3 research outputs found

    LocoMouse: a novel system for studying the role of cerebellum in gait coordination

    Get PDF
    Smooth and efficient walking requires the coordination of movement across different parts of the body. The cerebellum plays an important role in this process, yet the specific neural circuit mechanisms of whole-body coordination are poorly understood. Although sophisticated genetic tools exist to manipulate the cerebellar circuit in mice, analyses of mouse gait have typically been limited to gross performance measures and lack detail about precision and timing of limb movements. In this project, I developed an automated, high-throughput, markerless 3D tracking system (LocoMouse) for quantifying locomotion in freely walking mice. Using LocoMouse, I showed that locomotor parameters for individual limbs vary systematically with mouse walking speed and body size. In visibly ataxic Purkinje cell degeneration (pcd) and reeler mice, I found that 3D limb trajectories and, especially, interlimb and whole-body coordination are specifically impaired. Our findings suggest a failure to predict the consequences of movement across joints, limbs, and body. These experiments were essential to establish a quantitative framework for whole-body locomotor coordination in mice (Machado, Darmohray et al. eLife 2015). The LocoMouse system was then combined with optogenetic tools to ask how different output regions of the cerebellum differentially contribute to locomotor coordination. I expressed ChR2 in Purkinje cells and stimulated their terminals in the medial, interposed, and lateral cerebellar nuclei of freely walking mice. Here, I identified locomotor parameters that were specifically related to the manipulation of each nucleus. Acute disruption of neural activity in medial and interposed nuclei immediately perturbed ongoing locomotion. In contrast, similar manipulation of Purkinje cell inputs to the lateral nucleus had no observable effect on ongoing locomotor behavior. These results are broadly consistent with previous anatomical and lesion studies suggesting a medial-to-lateral functional organization of cerebellar outputs. Taken together, these experiments isolated impairments in interlimb and whole-body coordination in mice with cerebellar manipulations. In contrast, spinal cord mutant mice revealed impairments at the intralimb level with no alteration in the interlimb coordination. I characterized distinct motor deficits associated with manipulations in different brain regions and identified and quantified core features of cerebellar ataxia in mice. These experiments establish the LocoMouse system, combined with genetic manipulations, as a powerful system to dissect cerebellar circuit mechanisms of coordinated locomotion

    Efficient Second Order Multi-Target Tracking with Exclusion Constraints

    No full text
    Current state of the art multi-target tracking (MTT) exists in an "either/or" situation. Either a greedy approach can be used, that can make use of second-order information which captures object dynamics, such as "objects tend to move in the same direction over adjacent frames", or one can use global approaches that make use of the information contained in the entire sequence to resolve ambiguous sub-sequences, but are unable to use such second order information. However, the accurate resolution of ambiguous sequences requires both a good model of object dynamics, and global inference. In this work we present a novel approach to MTT that combines the best of both worlds. By formulating the problem of tracking as one of global MAP estimation over a directed acyclic hyper-graph, we are able to both capture long range interactions, and informative second order priors. In practice, our algorithm is extremely effective, with a run time linear in the number of objects to be tracked, possible locations of an object, and the number of frames. We demonstrate the effectiveness of our approach, both on standard MTT data-sets that contain few objects to be tracked, and on point tracking for non-rigid structure from motion, which, with hundreds of points to be tracked simultaneously, strongly benefits from the efficiency of our approach
    corecore