new negative undecidability result: As our first (positive) result,
we show decidability of the regular separability problem for the subclass of VAS languages
where we allow negative counter values during a run. This class of languages is also
known as languages of integer VASSes, and it admits many different characterizations; for
instance, it coincides with languages of one-way reversal-bounded counter machines [11],
Parikh automata [12] (cf. also [2, Proposition 11]), which in turn are equivalent to the very
similar model of constrained automata [3]. In this paper, we present our results in terms of
constrained automata, but given the similarity with Parikh automata (and in light of their
equivalence), we overload the name Parikh automata for both models.

Notice that PA languages are not closed under complement, and thus our decidability
result about regular separability does not imply decidability of the regularity problem (is

L. Clemente, W. Czerwinski, S. Lasota, and C. Paperman

Regularity

-

- -

1
1
I
1
1

unambiguous-PA

1
1
L L 1
Figure 1 The regularity and the regular separability problems.

the language of a given Parikh automaton regular?). Moreover, the regularity problem for
PA languages is actually undecidable [2]!, which makes our decidability result one of few
instances where regularity is undecidable but regular separability is decidable; cf. Fig 1.

Parikh automata are finite nondeterministic automata where accepting runs are further
restricted to satisfy a semilinear condition on the multiset of transitions appearing in the run.
Our decidability result is actually stated in the more general setting of C-Parikh automata,
where C C |J, ey P(NY) is a class of sets of vectors used as an acceptance condition. We
prove that the regular separability problem for languages of C-Parikh automata effectively
reduces to the unary separability problem for the class C itself, provided that C is effectively
closed under inverse images of affine functions. Two prototypical classes C satisfying the
latter closure condition are semilinear sets and VAS reachability sets. Moreover, unary
separability of semilinear sets is known to be decidable [4], and as recalled before the same
result has recently been extended to VAS reachability sets [5]. As a consequence of our
reduction, we deduce decidability of regular separability of C-Parikh automata languages
where the acceptance condition C can be instantiated to either the semilinear sets, or the
VAS reachability sets.

We complement our decidability result by a new negative undecidability result subsum-
ing simultaneously Kopczynski’s undecidability for visibly pushdown languages [13] and
Czerwiniski and Lasota’s undecidability of one counter languages [6]: We show that regular
separability is undecidable for (deterministic?) visibly one counter languages. Inside the proof
we use the result from [6], but actually in order to only reprove [13] it would be sufficient to
use the old work by Szymanski and Williams [18].

2 Preliminaries

Vectors. A set S C N? is linear if there exist a base b € N and periods p1,...,p, € N¢
st. S={b+nip1 +...+nkpi | n1,...,nx € N}, and it is semilinear if it is a finite union of
linear sets. For a vector v € N% and i € {1,...,d}, let v[i] denote its i-th coordinate. For
n € N, we say that two vectors x,y € N are n-unary equivalent, written x =, y, if for every
coordinate ¢ € {1,...,d} it holds z[i] = y[i]] mod n and moreover z[i]| <n <= yli] <n. A

! Later shown decidable for unambiguous PA [3].
2 Determinism here is irrelevant because this class can be determinized.

117:3

ICALP 2017

117:4

Regular Separability of Parikh Automata

set S C N? is unary if for some n, S is a union of equivalence classes of =,,. Intuitively, to
decide membership in a unary set S it is enough to count on every coordinate exactly up to
some threshold n, and modulo n for values larger than n. Unary sets are semilinear.

Let ¥ = {a1,...,ax} be a totally ordered alphabet. For a word w € ¥* and a letter
a; € X, by #4,(w) we denote the number of letters a; in w. The Parikh image of a word
w € ¥* is the vector II(w) = (#a, (W), ..., #a, (w)) € NF. The Parikh image of a language
L C¥*isII(L) = {II(w) | w € L}, the set of Parikh images of all words belonging to L.

Parikh automata. A nondeterministic finite automaton with e-transitions (e-NFA) A =
(Q,I,F,T) over a finite alphabet X consists of a finite set of states @), two distinguished
subsets of initial and final states I, F' C @, and a set of transitions 7' C @Q X X. x @), where
Y. = X U{e}. A nondeterministic Parikh automaton® is a pair (A,S) consisting of an
e-NFA A and a semilinear set S C N¢ where d = |T| is the number of transitions of A.
Notice that we allow e-transitions in the definition of Parikh automata. A run of a Parikh
automaton over a word w = ay...a, € X* is a sequence of transitions p = t1...t, € T™,
where t; = (g;—1, s, ¢;), starting in an initial state go. A run p is accepting if its ending state
@r is final and II(p) € S (we assume here that the set of transitions T is totally ordered).
The language of a Parikh automaton, denoted L(.A, S), contains all words w admitting an
accepting run; it is thus a subset of the language L(.A) of the underlying e-NFA.

One can generalize Parikh automata by using some other family of vector sets in the
place of semilinear sets. For a class C C UdeNP(Nd) of vector sets, a C-Parikh automaton is
a pair (A, S), where A is an e-NFA and S € C. The language L(A,S) is defined as above.

A C-Parikh automaton (A, S) is deterministic if the underlying automaton A is so; here,
we assume that a deterministic automaton does not have e-transitions. The languages
of (non)deterministic C-Parikh automata are shortly called (non)deterministic C-Parikh
languages below.

3 Main results

We call a function f : N¥ — N¢ affine if it is of the form f(v) = Mv + u for an integer
non-negative matrix M of dimension £ x k and a vector u € N¥. In a special case when u = 0
we call the function f linear. A class of vector sets C C [Jyeny P(N?) is called robust if it
fulfills the following two conditions:

C is effectively closed under inverse images of affine functions,

the unary separability problem is decidable for C.

Our first main result is decidability of the regular separability problem for C-Parikh automata.

» Theorem 1. The regular separability problem is decidable for C-Parikh automata, for every
robust class C of vector sets.

The proof of Theorem 1 is split into two parts. In Section 4 we provide a reduction of the
regular separability problem for nondeterministic C-Parikh automata to the same problem
for deterministic ones; this step is crucial for understanding how the regular separability
problem differs from the regularity problem, which does not admit a similar reduction. Then
in Section 5 we reduce the regular separability problem for deterministic C-Parikh automata
to the unary separability problem for vector sets in C.

3 This is the same as constrained automata from [3].

L. Clemente, W. Czerwinski, S. Lasota, and C. Paperman

In Section 6 we consider two instantiations of the class C. First, taking C to be the
semilinear sets we derive decidability for (ordinary) Parikh automata. Second, we consider
the class Cgpe.vas Of sections of reachability sets of VASes (detailed definitions are deferred
to Section 6), which allows us to obtain decidability for Cgpc.vas-Parikh automata. Note that
the latter model properly extends Parikh automata.

Before proceeding with the rest of the proof for our decidability result, we present a
generic reduction of the regular separability problem from which we can immediately derive
a new undecidability result, which is our second main contribution.

3.1 A generic reduction

We observe that regular separability of homomorphic images of a class of languages G reduces
to regular separability for G itself (cf. Lemma 2 below). Since nondeterministic Parikh
automata are the homomorphic image of deterministic ones, we reduce regular separability
for the nondeterministic class to the deterministic one (shown in Sec. 4); together with the
decidability result for the deterministic class presented in Sec. 5, this proves Theorem 1.

Our reduction can also be used to derive undecidability results. Since context-free
languages are the homomorphic image of (deterministic) visibly pushdown languages (cf. [1,
Theorem 5.2]), and since regular separability is undecidable for the former class [18], we
concisely reprove the recent LICS’16 result by Kopczyniski [13] about undecidability of regular
separability of visibly pushdown languages. Moreover, this result can be further strengthened
to (deterministic) visibly one counter languages using the same observation and the recent
result by Czerwiniski and Lasota [6] about undecidability of regular separability for one
counter automata (cf. Sec. 3.2).

We now present our generic reduction. Given two alphabets 3 and I', a homomorphism is
a function h : ¥ — I'* which extends homomorphically to a function from ¥* to I'*, and thus
to languages. For G a class of languages and H a class of homomorphisms, let H(G) be the

class of languages obtained by applying some homomorphism from # to some language in G.

» Lemma 2. If G and H(G) are effectively closed under inverse images of homomorphisms
from H, then the regular separability problem in H(G) reduces to the same problem in G.

In statements of this form, “effective” means that for given finite computational model
representing L € G and h € H, one can effectively find a representation with a finite
computational model for h=!(L) € G, and similarly for #(G). The reduction above is a
consequence of the following fundamental relationship between separators and (inverse)
images of functions. (We do not exploit the further structure of homomorphisms here.)

» Lemma 3. Let L C ¥* K C T be two languages, and let h : ¥* — T be a function.
1. If R separates h(L) and K, then h=*(R) separates L and h™!(K).
2. If R separates L and h='(K), then h(R) separates h(L) and K.

Proof. The proof is elementary and it is given for completeness. For the first point, L C
h=1(R) follows from the inclusion h(L) C R since L C h™!(h(L)), and the disjointness of
h=1(R) and h~1(K) follows from disjointness of R and K. For the second point, the inclusion
h(L) C h(R) follows by the inclusion L C R, and the disjointness of h(R) and K follows
from the disjointness of R and h™1(K). <

Since regular languages are closed under images and inverse images of homomorphisms, we
immediately obtain the following corollary.

117:5

ICALP 2017

117:6

Regular Separability of Parikh Automata

» Corollary 4. Let h be a homomorphism. Languages h(L), K are regular separable if, and
only if, L,h=1(K) are so.

Since regular languages are closed under complement, the regular separability problem is
in fact symmetric. Combining this observation with the corollary above, we can now prove
correctness of our generic reduction.

Proof of Lemma 2. Let h(L), K be two languages in H(G). By Corollary 4, regular separ-
ability for (L), K is the same as for L, h~1(K). Since H(G) is closed under inverse images
by assumption, h~(K) equals the image g(K;) of language K; in G for some g from H. We
have thus reduced to regular separability for L, g(K;), where now both L and K; are in G.
Since regular languages are closed under complement, regular separability for L, g(K7) is
the same for g(K4), L. Applying once more Corollary 4, the latter statement is equivalent
to regular separability for K1,g 1(L). Since G closed under inverse images by assumption,
g 1(L) is itself in G. Since every step was effective, this concludes the proof. <

3.2 A new undecidability result

A one counter automaton is a finite-state device manipulating a single natural counter, which
can be incremented, decremented, and tested for zero; it is visible if the input symbol uniquely
determines which counter operation will be performed. Therefore, languages recognized by
visible one counter automata are a strict subclass of visibly pushdown languages [1]. It was
recently proved that regular separability for one counter automata is undecidable [6], which
is incomparable with undecidability for visibly pushdown languages [13].

As a consequence of Lemma 2 we obtain undecidability of regular separability for visible
one counter automata, which is our second main result, strengthening both [6] and [13].

» Theorem 5. Regular separability of languages recognised by (deterministic) visible one
counter automata is undecidable.

Let G be the class of languages recognized by visible one counter automata, and let
‘H be the class of letter-to-letter (non-erasing) homomorphisms, i.e., functions of the form
h:¥ — T. In order to apply Lemma 2, it suffices to show that languages recognized by one
counter automata are the effective homomorphic image of those recognized by the visible
subclass, and that both classes are effectively closed under inverse images of letter-to-letter
homomorphisms. We begin with the second result.

» Lemma 6. One counter languages and visibly one counter languages are effectively closed
under inverse images of letter-to-letter homomorphisms.

Proof. Given one counter automaton A over ¥ and a letter-to-letter homomorphism h : T' —
¥, one computes an automaton B over I' of the same kind s.t. L(B) = h=1(L(A)) as follows.
The automaton B is obtained by replacing a transition reading a € ¥ in A by corresponding
transitions reading b € T' performing the same counter operation, for every b € h=1(a). Is
it easy to check that L(B) = h=!(L(A)), as required. Moreover, if A was visible, since the
counter operation is preserved, B will be visible too. <

Proof of Theorem 5. It remains to show that one counter languages are the effective ho-
momorphic image of visible one counter languages. This is easy to show. Let L C X* be
a one counter language. Fach symbol a € ¥ is split into three symbols dinc, Gdec, a=g7. The
corresponding homomorphism h just forgets the new annotation, i.e., h(ainc) = h(adec) =
h(a=p?) = a; notice that h is letter-to-letter and non-erasing. Counter operations for the

L. Clemente, W. Czerwinski, S. Lasota, and C. Paperman

new automaton are made visible by replacing an increment operation over a by the same
operation over ajnc, and similarly for decrements and tests. Clearly, we obtain a visible one
counter automaton recognizing a language M s.t. L = h(M). Thus, by Lemma 2, Lemma 6,
and the undecidability of regular separability of one counter languages [6, Theorem 2], we
obtain that regular separability for visibly one counter languages is undecidable. |

4 From nondeterministic to deterministic PA

The aim of this section is to prove the following lemma:

» Lemma 7. If C is effectively closed under inverse images of linear mappings, then the
reqular separability problem of nondeterministic C-Parikh automata effectively reduces to the
same problem for deterministic ones.

As a consequence of Lemma 7, we can focus on separability of deterministic PA languages
in the rest of the paper. Let G be the class of deterministic C-Parikh automata languages,
and let H be the class of letter-to-letter erasing homomorphism, i.e., functions of the form
h:¥ — (T'U{e}) extended homomorphically to £* — I'*. The proof of the lemma follows
immediately from Lemma 2 once we prove that nondeterministic languages are the effective
images of deterministic ones (cf. Lemma 8), and that both classes are closed under inverse
images (cf. Lemma 9). In the rest of the section, we assume that the class C is closed under
inverse images of linear mappings, which is the case for a robust class C (cf. Sec. 3).

» Lemma 8. FEvery nondeterministic C-Parikh language is the effective image of a letter-to-
letter erasing homomorphism of a deterministic C-Parikh language.

Proof. Fix a nondeterministic C-Parikh automaton (A, S) over the alphabet ¥, and let
T be the set of transitions of A. Consider the letter-to-letter erasing homomorphism
h:T — (XU {e}) that maps a transition (p,a,q) to a. Let (B,S) be the deterministic
C-Parikh automaton over the alphabet T which is obtained from A by relabelling every
transition of t = (p,a,q) € T of A as a (unique) transition (p,t,q) of B. Notice that the
acceptance condition of B is the same as that for 4, since we only relabelled transitions. One
easily verifies that L(A, S) = h(L(B,S)), as required. <

» Lemma 9. Deterministic and nondeterministic C-Parikh languages are effectively closed
under inverse images of letter-to-letter erasing homomorphisms.

Proof. Given a deterministic C-Parikh automaton (A, S) over ¥ and a letter-to-letter erasing
homomorphism h : T' — (X U {e}), one computes a deterministic C-Parikh automaton (B, T)
sit. L(B,T) = h™1(L(A,S)) as follows. The automaton B is obtained by replacing every
transition (p,a,q) in A by transitions (p,b,q), one for every b € h=!(a). Moreover, each
state p in the automaton B has a self-loop (p,b,p) for every b € h=1(¢). The constraint
T € C is the inverse image of S under the linear function obtained by counting a transition
(p, b, q) as a transition (p, h(b), q) if h(b) # &, and by counting (p, b, q) as zero (i.e., ignoring it)
otherwise. Finally, the constraint 7', and hence also the automaton (B,T’) can be computed.
Is it easy to check that L(B,T) = h~*(L(A,S)), as required. Moreover, if A is deterministic,
and h is a function, then the resulting automaton B is also deterministic. |

5 Regular separability reduces to unary separability

In this section we reduce regular separability of deterministic C-Parikh languages to unary
separability of vector sets in C.

117:7

ICALP 2017

117:8

Regular Separability of Parikh Automata

» Lemma 10. Let C be a class of vectors effectively closed under inverse images of affine
mappings. The reqular separability problem for deterministic C-Parikh automata reduces to
the unary separability problem for vector sets in C.

The rest of this section is devoted to the proof of the lemma. Let L1, Lo C ¥* be languages of

deterministic C-Parikh automata (A;,S1) and (A, S2), respectively. There are three steps:

1. As the first step, we show that w.l.o.g. we may assume A; = As.

2. In the second step, we partition ¥* into finitely many regular languages Ki,..., K,
and we reduce regular separability of L; and Ly to regular separability of L; N K; and
Ly N K; for every i € {1,...,m}. These subproblems turn out to be easier than the
general one, due to the additional structural information encoded in the languages K;’s.

3. In the last step, we reduce regular separability of L; N K; and Ly N K; to unary
separability of vector sets in C.

Step 1: Unifying the underlying automaton. As the input languages are subsets of regular
languages recognised by their underlying finite automata, L1 = L(A1,S51) C L(A;) and
Ly = L(Ay,S2) C L(As), it is enough to consider separability of L, and Lo inside the
intersection of L(A;) and L(Aj):

» Proposition 1. The languages Ly and Lo are reqular separable if, and only if, the languages
Ly N L(As) and Ly N L(A;) are so.

Proof. The “only if” direction is trivial as every language separating L; and Lo separates
Ly N L(A3) and Ly N L(A;) as well. For the opposite direction, we observe that if a regular

language S separates L1 N L(Ag) and Ly N L(A;), then S" = (SN L(A;)) U L(Ag) is a
regular language separating L1 and Ls. |

Let A be the product automaton of A; and Az, and thus L(A) = L(A;) N L(Ay). It is
deterministic since both A; and As are so. We claim that one can compute sets Uy, Us € C
such that Ly N L(As) = L(A,Uy) and Ly N L(A;) = L(A,Us). The set T of transitions
of A is a subset of the product T x T of transitions of A; and Aj, and thus there are
obvious projections functions 71 : T — T7 and 7o : T — T5. If we enumerate the transition
sets, say 1) = {t},...,t7}, To = {td, ..., 18}, and T = {t1,...,t,} with £ < m -n, we obtain
m {0 = {1,...,m} and my : {1,...,¢} — {1,...,n}. We use these projections to
define two linear (and in particular, affine) functions v¢; : N — N™ and 1, : N¢ — N»
which instead of counting transitions in 7', count the corresponding transitions in 73 or in
Ty, respectively; formally,

hi)ll = Y ol we@ll= Y ol

iy (4)=J iiwa (i)=3

Finally, we set Uy := 1/);1(51) and U, := w;l(Sg). Intuitively, U; and Us are as S; and S,
except that instead of single transitions of A; or As they are seeing pairs of transitions,
and simply ignore one of them. Since C is closed under inverse images of affine mappings
by assumption, Uy, Us; € C. For the rest of the proof we may thus assume that the input
automata are (A,U;) and (A, Us).

Step 2: Regular partitioning using skeletons. We finitely partition ¥* s.t. words belonging
to the same partition behave similarly with respect to automaton A. We use the notion of
skeleton of a run, defined already in [3], where it was used to solve the regularity problem

L. Clemente, W. Czerwinski, S. Lasota, and C. Paperman

of unambiguous Parikh automata. The idea is to traverse a run from left to right while
removing (and counting) simple cycles visiting states that have already appeared.

A simple cycle is a sequence of transitions ¢ = t1...t, € T, where t; = (¢;—1,ai,¢;),
starting and ending in the same state ¢y = ¢,, where q1, ..., g, are pairwise distinct. Two
simple cycles ¢, d are equivalent if one is a cyclic permutation of the other. Let [¢] denote the
equivalence class of ¢, and let [c1],...,[cn] be a fixed enumeration of all such equivalence
classes. (Since a simple cycle cannot visit the same state twice, except the initial state,
it has length at most n, and thus the number of simple cycles, and also of equivalence
classes thereof, is m < d", where d is the number of transitions of the automaton.) The
skeleton is an inductively defined function from runs to pairs consisting of a run and a
vector v € N™. In the base case, SKEL(¢) = (,0). For the induction step, suppose that
SKEL(t1...tk—1) = (u1...us,v) is already defined, and let ¢ be the ending state of the
new transition ¢;. If ¢ does not appear in the run ws ...up, then we put SKEL(ty ...%;) =
(ug ... uptk,v). Otherwise, let uy,, for h < £, be the last transition that ends in state ¢, and
consider the cycle ¢ = upq1...ueti € [¢;] (for some 1 < j < m). We have two cases to
consider. If all states visited by this cycle appeared before in wu; ...uy, then we call this
cycle absorbed and we remove it by putting SKEL(t1 ...tx) = (u1...up,v + €;), where e;
is the vector which is 1 in coordinate j, and O everywhere else. Otherwise, we just put
SKEL(t7 ...t5) = (uq ... uptg, v).

We remove only simple cycles visiting states that have already appeared before in order
to have the following useful property.

» Proposition 2. If SKEL(p) = (p,v), then p and p visit the same set of states.

By abusing nomenclature, we call a run p a skeleton if SKEL(p) = (p,v), for some v € N™,

It is easy to see that the length of a skeleton is at most n2, where n is the number of states
in the automaton A. (Assume towards a contradiction that the length of the skeleton is
longer than n?. By the pigeonhole principle, some state is thus visited more than n times,
so there are at least n cycles in between two consecutive occurrences of this state in the
skeleton. Therefore it is impossible that each loop contains some new state not present in
all the previous loops, and thus one of these loops should be removed during the process of
creating the skeleton, a contradiction.) Consequently, if d is the total number of transitions

of A, then there are at most d"” skeletons. Let P1,--.,pn be all the skeletons, with h < ar.

We define K; to be the set of all words w having an accepting run p in automaton A with
SKEL(p) = p;. Since A is deterministic we know that K; N K; =) for i # j. Therefore
Ki,...,Kp and Kpy1 = X* \ (Uy<;<p, Ki) form a partition of ¥*. All languages K; are
necessarily regular, since the skeleton can be computed by a finite automaton. The following
lemma can be seen as a generalization of Proposition 1 and it is immediate to prove.

» Lemma 11. Let X* be partitioned into reqular languages K, ..., K. Two languages
Ly, Ly C X% are regular separable if, and only if, L1 N K; and Lo N K; are reqular separable
for every i € {1,...,k}.

It remains to decide regular separability for the languages L(A,U;) N K; and L(A,Us) N K.
In the following, fix a skeleton p and the set of words K with skeleton p. Since we have fixed
a skeleton, we assume w.l.o.g. that the acceptance conditions Uy, Us are included in TI(K).

Step 3: Reduction to unary separability for C. Let the set of transitions of the automaton
be T = {t1,...,tqs} (thus p € T*), and let p : N™ — N¢ be the following affine function that

117:9

ICALP 2017

117:10

Regular Separability of Parikh Automata

transforms counting cycles into counting transitions:

plar, . am) =)+ > T([gj]) - ;.

Since II(c) = II(d) for ¢,d € [¢;], II([¢;]) is well-defined. Notice that p is affine, and not
linear, since we must take into account the initial cost of the skeleton II(p). Let V4 = p=1(Uy)
and V, = pu~1(Us) be the corresponding sets counting cycles instead of transitions. Since
we assumed Up,U; C II(K), every vector v € V; is realizable by an accepting run p
s.t. SKEL(p) = (p,v). Since C is closed under the inverse image of affine mappings, V1, Vs € C.

» Lemma 12. The following two conditions are equivalent:
1. The two languages L(A,Uy) N K, L(A,Us) N K C X* are reqular separable.
2. The two sets of vectors V1, Vo C N™ are unary separable.

Proof. For the implication 1) = 2), suppose R is a regular language separating L(A,U;) N K
and L(A,Us2) N K. For two words z,y € ¥*, define z =g yifr € R <= y€ R. FixweN
such that for all words z,y, z € ¥*,

ry¥z =g ry*z. (1)

It is easy to see that for every regular language R such w exists. The simplest way of showing
this is to consider the syntactic monoid M of R and to let w be its idempotent power, i.e., a
number such that m* = (m*)? for every m € M.

Recall n-unary equivalence: u =, v if u[i] = v[i]] mod n and moreover u[i] < n <=
v[i] < n for every coordinate 1 <14 < m. It is enough to show that for all v; € Vj,vy € Vs
it holds vy #,, ve. Indeed, if this is the case, the unary set S = {v € N | 3,,ev,v =, v1}
separates V7 and V5.

Suppose, towards a contradiction, that there are some v; € Vi,vs € V5 such that
v =, v2. There are runs pi,py s.t. SKEL(p1) = (p,v1) and SKEL(p2) = (p,v2). We
extend the equivalence =g on runs by saying that p; =g po if their two labellings are
=g-equivalent. Since the labelling of p; is in L(A,U;) N K, and similarly for ps, if p1 =g
p2, then we derive a contradiction since R was supposed to separate L(A,U;) N K and
L(A,Us) N K. While in general p; =g p2 does not hold, we can construct two canonical
runs pp and pg s.t. (1) SKEL(p1) = (p,v1) (thus the labelling of p; is also in L(A,U;) N K),
(2) SKEL(p2) = (p,v2) (similarly), and (3) p1 =g P2 (thus bringing the contradiction). We
show the construction for pp; the one for ps is similar. By Proposition 2, states visited by
the run p; are among those visited by the skeleton p, and in particular every absorbed cycle
(i.e., v1[j] # 0) also has this property. While in general a simple cycle d € [¢;] starting (and
ending) at some state ¢ cannot be reintroduced in the skeleton p at any position labelled by
¢ (because not all states in d need to have appeared before this position), there always is a
position 4; in the skeleton labelled by some state ¢; and a simple cycle &; € [¢;] starting (and
ending) at q; s.t. all states in ¢; have appeared already before position ¢; in the skeleton.
Assume w.l.o.g. that i; < .-+ <4,,. It is possible to split the skeleton p as aq - - - au, s.t., for
every 0 < j <m, o; € T* is a sequence of transitions, and the prefix ay - - - a;j—1 has length
i; (thus ends in ¢;). Then, define p; and similarly po as

(1]

Avg[l]a

AL AU1 ~v1[m AL Avo[m
p1 1= QoC; og - am_ch}[]am and pg = apl 10 am_lcnfb[]ozm.

(This is well-defined since vy =, ve implies v1[j] # 0 iff va[j] # 0.) Properties (1) and (2)
above are guaranteed by construction. For Property (3), since v; =, va, by repetitive use of
Equation (1) we have p; =g p2. This concludes the proof of the first implication.

L. Clemente, W. Czerwinski, S. Lasota, and C. Paperman

For proving the implication (2) = (1), suppose that a unary set .S separates V; and Vs.

We claim that the language R = L(A, u(S)) N K is regular and separates L(A,U;) N K and
L(A,Us) N K. We first verify that R separates these two languages. Clearly, Uy C u(V;) C
1(S), so L(A,Uy) N K C L(A,u(S)) N K = R. The disjointness of L(A,Us) N K and R is
shown by contradiction. Suppose that there is a word w € K belonging both to L(A, u(5))
and to L(A,Us), let p be the run of A over w and let v = II(p). We have v € u(S) N Uy,
which implies v = p(s) for some s € S N u=1(Uz) = S N Va. In consequence S N Vs is
nonempty, thus contradicting the assumption that S separates V; and V5.

In order to prove that R is regular it suffices to prove that L(A, 11(S)) is regular. The finite
nondeterministic automaton recognizing this language simulates a run p = ¢;, ...t;, of A, and
accepts when II(p) € u(S). Since S is unary, the automaton can evaluate this condition using
finite memory. For every cycle ¢;, the automaton stores a vector z; < II(¢;), and a number
n; up to the unary equivalence =,,, with the following meaning: the vector II(c;) has been
already executed n; times, and x; is the current “remainder”. Additionally, the automaton
stores a vector x < II(p) which is counting those transitions on the skeleton which have not
been counted as cycles. At every input letter the automaton guesses nondeterministically one
of cycles ¢; or the skeleton and updates x;, n; and = accordingly. The automaton accepts
when z = II(p;), z; = 0 for all j, and (n1,...,ny) € S. <

6 Applications

We derive two corollaries of Theorem 1. By a projection we mean a function 7 ; : N¥ — N 1l
for I C {1...k}, that drops coordinates not in I. We start with a simple but useful lemma:

» Lemma 13. If a class C C ey P(NY) contains all semilinear sets and is effectively closed
under intersections, projections, and inverse images of projections, then it is effectively closed
under inverse images of affine maps.

Proof. Let S be a set in C and f : N¥ — N be an affine map defined by f(u) = Mu + v for
M = (m; ;) a matrix of dimension ¢ x k and v a vector of dimension £. Let e; € N* be the
vector s.t. e;[j] = 1 and 0 otherwise, and let m; = (m1 j,ma j,...,me ;) be the (transpose
of) the j-th column of M. First remark that the set E; = {(z, f(z)) | € NF} C NF+¢ is

linear with base (0*,v) and periods {p1,...,px}, where p; = (e;,m;) € N+, Thus, E; € C.

Therefore the set Ey = E1 N W,;i“(S) isalsoin C, for I = {k+1,...,k + £}. Finally, we
conclude since 740 j(Eq) = f~1(S) with J = {1,... k}. <

» Corollary 14. Regular separability is decidable for nondeterministic Parikh automata.

Proof. In order to apply Theorem 1 for C being semilinear sets, we need to know that the
class of semilinear sets is robust. First, Lemma 13 yields effective closure under inverse
images of affine maps, as semilinear sets are effectively closed under boolean combinations,
images, and inverse images of projections. Second, decidability of the unary separability
problem for semilinear sets is a corollary of the main result in [4]. This theorem states that
separability of rational relations in X* x N™ by recognizable relations is decidable. If we
ignore the ¥* component we get the same result for rational and recognizable relations in
N™_ which are exactly semilinear sets and unary sets, respectively. |

For the second corollary we have to introduce vector addition systems and sections thereof.
A d-dimensional vector addition system (VAS) is a pair V = (s, T), where s € N? is a source
configuration and T Cpy Z% is a finite set of transitions. A run is a sequence

(vo, to, v1), (v1,t1,02), .., (Un—1,tn—1,v5) € N* x T x N*

117:11

ICALP 2017

117:12

Regular Separability of Parikh Automata

such that for all ¢ € {0,...,n — 1} we have v; +t; = v;41 and vg = s. The target of this run
is the configuration v,,. The reachability set of a VAS V is the set of targets of all its runs.

In order to ensure robustness, we slightly enlarge the family of VAS reachability sets to
sections thereof. The intuition about a section is that we fix values on a subset of coordinates
in vectors, and collect all the values that can occur on the other coordinates. For a subset
I C{1,...,d}, the projection 74 ; extends element-wise to sets of vectors S C N?, denoted
7a,1(S). For a vector u € Ne=1 the section of S w.r.t. I and w is the set

Ta1({v € S| maq1, aps(v) =u}) C NI
We denote by Cgpe.vas the family of all sections of VAS reachability sets.
» Corollary 15. t Regular separability is decidable for nondet. Cspc.yas-Parikh automata.

Proof. We apply Theorem 1 for C = Csgc.vas; we thus need to show that class Cspc.vas 18
robust. Decidability of unary separability of sets from Cspc.vas i shown in Theorem 9 in [5].
Effective closure of C under inverse images of affine functions will follow by Lemma 13 once
we prove all its assumptions. First, Csgc.vas contains all semilinear sets. Effective closure
under intersections is shown in Proposition 7 in [5]. Effective closure under inverse images of
projections is easy: extend the VAS with additional coordinates, and allow it to arbitrarily
increase these coordinates. Finally, to see that Csgpc_vas is effectively closed under projections
consider a section S C N of the reachability set of a VAS V, and a subset of coordinates
IC{1,...,d}. We construct a VAS V' which is like V, but additionally allows to decrease
every coordinate from {1,...,d} \ I. The projection mq ;(S) of S onto I is a section of the
reachability set of V' defined similarly as S, but with an additional requirement that all
coordinates from {1,...,d} \ I have value 0. <

7 Conclusions

We have shown that the regular separability problem for C-Parikh automata is decidable, for
every class C of acceptance conditions satisfying mild assumptions. In particular, we have
shown decidability for C being either the semilinear sets or sections of VAS reachability sets.
We have complemented our positive result by proving undecidability for visibly one counter
languages, which sharpens two existing undecidability results.

The complexity of our algorithm depends on two factors: the complexity of unary
separability for C, and the complexity of computing inverse images of sets in C under affine
mappings. The first factor is the dominant one here, since computing inverse images can
be shown to be in PTIME for both semilinear sets and sections of VAS reachability sets
(ct. [5]). Under this assumption, it can be seen that our reduction from nondeterministic
to deterministic automata in Sec. 4 is also PTIME. Moreover, when reducing to unary
separability in Sec. 5, since there are at most exponentially many skeletons and simple
cycles, we obtain exponentially many unary separability instances, each of exponential size.
Therefore, all together our reduction can be performed in exponential space.

On the other hand, the complexity of unary separability for semilinear sets and VAS
sections is much higher. For semilinear sets, no upper bounds have been published for this
problem, but an analysis of the algorithm of [4] yields an elementary bound*. For VAS
sections, one can easily see that unary separability is at least as hard as the VAS reachability
problem [5], which is hard for exponential space and not known to be primitive recursive.

4 The problem becomes PTIME for the subclass of diagonal linear sets, in which case unary separability
becomes the same as modular separability, and the latter problem is PTIME [4].

L. Clemente, W. Czerwinski, S. Lasota, and C. Paperman

—— References

1

10

11

12

13

14

15

16

17

18

Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1—
16:43, May 2009. doi:10.1145/1516512.1516518.

Michaél Cadilhac, Alain Finkel, and Pierre McKenzie. On the Expressiveness of Parikh
Automata and Related Models. In Proc. of NCMA’11, pages 103-119, 2011.

Michagl Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.
Int. J. Found. Comput. Sci., 24(7):1099-1116, 2013. doi:10.1142/S0129054113400339.
Christian Choffrut and Serge Grigorieff. Separability of rational relations in A* x N by
recognizable relations is decidable. Inf. Process. Lett., 99(1):27-32, 2006.

Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Paperman. Separ-
ability of Reachability Sets of Vector Addition Systems. In Proc. of STACS’17, volume 66
of LIPICs, pages 24:1-24:14, 2017. doi:10.4230/LIPIcs.STACS.2017.24.

Wojciech Czerwinski and Slawomir Lasota. Regular separability of one counter automata.
In Proc. of LICS’17, 2017. To appear.

Wojciech Czerwinski, Wim Martens, and Tomés Masopust. Efficient separability of regular
languages by subsequences and suffixes. In Proc. of ICALP’13, pages 150-161, 2013.
Wojciech Czerwinski, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note on
decidable separability by piecewise testable languages. In Proc. of FCT’15, pages 173-185,
2015.

Jean Goubault-Larrecq and Sylvain Schmitz. Deciding piecewise testable separability for
regular tree languages. In Proc. of ICALP’16, pages 97:1-97:15, 2016. doi:10.4230/
LIPIcs.ICALP.2016.97.

Harry B. Hunt III. On the decidability of grammar problems. J. ACM, 29(2):429-447,
1982.

Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.
ACM, 25(1):116-133, 1978.

Felix Klaedtke and Harald Ruefi. Monadic second-order logics with cardinalities. In Proc.
of ICALP’03, pages 681-696, 2003. doi:10.1007/3-540-45061-0_54.

Eryk Kopczynski. Invisible pushdown languages. In Proc. of LICS’16, pages 867-872, 2016.
doi:10.1145/2933575.2933579.

Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
locally testable and locally threshold testable languages. In Proc. of FSTTCS’13, pages
363-375, 2013.

Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages. In Proc. of MFCS’13, pages 729-740, 2013.
Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In Proc. of ICALP’14, pages 342-353, 2014.

Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Log.
Methods Comput. Sci., 12(1), 2016.

Thomas G. Szymanski and John H. Williams. Noncanonical extensions of bottom-up pars-
ing techniques. SIAM Journal on Computing, 5(2):231-250, 1976.

117:13

ICALP 2017

http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.24
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97
http://dx.doi.org/10.1007/3-540-45061-0_54
http://dx.doi.org/10.1145/2933575.2933579

	Introduction
	Preliminaries
	Main results
	A generic reduction
	A new undecidability result

	From nondeterministic to deterministic PA
	Regular separability reduces to unary separability
	Applications
	Conclusions

