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Abstract
The separability problem for regular languages asks, given two regular languages I and E, whether
there exists a language S that separates the two, that is, includes I but contains nothing from
E. Typically, S comes from a simple, less expressive class of languages than I and E. In general,
a simple separator S can be seen as an approximation of I or as an explanation of how I and E
are different. In a database context, separators can be used for explaining the result of regular
path queries or for finding explanations for the difference between paths in a graph database,
that is, how paths from given nodes u1 to v1 are different from those from u2 to v2. We study
the complexity of separability of regular languages by combinations of subsequences or subwords
of a given length k. The rationale is that the parameter k can be used to influence the size
and simplicity of the separator. The emphasis of our study is on tracing the tractability of the
problem.
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1 Introduction

More and more people today are being confronted with systems that are becoming increasingly
complex. Computers are becoming more and more powerful and, in the current boom of big
data, are making decisions based on rapidly growing data sets. When we use such systems, or
when we develop them, it is crucial that we have a sufficient understanding of why they do
what they do. For example, when a robot performs an unexpected action, a developer should
understand why the robot did the action before she can fix the error. Similarly, when a query
on a database returns an answer that should not be there, we need some understanding of
the data and the query before we can make a correction.

This motivates a need to search for explanations of the behavior of complex systems. We
want to make a first step towards investigating to which extent separation problems can be
useful for explaining the result of queries. Separation problems come from language theory
and study differences between languages. Assume that we have two regular word languages
I and E, given by their non-deterministic finite automata. A language S separates I from
E if it includes I and excludes E, that is I ⊆ S and S ∩ E = ∅. If S comes from a class of
languages S, it could be seen as an approximation of I within S. The language E can be
used to tune how closely S should approximate I. For example, if E is the complement of I,
then no approximation is possible and finding a separator reduces to finding an S ∈ S that
is equal to I.1 In this paper, we are mostly interested in separators that come from classes
of very simple languages that only express properties about subsequences and subwords.

1 In this case, separation corresponds to a rewritability or definability problem.
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We claim that separation problems are rather general and seem to be helpful in a wide
range of scenarios. For example, separators can give users a description of why tuples are not
selected by a regular path query. Say that a regular path query r on a graph database G does
not return an answer (u, v) that we expected. In the usual semantics of regular path queries,
this means that there is no path from u to v that matches r in G. If we consider the graph
G as a finite automaton AG with initial state u and accepting state v, then a separator for r
and AG that is simple enough to be understandable by a human could provide a description
of why the expected tuple (u, v) was not in the answer. For example, if S = Σ∗aΣ∗bΣ∗ would
be a separator, it could mean that r requires paths to have an a-edge before a b-edge (since
r ⊆ S) but no such path exists from u to v. Notice that, in this scenario, AG is expected to
be much larger than r.

Similarly, separators may be useful to understand differences between subgraphs. More
precisely, consider a system that is abstracted as a (large) finite, edge-labeled graph G in
which each edge-label represents an action of the system. Assume that the system, after
having started in some initial state i, arrives, after a long up-time, in a certain undesirable
state s− whereas, according to common sense, it should have arrived in s+. As an aid to
understand why the system arrived in s− instead of s+ it may be helpful to compute a
separator between between the systems (G, i, s−) and (G, i, s+), consisting of all paths in
G that lead from i to s− and from i to s+, respectively. For example, if S = Σ∗aΣ∗bΣ∗
would be a separator, it would mean that all labels of paths from i to s− have a subsequence
ab, whereas this is not the case for any of the paths from i to s+. In this sense, S has the
potential to pinpoint a difference between (G, i, s−) and (G, i, s+) in simple terms.

In this paper we want to make a first step in this direction. More precisely, we study the
complexity of separability. That is, given two languages I and E and a class of separators
S, we study the complexity of deciding if there exists an S ∈ S that separates I from E.
Here, I and E are given as non-deterministic finite automata (or, equivalently, edge-labeled
graphs) and for S we consider languages that reason about the presence and/or absence of
certain subsequences or subwords.

Previous work [5, 15] considered separability with respect to piecewise testable languages.
A language is piecewise testable if it can be defined as a boolean combination of languages
of the form Σ∗a1Σ∗ · · ·Σ∗anΣ∗, where the ai are symbols from Σ. So, piecewise testable
languages reason about subsequences of words. It can be decided in PTIME if the language
of two given NFAs I and E can be separated by a piecewise testable language [5, 15].
Tractability of this problem may come as a slight surprise in the light that many basic static
analysis questions concerning NFAs (such as containment and universality, for example) are
already PSPACE-complete. However, in the case that a separator exists, it is not yet clear
from [5, 15] how to construct a separator that would be useful for explaining the behavior of
a system to a user. Indeed, the work shows that non-existence of a separator for I and E
can be witnessed by a polynomial-size common pattern but, if a separator exists, it can be a
complex boolean combination that reasons about long subsequences.

We want to come closer to simple separators by limiting the boolean combinations and the
length of the subsequences involved. That is, we look at unions, intersections, and positive
combinations of languages of the form Σ∗a1Σ∗ · · ·Σ∗anΣ∗ where n is bounded from above
by a given parameter k. We also investigate similar combinations of subword languages, that
is, languages of the form Σ∗a1a2 · · · anΣ∗. Our motivation to look at subsequence languages
and subword languages comes from our belief that these may be helpful in generating
understandable explanations: one does not have to be an expert in the internal design of a
system to understand that one can avoid the error state by “not performing action b after
action a”.

ICDT 2015



232 Separability by Short Subsequences and Subwords

Our results focus on finding which combinations of separators and languages I, E may lead
to favorable complexities for separability. Apart from the most general cases we consider, the
complexity results range from PTIME to ΠP

2 for separability by combinations of subsequence
languages and from PTIME to PSPACE for combinations of subword languages. For the
most general cases, our best current upper bound is NEXPTIME. Some of our results are
reductions to simpler problems, such as separability of a language from a word. These simpler
problems are interesting in their own respect. For example, it is also interesting to generate
a simple reason why, e.g., a regular expression cannot be matched in a very long text.

Finally, we stress that we think that a system for generating simple separators or
explanations should explore many different classes of separators. In this paper we only focus
on subwords or subsequences, but a simple explanation for, say, the behavior of a query may
also consist of completely different concepts. Just to mention one example, we intend to
investigate separability by Parikh images in the future as well. Kopczynsky and Widjaja
Lin [7] show that this approach could be feasible from a complexity point of view. A system
could then search in parallel for separators in a wide array of classes and offer the user the
simplest ones it can find.

The motivation in this paper mainly comes from explaining the results of queries, which is
also a significant motivation for provenance in databases, a very successful line of research (see,
e.g., [3, 23] for an overview). Storing and handling provenance in databases for explaining
the results of queries is an approach that is orthogonal to ours, since we do not rely on the
availability of provenance data. Another approach on explaining the results of queries, on
relational data, was recently taken by Roy and Suciu [18]. Their approach also does not
depend on the presence of provenance data and is based on intervention, which means that
they investigate which tuples significantly affect the result of the answer.

Related Work
This paper is directly motivated by [5, 15], where it was shown that it can be decided
in PTIME if two regular languages given by their NFA can be separated by a piecewise
testable language. Recently, this problem has also been shown to be PTIME-complete [24].
Separability by locally testable and locally threshold testable languages, which are closely
related to piecewise testable languages, was investigated by Place et al. [14]. They provide
algorithms to solve both problems in co-NEXPTIME and 2EXPSPACE respectively. In
addition they proved that both problems are coNP-hard. Place and Zeitoun recently proved
that deciding separability of regular languages by first-order-logic is in EXPTIME [16] if
the languages are given by their semigroups. For given NFAs, their techniques imply a
2EXPTIME upper bound. We also refer to [17] for an overview of these results.

Our approaches have roots in separability by piecewise testable and locally testable
languages. Piecewise testable languages were defined and studied by Simon [19, 20], who
showed that a regular language is piecewise testable iff its syntactic monoid is J-trivial
and iff both the minimal DFA for the language and the minimal DFA for the reversal are
partially ordered. Stern [21] proved that it is PTIME-decidable if a language, given by
its DFA, is piecewise testable. A language is locally testable if membership of a word can
be tested by inspecting its prefixes, suffixes and infixes, up to some length that depends
on the language. The problem if a given regular language is locally testable was posed
by McNaughton and Papert [12] and independently solved by McNaughton and Zalcstein
[11, 26] and by Brzozowski and Simon [2].

Separation is closely related to Craig interpolation [4]. Craig interpolants are defined
with respect to a given implication ϕ⇒ ψ and are formulas ρ such that ϕ⇒ ρ and ρ⇒ ψ.
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Moreover, ρ only contains atoms that occur in both ϕ and ψ. Hence, ρ can be seen as a
separator between ϕ and ¬ψ. Craig interpolants have been used for verifying safety in a
system in the context of model checking [6, 10]. The classical results on Craig interpolation
say that, in first-order logic, every valid implication has an interpolant. (So, for valid
implications, it is trivial to decide if an interpolant exists.) Lutz and Wolter investigated
complexity questions in the context of interpolants for the description logic ALC [8]. In
particular, they showed that deciding whether there is a uniform interpolant (over a given
signature) of a given TBox is 2EXPTIME-complete.

The concept of query inseparability was recently investigated by Botoeva et al. [1]. This
problem asks, for two knowledge bases K1 and K2 and a class C of queries, whether every
query in C has the same answer over K1 and K2.

Very recently, Masopust and Thomazo investigated the complexity of the characterization
problem for k-piecewise testable languages, that is, boolean combinations of Σ∗a1Σ∗ · · ·Σ∗anΣ∗
with n ≤ k [9]. The characterisation problem asks whether a given language is a k-piecewise
testable language.

2 Preliminaries

For a finite set S, we denote its cardinality by |S|. By Σ we always denote an alphabet, that
is, a finite set of symbols. A (Σ-)word w is a finite concatenation of symbols a1 · · · an, where
n ≥ 0 and ai ∈ Σ for all i = 1, . . . , n. The length of w, denoted by |w|, is n. The empty word
is denoted by ε and has length zero. The set of all Σ-words is denoted by Σ∗. A language is
a set of words.

We assume familiarity with finite automata and regular expressions. In regular expressions,
we also use sets to denote disjunctions of symbols. For example, Σ∗aΣ∗ denotes all words
that have an a.

We denote a (nondeterministic) finite automaton or NFA A as a tuple (Q,Σ, δ, q0, F ),
where Q is its finite set of states, δ : Q× Σ→ 2Q is the transition function, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of accepting states. We sometimes use q1

a−→ q2 ∈ δ to
denote that q2 ∈ δ(q1, a). The size of A, denoted by |A|, is defined as |Q|+

∑
q,a |δ(q, a)|,

which is the total number of transitions and states. An NFA is deterministic (or a DFA)
when every δ(q, a) consists of at most one element.

For an automaton A or regular expression r we write L(A), resp., L(r) for their language.
We sometimes identify a regular expression r or automaton A with its language and write,
for example, w ∈ r instead of w ∈ L(r).

2.1 Subsequences and Subwords
Let v = a1 · · · an. If w ∈ Σ∗a1Σ∗ · · ·Σ∗anΣ∗, we say that v is a subsequence of w and we
denote it by v 4 w. Moreover v is a k-subsequence if it is a subsequence and has length
at most k. If w ∈ Σ∗vΣ∗, then v is a subword of w, denoted v E w. It is a k-subword if,
additionally, it has length at most k. For k ∈ N, a k-subsequence language is a language of
the form Σ∗a1Σ∗ · · ·Σ∗a`Σ∗ with ` ≤ k and a1, . . . , a` ∈ Σ. Similarly, a k-subword language
is a language of the form Σ∗a1a2 · · · a`Σ∗ with ` ≤ k and a1, . . . , a` ∈ Σ. A language
is a subsequence language, resp., subword language if there exists a k such that it is a
k-subsequence, resp., k-subword language.

We use the following notation on automata, expressions, and languages L:
k-Subseqs(L) (resp., k-Subwords(L)) is the set of k-subsequences (resp., k-subwords) of
words from the language L, (sometimes we identify a word w with a language {w} and
we use notation k-Subwords(w) instead of k-Subwords({w})),
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234 Separability by Short Subsequences and Subwords

closure4(L) (resp., closureE(L)) is the set of words that contain a word from L as a
subsequence (resp., subword).

I Observation 1. For a given word w, one can construct in polynomial time a DFA of size
O(|w|2) which recognizes all words that are a subsequence of w.

As a corollary, notice that we can also construct a DFA of size O(k ·|w|2) for all k-subsequences
of a given word in polynomial time. This can be obtained from the DFA of Observation 1 by
taking a product with the state DFA that accepts all words of length at most k. (This DFA
has k + 1 states.)

I Observation 2. For a given word w and alphabet Σ one can construct in polynomial time
a DFA which accepts all Σ-words that are supersequences of w.

2.2 Separability
For two languages I and E, we say that language S separates I from E if S contains I and
is disjoint from E. Notation-wise, we will consistently use I for the language to be included
in S and E for the language to be excluded from S. We say that I is separable from E by a
class of languages S if there exists an S ∈ S that separates I from E.

We are interested in cases where the separating language S come from classes of simple
languages S, such as:

subsequence languages;
subword languages;
finite unions, intersections, positive combinations, or boolean combinations of subsequence-
or subword languages.

By boolean combinations we mean finite combinations of unions, intersections, and com-
plements. Positive combinations are boolean combinations that do not use complements.
We note that boolean combinations of subsequence languages are also known as piecewise
testable languages [19, 20].

We parametrize the families of separators by the length of the subsequences or subwords
that we allow. For example, if S is the class of unions of subsequence languages, then Sk
denotes the class of unions of k-subsequence languages. We study the following problem.

Problem: Separability of I from E by S (I, E , S: classes of languages)
Input: Languages I ∈ I, E ∈ E given by NFAs, and a parameter k ∈ N in unary.
Question: Is there an S ∈ Sk that separates I from E?

We consider variants of the separability problem where S comes from the aforementioned
simple classes of separator languages. The classes I and E are usually either regular languages
or singleton words.

The input parameter k serves as a measure for how complex we allow the separating
language to be, i.e., combinations of k-subsequence languages or k-subword languages. Of
course, since a separator can still be relatively complex even if k is small, we also want to
explore other parameters in future work.

When we speak about the complexity of separability, we always assume that I and E are
given as NFAs. We denote the sizes of these NFAs by |I| and |E| respectively. We assume
that k is provided in unary (or, alternatively, k should not be larger than the given NFAs)
to simplify some of the proofs.
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2.3 Inclusion and Exclusion Equivalence
In this section we provide tools that allow us to simplify some cases of separability. We say
that language I is inclusion-equivalent to I ′ with respect to a class of separators S if, for
every language E, we have that

I is separable from E by S ⇐⇒ I ′ is separable from E by S.

Similarly, E is exclusion-equivalent to E′ with respect to S if, for every language I,

I is separable from E by S ⇐⇒ I is separable from E′ by S.

We extend this terminology to automata, so that we can also say, for example, that A and
A′ are inclusion-equivalent or exclusion-equivalent if their languages are.

In the remainder of this section, we prove basic properties about inclusion- and exclusion
equivalent languages. The properties hold for general languages, so they do not require
regularity of I or E.

I Lemma 3. Let S be a class of separators. Let language I be inclusion-equivalent to I ′
w.r.t. S and E be exclusion-equivalent to E′ w.r.t. S. Then, for each S ∈ S,

S separates I from E iff S separates I ′ from E′.

We are not aware of any work that defines equivalences between languages up to sep-
arability, but we note that a similar notion appears in Place et al. [15]. They defined an
equivalence for separability of single words by a k-piecewise testable language, i.e., a boolean
combination of k-subsequences. Additionally they mentioned that, for a given k, there
exists a smallest k-piecewise testable language that contains a given regular language L.
However, without a restriction on k, a smallest piecewise testable language containing L, i.e.,
a canonical piecewise testable approximation for L, does not exist.

We believe that it is useful to think about equivalences between languages. Due to
non-existence of a smallest piecewise testable language equivalent to a given language L, we
do not have any nice characterisation for equivalences with respect to boolean combinations.
However, we provide characterizations for the weaker classes of separators we consider in this
paper. The characterizations apply to more general notions than subsequences or subwords.
More precisely, they hold for quasi-orders (preorder) on words.

I Definition 4. A quasi-order is a binary relation which is transitive and reflexive. A
well-quasi-order is a quasi order . such that any infinite sequence of elements x0, x1, x2, . . .

contains an increasing pair xi . xj with i < j.

We present the lemmas for quasi-orders here, but readers only interested in subsequences
or subwords can simply think about the subsequence (resp., subword) ordering 4 (E) when
reading them. There is one exception, however. For Lemma 6 we need a well-quasi-orders.
It is well-known that 4 is a well-quasi-order (due to Higman’s lemma) but E is not. Indeed,
for the infinite sequence xn = 10n1 (for increasing values of n), there is no i < j such that xi
is a subword of xj . However, as we will see later, the lemmas do apply for k-subsequences
and k-subwords.

Let . be a quasi-order on words over alphabet Σ. For a word w ∈ Σ∗, the .-language
induced by w is the language {u ∈ Σ∗ | w . u}, that is, the set of all words u that are at
least as large as w with respect to .. We usually leave the word w implicit and say that a
language is a .-language if there exists such a word w. Subsequence and subword languages
are examples of .-languages.
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236 Separability by Short Subsequences and Subwords

I Lemma 5. For every quasi-order . on words, the following are equivalent for languages
E and E′:
(a) E is exclusion-equivalent to E′ w.r.t. .-languages;
(b) E is exclusion-equivalent to E′ w.r.t. unions of .-languages;
(c) E is exclusion-equivalent to E′ w.r.t. intersections of .-languages;
(d) E is exclusion-equivalent to E′ w.r.t. positive combinations of .-languages; and
(e) ∀w∈E∃w′∈E′ such that w . w′ and ∀w′∈E′∃w∈E such that w′ . w.

We now turn to a similar characterisation as Lemma 5 for inclusion-equivalence. For
inclusion-equivalence, however, the characterisation is no longer the same for all positive com-
binations. For example, {ab, aa} is inclusion-equivalent to {a} with respect to subsequence
languages and intersections thereof, but not with respect to unions or positive combinations
of subsequence languages.

We characterize these two cases in the following two lemmas.

I Lemma 6. Let . be a well-quasi-order on words. The following are equivalent for languages
I and I ′:
(a) I is inclusion-equivalent to I ′ w.r.t. unions of .-languages;
(b) I is inclusion-equivalent to I ′ w.r.t. positive combinations of .-languages;
(c) closure.(I) = closure.(I ′); and
(d) For every .-minimal element i ∈ I there is a .-minimal element in i′ ∈ I ′ such that

i . i′ and i′ . i.
Where closure.(I) is the set of all words that are larger or equal with respect to . than some
word from I.

I Lemma 7. For every quasi-order . on words, the following are equivalent for languages I
and I ′:
(a) I is inclusion-equivalent to I ′ w.r.t. .-languages;
(b) I is inclusion-equivalent to I ′ w.r.t. intersections of .-languages;
(c) ∩w∈I{u ∈ Σ∗ : u . w} = ∩w′∈I′{u ∈ Σ∗ : u . w′}

We now argue that Lemmas 5–7 can be used in the context of k-subword and k-subsequence
languages. To this end, for k ∈ N and words w1, w2, we define

w1 4k w2 if and only if k-Subseqs(w1) ⊆ k-Subseqs(w2).

Similarly, we say that w1 Ek w2 if k-Subwords(w1) ⊆ k-Subwords(w2). Since 4k and Ek are
well-quasi orders for every k ∈ N, we have that Lemmas 5–7 apply to k-subsequences and
k-subwords as well.

2.4 Witnesses for Non-Separability
We provide simple characterizations of non-separability that state, in each of the cases,
what kind of witness one should search for proving non-separability. We found these
characterizations to be quite useful in proofs.

I Lemma 8. Let I and E be two regular languages. Then I is not separable from E

(a) by a union of k-subsequence languages iff there exists a word wI ∈ I that can not be
separated from E, i.e., such that every k-subsequence s of wI appears in some word
ws ∈ E.

(b) by an intersection of k-subsequence languages iff there exists a word wE ∈ E that cannot
be separated from I, i.e., such that every k-subsequence that appears in every word from
I also appears in wE.
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(c) by a positive combination of k-subsequence languages iff there exists words wI ∈ I and
wE ∈ E such that k-Subseqs(wI) ⊆ k-Subseqs(wE).

(d) by a boolean combination of k-subsequences iff there exist words wI in I and wE in E
such that k-Subseqs(wI) = k-Subseqs(wE).

Item (d) from the lemma is rather standard and follows almost immediately from the
definition of k-piecewise testable languages by Simon [19, 20]; see also Lemma 4.1 in [17].

The corresponding lemma for k-subword languages is analogous. The different cases
in the lemma give a good idea of the different flavors of the separation problem when one
searches for a witness of non-separability. For example, in case (4), we are looking for words
in I and E that have precisely the same sets of k-subsequences. It is usually much harder
to argue that such witnesses are small than in, say, case (3) where only inclusion in one
direction is required.

3 A Tractable Case

The main result of this section is a tractability result of separability of I from E by k-
subsequences, by finite unions, intersections, and positive combinations thereof, if a certain
condition holds on E. The main idea is that we reduce E to a small language E′ which is
exclusion-equivalent and solve the separation problem of I and E′. Afterwards, we generalize
this to two more expressive form of separators, namely k-subsequences of constant-length
words, and finite unions thereof. Here, for a constant c, a k-subsequence of c-length words is
a language of the form

Σ∗w1Σ∗ · · ·Σ∗w`Σ∗

where ` ≤ k and each wi has length at most c. We think that such languages could be helpful
to separate languages in practice, because they seem to be rather expressive, potentially
simple to understand, yet have a tractable separation problem.

We need a little bit of terminology to get started. We call a set X ⊆ Q of states of an
automaton A = (Q,Σ, δ, q0, F ) a strongly connected component, or SCC, if it is a maximal
strongly connected component in the usual graph representation of A. Let X ⊆ Q be a set of
states of an automaton A = (Q,Σ, δ, q0, F ). We say that A′ is obtained from A by collapsing
X if A′ is the image of A under a homomorphism g : Q → (Q \ X) ] {qX} which is the
identity on Q \X and maps each u ∈ X to qX . Furthermore, qX is accepting in A′ if and
only if X contains an accepting state.

I Lemma 9. For a given automaton A let X be one of its SCCs. If A′ is obtained from
A by collapsing X, then A and A′ are exclusion-equivalent with respect to subsequence
languages, unions of subsequence languages, intersections of subsequence languages, and
positive combinations.

Notice that Lemma 9 is an easy corollary of Lemma 5. Furthermore, if A and A′ are
exclusion-equivalent with respect to subsequence languages then, for every fixed k ∈ N, they
are also exclusion-equivalent with respect to the (less expressive) k-subsequence languages.
(Similarly for unions, intersections, and positive combinations thereof.) Therefore, Lemma 9
relativises to k-subsequence languages.

The following notion, a core of an NFA, will be central in our search for tractable
separation. Basically, we will obtain tractability for separation of languages for which we can
find a small approximation of its core. The overall idea is similar to the idea of kernelization
in the context of finding fixed-parameter tractability, but, as far as we know, our approach
does not necessarily lead to a proof of fixed-parameter tractability of the general problem.
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I Definition 10. An NFA C is a core of a language E, if the following hold:
1. E and C are exclusion-equivalent w.r.t. positive combinations of subsequences,
2. C is minimal among all NFAs of exclusion-equivalent languages to E w.r.t. positive

combinations of subsequences.

So, the rationale of a core C is that it captures the whole complexity of E when it comes
to separation. When we want to decide whether I is separable from E, we can obtain the
correct result by deciding separability of I from C instead. The challenge is to be able
to compute a core (or sufficiently small approximation thereof) from the NFA of E. The
following observation gives us a first step.

I Observation 11. Each core of a regular language E contains no loops other than self-loops.

Proof. If a core C is not a DAG with self-loops then it contains a non-trivial SCC. Thus,
according to Lemma 9 we can collapse the non-trivial SCC and obtain a smaller core, which
contradicts the minimality of C. J

Hence, an initial approximation of a core of E can be obtained by collapsing all its SCCs.
We will see later that cores can be even smaller in general.

Observe that, in general, computing a core is at least NP-hard, because minimizing an
automaton which is a DAG is NP-hard [22]. Therefore we will search for approximations of
cores that we know how to compute efficiently.

3.1 Core-Approximations
Given an NFA A = (Q,Σ, δ, q0, F ), the following procedure computes an exclusion-equivalent
NFA C ′ that may be much smaller than A and therefore can be seen as an approximation of
a core.

For each SCC X ⊆ Q we collapse X. As collapsing SCCs does not change the exclusion-
equivalence class of an NFA, the obtained DAG D with self-loops is exclusion-equivalent
to A (Lemma 9). In a next step we collapse further to obtain a possibly even smaller
exclusion-equivalent NFA:

First, for every transition q1
a−→ q2 in D, we add a transition q1

ε−→ q2, thereby ob-
taining an ε-NFA Dε. Notice that, according to Lemma 5, languages Dε and D

are exclusion-equivalent w.r.t. (k-)subsequence languages, unions thereof, intersections
thereof, and positive combinations thereof.
Second, we take a weak bisimulation quotient of Dε. This step does not change the
language, so the exclusion-equivalence class trivially remains the same.

Bisimulation quotients are probably the simplest and best known heuristic to minimize an
NFA [13]. Weak bisimulation is simply the version of the bisimulation quotient that takes
ε-transitions into account. Weak bisimulation gives us a better refinement of the automaton
Dε than the ordinary bisimulation quotient. We illustrate a core-approximation in Figure 1.

We refer to the resulting automaton as a core-approximation of A. The subsequent results
in this section imply tractability of the separation problems whenever we can compute a
constant-size core-approximation.

3.2 Using Core-Approximations to Separate
We explain how an arbitrary language E′ that is exclusion-equivalent to E can be used to
separate I from E. In particular, the exposition applies to cores and core-approximations.
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Figure 1 Illustration of a core-approximation.

In the cases of separability by k-subsequences and combinations thereof that have unions,
the number of states of E, and therefore also the number of states of E’s cores, gives an
upper bound for the length of the subsequences that we need to consider for separation.

I Lemma 12. If automata I and E are separable by a k-subsequence language (resp., union
of k-subsequence languages, or positive combination of k-subsequence languages), then they
are separable by an |E|-subsequence language (resp., union of |E|-subsequence languages, or
positive combination of |E|-subsequence languages).

These bounds can be used to obtain the following upper bounds on separability by
k-subsequence languages, intersections, unions, and positive combinations thereof. In the
Lemma, f denotes a function and poly denotes a polynomial function.

I Lemma 13. For a given automata I, E and a number k we can decide if I is separable
from E

(a) by a k-subsequence language in time O(poly(|I|) · Σ · f(|E|));
(b) by an intersection of k-subsequence languages in time O(poly(|I|) · |Σ||E|+1 · f(|E|));
(c) by a union of k-subsequence languages in time O(poly(|I|) · f(|E|)); and
(d) by a positive combination of k-subsequence languages in time O(poly(|I|) · f(|E|)).

Proof sketch. In the proof, f is an exponential function in cases (a) and (b) and double
exponential in (c) and (d), but we stress that we have not yet attempted any optimization.
All our algorithms are based on exhaustive checking of witnesses that fulfil certain constraints;
we provide a sketch for case (a).

(a) By Lemma 12 we know that we can bound k by |E|. Let X be the set of words u that
have length at most k and such that there is no v ∈ E such that u 4 v. We can separate I
from E if and only if there is a word s ∈ X that is a subsequence of every word in I. Without
loss of generality we can restrict ourselves to minimal words in X with respect to the 4 order.
Indeed, if w 4 w′ and closure4(w′) separates I from E then closure4(w) is also a separator.
The number of such minimal words is bounded by |ΣE |k + |Σ|, where ΣE is the alphabet
used in E. So, a naive algorithm could simply enumerate all |ΣE |k + |Σ| such minimal words
and test the conditions. Testing if such a word w does not have a supersequence in E can be
done in polynomial time by computing from w the DFA Aw of Observation 2 and testing if
its intersection with E is empty. Testing if w is a subsequence of every word in I can be
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answered by testing if I is included in L(Aw). Since Aw is deterministic, this can be done in
time polynomial in |I| and the length of w too. Thus, we get that the overall complexity is
bounded by (p1(|I|) + p2(|E|)) · (Σ + |ΣE ||E|), where p1 and p2 are polynomials. J

From Lemma 13, we immediately get tractability of separability if we can find a core-
approximation of E that has constant size. This is trivial, for example, if E has a constant
number of SCCs.

I Theorem 14. For a given automata I, E and a number k, if the core approximation of E
has constant size, we can decide in PTIME if I is separable from E by
(a) a k-subsequence language,
(b) an intersection of k-subsequence languages,
(c) a union of k-subsequence languages, and
(d) a positive combination of k-subsequence languages.

3.3 Sequences of Words
We now generalize the algorithm for Theorem 14 to deal with more expressive separators
that combine subsequences and subwords. For k and c in N, a language of k-subsequences
of c-words is a language of the form Σ∗w1Σ∗ · · ·Σ∗wkΣ∗ where each wi has length at most
c. In the remainder of this section, k should be thought of as an input to the separability
problem as before, and c should be thought of as a constant. Our aim is to show that, if c is
constant, then we can extend Theorem 14 to languages of k-sequences of c-words.

The idea consists of doing a preprocessing step on the NFA for E and then performing an
analogous construction as in the previous section. Essentially, the preprocessing step consists
of extending E’s alphabet such that it also reads c-tuples of Σ-symbols.

More formally, let A = (Q,Σ, δ, q0, F ) be an NFA. By A≤c = (Q,Σ≤c, δ≤c, q0, F ) we
denote the NFA obtained from A as follows:

Σ≤c := ]1≤i≤cΣi
for every a ∈ Σ and q ∈ Q, δ≤c(q, a) := δ(q, a)
for every (a1, . . . , ai) ∈ Σ≤c and q ∈ Q, δ≤c(q, (a1, . . . , ai)) is the set of states that can
be reached in A by reading the word a1 · · · ai, that is, ∪p∈δ≤c(q,(a1,...,ai−1))δ(p, ai).

That is, A≤c behaves exactly the same as A but, whenever it reads a tuple (a1, . . . , ai) it
behaves as if A would read the word a1 · · · ai.

When we have given automata I and E, we can use the core-approximation of E≤c
to separate I from E by languages of k-subsequences of c-words. Here, we construct the
core-approximation of E≤c (w.r.t. k-subsequences over Σ≤c) as explained in Section 3.1.

I Theorem 15. For a given automata I, E, a number k, and a constant c, if the core
approximation of E≤c has constant size, it is decidable in PTIME if I is separable from E by

a language of k-subsequence of c-words, or
a union of languages of k-subsequences of c-words.

The proof of the Theorem is obtained by minor adaptations in the proof of Theorem 14
(a) and (c) to deal with the different alphabet of E≤c. (To this end, we also need a slightly
different version of Lemma 12, adapted to the new alphabet. Its proof is analogous.)

We conclude this section by remarking that the approach we used to show Theorem 15
does not naively generalize to separators that have intersection. Basically, when intersection
is allowed, we cannot treat constant-length words as single symbols anymore. For example,
when ab and ba are treated as single symbols in Σ, then Σ∗abΣ∗ ∩ Σ∗baΣ∗ does not contain
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aba. When ab and ba are words of length two, then aba ∈ Σ∗abΣ∗ ∩ Σ∗baΣ∗. So, the naive
application of the former algorithm may return the wrong result.

4 Separability by k-Subsequences

In Sections 4 and 5 we present the result of a systematical investigation of the complexity
of separability in different constellations. More precisely, we consider all combinations of
separating I from E where I and E can be a regular language or a word. As possible
separators, in Section 4 we consider all combinations of k-subsequence languages that we
also considered before and, in Section 5 we consider the same combinations of k-subword
languages. We note that many complexity bounds are not yet tight.

The complexity landscape in this section shows separability by k-subsequences is often
hard, even if one of the languages is a singleton word. More precisely, if we restrict either I
or E (but not both) to be a single word, separation seems to remain NP- or coNP-hard in
almost all cases.2 Only when both I and E are words, we can prove that separability by
k-subsequence languages and combinations thereof is in PTIME. On the positive side, almost
all upper bounds lie within ΠP

2 which is lower than the typical PSPACE bound which one
expects for many static analysis problems for NFAs such as universality and containment.

I Theorem 16. Given NFAs for I and E, and a number k, separability of I from E

(a) by k-subsequence languages is NP-complete;
(b) by unions of k-subsequence languages is NP-hard and in ΠP

2 ;
(c) by intersections of k-subsequence languages is coNP-hard and in ΠP

2 ; and
(d) by positive combinations of k-subsequence languages is coNP-complete.
(e) by a boolean combinations of k-subsequence languages is coNP-hard and in NEXPTIME.

All hardness results already follow from Theorem 17, where I is a singleton. In cases (a)
and (b), we have reductions from SAT that use an acyclic NFA for E. However, the proof
requires non-determinism in the NFA. For (c), (d), and (e), we have several reductions. One is
from the Hamilton path problem and shows the problem is hard even if the automaton for E
acyclic, but it makes linearly many copies of the input graph for the Hamilton problem. The
other is from a problem investigated by Wood [25], doesn’t produce an acyclic automaton,
but has a shorter proof, which we present here. Hardness already holds for k = 1, which is a
sharp contrast with the PTIME upper bounds in Theorems 14 and 15.

4.1 Restricted Cases
We now consider severely restricted cases in which at least one of the two languages is
restricted to be a single word. If we restrict I to be a single word, then we see that all
separability problems become coNP-complete when the separator languages have intersection,
and NP-complete otherwise.

I Theorem 17. Given word wI , an NFA for E, and a number k, separability of wI from E

(a) by k-subsequence languages or by unions of k-subsequence languages is NP-complete;
(b) by intersections, positive combinations, or boolean combinations of k subsequence lan-

guages is coNP-complete.

2 There is one notable exception in which we do not yet know the precise complexity: Theorem 18(2).
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Figure 2 Construction of ε-NFA for E in the proof of Theorem 17(a).

Proof sketch. We sketch the lower bound proofs. The hardness proof for (a) is by reduction
from SAT. For a given formula ϕ in conjunctive normal form, over the variables {x1, . . . , xk},
we construct wI and E such that ϕ is satisfiable if and only if wI can be separated from E

by a k-subsequence language.
More precisely, E is defined over the alphabet {T, F} and contains those words of length

k that correspond to valuations that do not satisfy the formula ϕ. Valuations are encoded
as words in a straightforward manner: a word X1 · · ·Xk with each Xi ∈ {T, F} encodes the
assignment that assigns xi true if and only if Xi = T . The construction of the automaton
to recognize E is in paragraph below. The word wI is defined as (TF )k. Since wI contains
every k-subsequence over {T, F}, the word wI can be separated from the language E by a
k-subsequence if and only if E 6= (T + F )k by Lemma 8. This is equivalent to the fact that
there is a valuation which satisfies the formula ϕ.

Clearly, k and wI can be constructed in polynomial time from ϕ. It remains to show how
to construct an NFA for E. Let ϕ = C1 ∧ · · · ∧ Cm. This NFA is a union of sub-automata
that accept those words of length k that encode valuations that do not satisfy Ci. Figure 2
contains and ε-NFA E for the formula ϕ = (x1 ∨¬x2 ∨x4)∧ (x2 ∨¬x3 ∨¬x4)∧ (x1 ∨x3 ∨x4).
Notice that this ε-NFA for E and thus also an NFA for E can be constructed in polynomial
time.

The coNP hardness for (b) is almost immediate from the NP-hardness of the following
problem [25]: Given a DFA A over alphabet Σ, is there a word in L(A) that contains every
letter in Σ?

Indeed, given the DFA A over Σ = {a1, . . . , an}, we can define wI = a1 · · · an and
E = L(A) and ask if there is an intersection of languages of the form Σ∗aiΣ∗ that separates
wI from E. Notice in this case, if there is a separator then the intersection ∩ni=1(Σ∗aiΣ∗) of
all such languages is a separator as well. So, wI is separable from E by an intersection of
1-subsequence languages if and only if it is separable by ∩ni=1(Σ∗aiΣ∗). This means that wI
is separable from E if and only if no word in L(A) contains every letter from Σ.

Given the proof for intersections, observe that if there exists a separator that uses positive
boolean combinations, namely of a form X1 ∪ X2 ∪ · · · ∪ Xn then one of of Xi separates
wI from E as well. Thus the problem for positive boolean combination is equivalent to the
problem for intersection and is coNP-hard as well. Finally, in the solution of the above
problem, negation does not help, as wE contains all letters from Σ. Thus solving the boolean
combination problem is equivalent to solving the intersection problem as well. J

The converse case in which we restrict E to be a single word shows a similar picture,
but note that we do not have a coNP lower bound or PTIME upper bound for separability
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by unions or positive combinations. For unions, for example, we need to decide if there
exists a word wI ∈ I such that all its k-subsequences appear in wE (Lemma 8). One can
easily construct a polynomial-size DFA for all k-subsequences that do not appear in wE , but
in general there is no small DFA for all words that contain a k-subsequence that does not
appear in wE . (The intuition is that such an automaton needs to guess which symbols to
use for the subsequence.) Therefore, checking if all words in I contain some k-subsequence
that does not appear in wE seems to be difficult.3 Conversely, for a hardness proof, the fact
that wE is a single word gives little freedom for encoding gadgets.

I Theorem 18. Given word wE, an NFA for I, and a number k, separability of I from wE
(a) by k-subsequence languages or by intersections of k-subsequence languages is NP-

complete;
(b) by unions or positive combinations of k-subsequence languages is in coNP; and
(c) by boolean combinations of k-subsequence languages is coNP-complete.

Hardness in case (a) is by reduction from the longest common subsequence problem. For
(c), the question is equivalent to Theorem 17(2) because the separators are closed under
complement.

Finally, when both languages are restricted to be a single word, separability can be
decided in PTIME by using standard automata techniques (Observation 1).

I Theorem 19. Given words wI , wE, and number k, separability of wI from wE by k-
subsequence languages or by unions, intersections, positive combinations, or boolean combi-
nations thereof is in PTIME.

5 Separability by k-Subwords

Analysis of subwords provides us a similar overview like in subsequence case, but the
complexities are more diverse. We see more cases that are tractable, but the arguments why
this is so are rather easy. The main reason why, in some cases, separability by k-subwords
seems to be easier than by subsequences is because a given word w can only have O(k|w|)
many subwords, whereas it can have exponentially many subsequences. That said, subwords
can also be used to reason about the distance between positions in a word. This can be
exploited to encode corridor tiling and which makes separability by boolean combinations of
k-sequences PSPACE-hard.

I Theorem 20. Given NFAs for I and E, and a number k, separability I from E

(a) by k-subword languages is in PTIME;
(b) by unions or positive combinations of k-subword languages is PSPACE-complete;
(c) by intersections of k-subword languages is coNP-complete; and
(d) by boolean combinations of k-subword languages is in NEXPTIME and PSPACE-hard.

5.1 Restricted Cases
When we restrict one of the languages to be a word, we see that separability becomes
coNP-complete at worst.

3 If I contains a polynomial number of shortest words, it can be done in polynomial time due to
Theorem 19.
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I Theorem 21. Given word wI , an NFA for E, and a number k, separability of wI from E

(a) by k-subword languages or by unions of k-subword languages is in PTIME; and
(b) by intersections, positive combinations, or boolean combinations of k subword languages

is coNP-complete.

I Theorem 22. Given word wE, an NFA for I, and a number k, separability of I from wE
(a) by k-subword languages or by unions, intersections, or positive combinations thereof is

in PTIME; and
(b) by boolean combinations of k-subword languages is coNP-complete.

Finally, for the sake of completeness, we mention that, when both languages are a word,
separation is trivially in PTIME.

I Theorem 23. Given words wI , wE, and number k, separability of wI from wE by k-subword
languages or by unions, intersections, positive combinations, or boolean combinations thereof
is in PTIME.

6 Separability by k-Prefixes and k-Suffixes

For the sake of completeness, we mention that deciding separability by combinations of
prefixes of length up to k is in polynomial time in all cases we consider. A k-prefix language
is a language of the form wΣ∗ where |w| ≤ k. All boolean combinations of k-prefix languages
are defined similarly as before.

I Observation 24. Given NFAs for I and E, and a number k, separation of I from E by k-
prefix languages, or by unions, intersections, positive combinations, and boolean combinations
thereof is in PTIME.

The proofs are rather straightforward adaptations of the corresponding proofs in [5].
Naturally, the observation also holds for k-suffix languages by a reduction that simply reverses
the NFAs for I and E.

7 Conclusions

Separation of regular languages seems to be a worthwhile approach to investigate for tackling
several problems in graph databases, for example, approximating regular path queries (by
specifying a query to be approximated and a second query of paths that should not be
matched), computing explanations of the results of regular path queries, and for computing
explanations of the differences between edge-labeled s-t-graphs in general.

When one searches for separators to provide explanations, it does not really matter to
a user which class of separators is considered, as long as the separator is simple enough to
understand and interpret. In fact, a system is likely to be perceived to be much more useful
and intelligent when it is able to return simple specimens from many classes of separators,
as opposed to complex specimens that come from a limited number of classes. Intuitively,
the former case corresponds to a situation where explanations can be very diverse and, in
the latter case explanations always have a similar flavor. In this paper we investigated to
which extent subsequences, subwords, and combinations thereof can be used to describe
the difference between regular languages (or graphs) I and E. Our main motivation for
considering subsequences and subwords are that we feel that they are easy to understand
and, at the same time, may be reasonably expressive. It was already shown in [5, 15] that,
for regular languages, deciding the existence of an arbitrarily complex separator involving
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subsequences, prefixes or suffixes is in PTIME. Here we made a step towards finding simpler
separators in the sense that we considered a given bound k on the length of the subwords
and subsequences involved. We showed that, if E can be reduced to a sufficiently small
substructure, its core-approximation, there is good hope that the difference between I and E
can be described in simple terms, if they can be separated.

Efficient construction of separators is clearly the goal of this line of research and is a
challenging problem. We would like to understand when separators exist, when they are
small, and when they are efficiently computable. This paper gives us better understanding of
this case, which can then serve as a basis towards producing separators that are, ultimately,
human readable.
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