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Abstract 

Smooth and efficient walking requires the coordination of movement across different parts 

of the body. The cerebellum plays an important role in this process, yet the specific neural 

circuit mechanisms of whole-body coordination are poorly understood. Although sophisti-

cated genetic tools exist to manipulate the cerebellar circuit in mice, analyses of mouse gait 

have typically been limited to gross performance measures and lack detail about precision 

and timing of limb movements. 

In this project, I developed an automated, high-throughput, markerless 3D tracking system 

(LocoMouse) for quantifying locomotion in freely walking mice. Using LocoMouse, I showed 

that locomotor parameters for individual limbs vary systematically with mouse walking speed 

and body size. In visibly ataxic Purkinje cell degeneration (pcd) and reeler mice, I found that 

3D limb trajectories and, especially, interlimb and whole-body coordination are specifically 

impaired. Our findings suggest a failure to predict the consequences of movement across 

joints, limbs, and body. These experiments were essential to establish a quantitative frame-

work for whole-body locomotor coordination in mice (Machado, Darmohray et al. eLife 2015). 

The LocoMouse system was then combined with optogenetic tools to ask how different 

output regions of the cerebellum differentially contribute to locomotor coordination. I ex-

pressed ChR2 in Purkinje cells and stimulated their terminals in the medial, interposed, and 

lateral cerebellar nuclei of freely walking mice. Here, I identified locomotor parameters that 

were specifically related to the manipulation of each nucleus.  Acute disruption of neural ac-

tivity in medial and interposed nuclei immediately perturbed ongoing locomotion. In contrast, 

similar manipulation of Purkinje cell inputs to the lateral nucleus had no observable effect on 

ongoing locomotor behavior. These results are broadly consistent with previous anatomical 

and lesion studies suggesting a medial-to-lateral functional organization of cerebellar out-

puts. 
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Taken together, these experiments isolated impairments in interlimb and whole-body co-

ordination in mice with cerebellar manipulations. In contrast, spinal cord mutant mice re-

vealed impairments at the intralimb level with no alteration in the interlimb coordination. I 

characterized distinct motor deficits associated with manipulations in different brain regions 

and identified and quantified core features of cerebellar ataxia in mice. These experiments 

establish the LocoMouse system, combined with genetic manipulations, as a powerful sys-

tem to dissect cerebellar circuit mechanisms of coordinated locomotion.  

 

Keywords: Motor coordination, ataxia, cerebellum, motor quantification  
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Resumo 

O cerebelo desempenha um papel importante na coordenação do movimento das dife-

rentes partes do corpo durante a locomoção.  No entanto, os mecanismos neuronais cere-

belares associados à coordenação motora são desconhecidos. Embora existam ferramen-

tas genéticas sofisticadas para manipular o circuito cerebelar, a análise quantitativa da co-

ordenação motora em ratinhos ainda é limitativa.  

Neste projeto desenvolvi um sistema para analisar e quantificar a locomoção em ratinhos 

– o LocoMouse. O sistema deteta automaticamente (sem marcadores) as diferentes partes 

do corpo e regista as suas trajetórias a 3 dimensões com elevada resolução. Com o Loco-

Mouse verificou-se que os parâmetros locomotores (cinemáticos) de cada membro variam 

com a velocidade e o tamanho do ratinho. Nos ratinhos mutantes pcd e reelers descobriu-

se que as suas perturbações motoras eram específicas. Durante a locomoção os ratinhos 

apresentaram alterações na trajetória (y, z) dos membros e na coordenação motora das 

diferentes partes do corpo. Foram depois usadas Ferramentas de optogenética foram depois 

usadas para manipular com precisão os diferentes núcleos do cerebelo. A combinação desta 

manipulação genética com o LocoMouse permitiu-me identificar perturbações locomotoras 

especificas de cada núcleo. Manipulações nos núcleos fastigial e globosos levaram a alte-

rações no movimento durante a locomoção dos ratinhos, enquanto que manipulações no 

núcleo denteado não levaram a qualquer perturbação no movimento. Os resultados aqui 

obtidos são consistentes com estudos anteriores que sugerem que o cerebelo apresenta 

uma organização funcional médio-lateral. 

O uso de ratinhos com mutações no cerebelo, ratinhos com mutações na coluna vertebral 

e ratinhos com manipulações precisas no circuito cerebelar permitiram-me distinguir e iden-

tificar parâmetros locomotores específicos do cerebelo.  Estas experiências foram funda-

mentais para se poder estabelecer um sistema quantitativo de coordenação motora em ra-

tinhos (Machado, Darmohray et al. eLife 2015). 

 

Palavras chaves: Coordenação motora, ataxia, cerebelo, quantificação motora 
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1.1 Circuits involved in locomotion: An overview 

 

Locomotion, by definition, is the ability to move from one place to another and to interact 

with the surroundings. It uses rhythmic and coordinated movements across different parts of 

the body (Grillner 1975, Orlovsky, Deliagina et al. 1999, Dickinson 2000, Kandel, Schwartz 

et al. 2000, Goulding 2009). One example is walking (which involves the repetition of step 

cycles). During walking, the arms, trunk and head movements are coordinated with leg 

movements in order to maintain a stable and smooth gait. Locomotion also requires 

continuous modification of stereotyped movements to adapt to new surroundings (Grillner 

1975, Orlovsky, Deliagina et al. 1999, Mendes, Bartos et al. 2013, Kiehn 2016). Therefore, 

locomotion circuits in the brain need to generate rhythmic motor patterns and adjusting them 

to new environments. 

 

Most of what is known on neural circuits of walking has come from studies in cats (Shik, 

Severin et al. 1966, Shik and Orlovsky 1976). However, other animals and other rhythmic 

behaviors such as swimming (in fish) and flying (in insects) have contributed to 

understanding of the neural circuits in locomotion (Dale and Kuenzi 1997, Marder and Bucher 

2001, Grillner 2003, Kiehn 2006, Mendes, Bartos et al. 2013).  Studies in decerebrate 

animals (where cerebral hemispheres were removed) showed that animals were still able to 

walk spontaneously, producing a rhythmic movement (Shik, Severin et al. 1966, Shik and 

Orlovsky 1976). Those and more recent studies have demonstrated that the rhythmic motor 

pattern comprises a distributed network of interneurons and motor neurons located in the 

spinal cord. These networks are called central pattern generators (CPGs), which upon 

appropriate stimulation generate an organized motor rhythm that replicates the patterns of 

motor activity seen during repetitive locomotor tasks such as walking and swimming. (Brown 

1911, Wilson and Wyman 1965, Grillner 1975, Grillner and Jessell 2009, Arber 2012.)  

 

Motoneurons in the spinal cord are located topographically according to function (Crosby 

1962). Medial motoneurons project to axial muscles of the trunk and proximal limb muscles. 

They play a fundamental role in maintaining posture and equilibrium during ongoing 

movements (Kasper, Schor et al. 1988). Lateral motoneurons serve the distal limb 

musculature and they are concerned with complex and fine limb movement (Lawrence and 

Kuypers 1968). Descending projections onto motoneurons rise from brainstem and/or 

cerebral cortex. Brown’s studies also revealed several important insights regarding 

locomotion circuits. The initiation and modulation of central pattern generators are performed 

by signals descending from brain (Armstrong 1986, Jordan 1998, Drew, Prentice et al. 2004, 

Rossignol, Dubuc et al. 2005, Kiehn 2016). Moreover, the proprioceptors also played an 

important role in modulating the activity of the spinal neuronal circuits (Pearson 2004). 
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In order to interact with surroundings, a more complex movement is required. The 

rhythmic motor patterns must be continuously adjusted. For this fine motor control, many 

regions of the brain and brainstem are involved (Armstrong 1986, Jordan 1998, Drew, 

Prentice et al. 2004, Rossignol, Dubuc et al. 2005, Kiehn 2016). Each region plays a different 

role in regulating locomotion. Motor cortex has a role in planning and refining motor action. 

It uses visual cues from visuomotor cortex to correct locomotion (Drew and Marigold 2015). 

The initiation and speed of locomotion seems to be mediated by the neurons in the 

mesencephalic locomotor region (MLR), which has inputs from the basal ganglia and 

thalamus (Dubuc 2008, Jordan, Liu et al. 2008). MLR neurons then projects to reticular 

formation (RF) located in the brain stem. Neurons from RF projects onto motoneurons in 

spinal cord and carry the information to execute locomotion (Pearson 2004, Dubuc 2008, 

Jordan, Liu et al. 2008). Vestibular and rubrospinal pathways (brainstem nuclei (BSN)) 

convey modulatory signals to maintain posture and to regulate ongoing movement. 

Proprioceptive signals through afferent inputs also regulates the spinal motor centers 

(Pearson 2004).  

 

Finally, the cerebellum is critical for coordinated movement (Morton and Bastian 2007). It 

receives proprioceptive and somatosensory information from the periphery and information 

from a wide area of cerebellar cortex (Mauk and Thach 2008, Lisberger and Thach 2013). 

Cerebellum modulates the motor patterns and mediates sensory and internal feedback 

(Figure 1.1) (Ito 1972, Lisberger and Thach 2013).  

 

Figure 1.1. Circuits involved in Locomotion.  

Schematic representation of the neuronal 

structures and respective pathways involved in 

simple rhythmic behaviors such as locomotion. 

The supraspinal areas (Hind Mid and Forebrain) 

are involved in the initiation, planning and 

modulation of locomotion. In the spinal cord, the 

CPGs are responsible for the rhythmic 

movement. Connections from the motor cortex 

refine and initiate motor actions (dotted arrow). 

The black arrows indicate direct command 

pathways, the grey arrows feedback pathways. 

MLR: mesencephalic locomotor region; BSN: 

brainstem nuclei; RF: reticular formation; CPGs: 

central pattern generators. (adapted from 

Gouding 2009). 
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Although it is clear that the cerebellum plays an important role during locomotion, the 

mechanisms of cerebellar contributions to gait coordination remain nuclear. The goal of this 

thesis is to develop tools to understand the role of the cerebellum in gait coordination.  

 

1.2 Role of the cerebellum in motor coordination 

 

One of the most characteristic and sensitive signs of cerebellar damage is gait ataxia 

(Palliyath, Hallett et al. 1998, Morton and Bastian 2007). This disorder is characterized, in 

general, by the occurrence of uncoordinated movements both in space (across the different 

body parts) and time. In particular, the gait of cerebellar lesion patients or animals is slow, 

with a widened base of support and erratic limb trajectory (Earhart and Bastian 2001, Stolze, 

Klebe et al. 2002). These features result in part from impairments in the coordination across 

multiple joints (Palliyath, Hallett et al. 1998, Earhart and Bastian 2001). However, people and 

animals that suffer from ataxia can express a variety of disparate symptoms (Morton and 

Bastian 2007, Cendelin 2014). It is not known how activity and dysfunction of individual 

neuronal types are related to the variety of ataxic symptoms. 

 

In addition to its role in gait coordination, the cerebellum is also required for motor  learning 

(Raymond, Lisberger et al. 1996). Simple forms of cerebellum-dependent learning, such as 

eye movements and eyelid conditioning, have been studied in mice (De Zeeuw and Yeo 

2005, Lisberger 2009). The combination of these simple behaviors with genetic tools and 

careful quantification, has strengthened our understanding of how activity and plasticity in 

identified neural populations contributes to motor learning (De Zeeuw, Hansel et al. 1998, 

Nguyen-Vu, Kimpo et al. 2013). In contrast, a similar dissection of the cerebellar circuit in a 

more complex behavior, such as gait, has not been performed (Morton and Bastian 2006). 

For decades, people have assumed that understanding the cerebellar mechanisms 

underlying these simple behaviors would enlighten our knowledge in more complex behavior 

(Ito 1972, Lisberger 1988). However, the precise role of the cerebellum in coordinating gait 

is still not well understood (Morton and Bastian 2007). 

 

To understand how coordination is controlled we first need to quantify it. Therefore, during 

this project we built a novel behavior paradigm to specifically quantify motor coordination 

(Chapter 2). We then combined it with genetic tools to dissect the cerebellar circuit and 

identify cerebellum-dependent locomotor parameters (Chapter 3 - 5). 

 

 

 

 



6 
 

1.2.1 Cerebellum circuit: Its inputs and outputs 

 

The cerebellar circuit is one of the simplest and well known circuits in the brain. It has a 

basic microcircuit that is repeated across the medial to lateral regions (Figure 1.2 A) (Purves, 

Augustine et al. , Mauk and Thach 2008, Lisberger and Thach 2013) . The cerebellar cortex 

is subdivided into three distinct layers: granule cell layer, Purkinje cell layer and molecular 

layer. The granule cell layer is packed with granule cells. Granule cells send axons to the 

molecular layer to form parallel fibers. Golgi cells are also present in this layer. The Purkinje 

cell layer is occupied by Purkinje cell bodies, whose axons are the sole output of cerebellar 

cortex. Purkinje cell dendrites extend into the molecular layer and are oriented at right angles 

to the parallel fibers. They make synaptic contacts with parallel fibers and each dendrite can 

receive inputs from more than 200,000 parallel fibers. Each parallel fiber contacts several 

Purkinje cell dendrites that are extended along the folium. They may span to several joints in 

a somatotopic region. This arrangement could provide a possible mechanism for motor 

coordination. In addition, parallel fibers can also extent and connect Purkinje cells projecting 

to adjacent deep nuclei, providing a possible mechanism for internuclear coordination. The 

molecular layer also contains stellate and basket cells that provide inhibitory inputs to 

Purkinje cells (Itō 1984, Thach, Goodkin et al. 1992). 

 

The two major inputs of the cerebellum are the mossy fibers and climbing fibers. They 

have two major projections: One is directly connected to the deep cerebellar nuclei (DCN) 

and the other terminates in different cerebellar cortical layers (Eccles 2013). Mossy fibers 

excite the granule and Golgi cells and they arise in the spinal cord and brainstem nuclei.  

Climbing fibers ascend in the inferior olive and excite directly Purkinje cell dendrites. The 

output of the cerebellar cortex is delivered by inhibitory Purkinje cells to DCN (Figure 1.2 A 

in black).  

 

Purkinje cells in cerebellar cortex project to three main deep cerebellar nuclei: medial 

(fastigial), interposed and lateral (dentate) nuclei (Jansen and Brodal 1940, Voogd and 

Glickstein 1998). They are located in three distinct longitudinal regions: medial, intermediate 

and lateral region. These regions receive information from different inputs and project to 

different brain areas (Jansen and Brodal 1940, Voogd and Glickstein 1998). Purkinje cells 

axons are orderly organized. In the medial zone, Purkinje cells project to medial nucleus and 

receive mossy fibers inputs from vestibular afferents, reticular pontine nuclei, and the ventral 

and dorsal spinocerebellar tracts (Clendenin, Ekerot et al. 1974, Kotchabhakdi and Walberg 

1978). The medial nucleus, then projects to ipsilateral vestibular and reticular nuclei. A small 

number of projections also goes to motor cortex via thalamus (Asanuma, Thach et al. 1983, 

Asanuma, Thach et al. 1983). The intermediate zone receives mossy fiber input from the 
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spinocerebellar tracts, reticular nuclei, and cerebral cortical areas (Matsushita, Okado et al. 

1981). Purkinje cells, in this region, connect to interposed nucleus. Outputs from the 

interposed nucleus projects to red nucleus and a small subset goes to motor cortex via 

thalamus (Asanuma, Thach et al. 1983).  Finally, most outputs from the lateral nucleus are 

projected to cerebral cortex (mainly motor, somatosensory, and posterior parietal areas) via 

thalamus (Asanuma, Thach et al. 1983). A small number of projections onto red nucleus is 

also observed. Lateral nucleus receives inputs from Purkinje cells located in the most lateral 

region of the cerebellum (Figure 1.2 B).  

 

This mediolateral organization of the deep cerebellar nuclei is reflected in their projections 

to the medial and lateral descending motor pathways. Both interposed and lateral nuclei 

project to the lateral motor system, while medial nucleus projects to the medial motor system. 

In summary, the regular arrangement of cells and parallel fibers in the cerebellar cortex 

suggest a mechanism to modulate and coordinate movement (Morton and Bastian 2007). 

 

 

 

 

Figure 1.2. Cerebellum circuit: From medial to lateral. Its inputs and outputs. 

(A) Medial to lateral inputs and outputs of the cerebellum. Purkinje cells output of the cerebellum 

circuit (black). The cerebellum circuit is repeated across medial to lateral region and it’s composed by 

mf: mossy fibers; gc: granule cells; pf: parallel fibers; pkj: purkinje cells; cf: climbing fibers. (B) 

Schematic illustration of deep cerebellar nuclei projections 
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1.2.2 Cerebellar function: Lesions of Cerebellar Nuclei 

 

Most of what we know about cerebellar function has been largely driven by the studies on 

lesions together with physiology and anatomy. Lesion studies of the deep cerebellar nuclei, 

in cats and monkeys, provided important information about the cerebellum’s functional 

organization (Morton and Bastian 2007, Mauk and Thach 2008). A medial to lateral functional 

organization was observed  where the different outputs are responsible for different aspects 

of motor control (Chambers and Sprague 1955),.  

  

Lesions in the medial nucleus resulted in dramatic impairments during locomotion. A low 

posture and a lack of balance was observed. An unsupported gait and wrong foot placement 

was also visible (Sprague and Chambers 1953, Chambers and Sprague 1955).  Motor 

impairments caused by lesions in the interposed nucleus were more restricted to the limbs. 

Erratic limb trajectory during walking, altered paw placements and limb tremor were detected 

(Chambers and Sprague 1955, Udo, Matsukawa et al. 1979, Udo, Matsukawa et al. 1980, 

Yu and Eidelberg 1983). No Motor impairments were observed when the lateral nucleus was 

lesioned, particularly during overground locomotion. However, when the behavioral task 

required the execution of highly complex movements with visual cue and initiation of planned 

movements, impairments were noticed (Chambers and Sprague 1955, Thach, Goodkin et al. 

1992, Marple‐Horvat, Criado et al. 1998).  

 

In summary, lesions in the different deep cerebellar nuclei suggest that posture and 

balance control are mediated by the medial nucleus, while the interposed nucleus is more 

concerned with fine tuning of limb movements, particularly in keeping oscillations under 

control. Finally, the organization and execution of planned movements are mediated by 

lateral nucleus (Morton and Bastian 2007). 

 

Although lesion studies provide useful information on medial-to-lateral functional 

organization, they are often poorly spatial defined. Therefore, they lack specificity and 

compensatory mechanisms are unavoidable. In chapter 5 I will combine the LocoMouse 

system with optogenetics (acute and precise manipulation) to ask how different output 

regions of the cerebellum differentially contribute to locomotor coordination. 

 

1.2.3 Mutant ataxic mice, as an animal model, to study cerebellum 

 

Besides the lesion studies, several mouse models have been developed to mimic  

symptoms of human cerebellar disease (Manto and Marmolino 2009). A variety of 

cerebellar degenerative mouse models exists and they are either spontaneous mutants or 
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transgenic animals (Lalonde and Strazielle 2007, Cendelin 2014). The cerebellum projects 

to a huge variety of areas in the central nervous system. Therefore, the majority of neuronal 

degeneration in these mouse models are not restricted to the cerebellum (Cendelin 2014). 

Thus, it is extremely important to know the features of each cerebellar ataxic mouse and 

compare them to each other in order to have the most appropriate conclusions (Cendelin 

2014). A list of cerebellar ataxic mouse can be used.  In this project, I used the classic 

cerebellar mutant mice Purkinje cell degeneration mice (pcd) and reeler mice to specifically 

quantify the role of cerebellum in motor coordination (chapter 3). 

 

The Purkinje (Pkj) cell degeneration (pcd) mouse is a recessive mutant characterized by 

complete post-natal degeneration of cerebellar Purkinje cells and subsequent partial loss of 

cerebellar granule cells (Chen, Bao et al. 1996, Le Marec and Lalonde 1997, Lalonde and 

Strazielle 2007, Cendelin 2014). The gene affected encodes ATP/GTP binding protein 1 

(Fernandez-Gonzalez, La Spada et al. 2002). Pcd mice can be easily identified by eye based 

on their ataxic, uncoordinated movements  (Mullen, Eicher et al. 1976, Le Marec and Lalonde 

1997). Reeler mice have an autosomal recessive mutation (Relnrl). This gene is involved in 

neural cell migration (Beckers, Bar et al. 1994). Thus, the lack of it in the mutant mice can 

cause several defects, abnormal localization of neurons and failure of neuronal layer 

formation (Beckers, Bar et al. 1994). Several brain regions, including the cerebellum are 

affected (Hamburgh 1963, Terashima, Inoue et al. 1983). Homozygous reeler mice are 

characterized by an ataxic and reeling gait, with difficulties in maintaining their hindquarters 

upright (Cendelin 2014).  

 

These mouse lines have been identified based on their visible gait ataxia, or 

uncoordinated walking (Mullen, Eicher et al. 1976, Walter, Alvina et al. 2006, Lalonde and 

Strazielle 2007, Cendelin 2014). As was previous described, they exhibit abnormal cell 

patterning within the cerebellum, with different spatiotemporal patterns of neural 

degeneration (Lalonde and Strazielle 2007, Brooks and Dunnett 2009, Sheets, Lai et al. 

2013, Cendelin 2014). Thus, understanding the relationship between circuit dysfunction and 

motor impairment could provide clues about the cerebellum neural circuit mechanisms into 

motor coordination. 

 

Although lesion studies and cerebellar ataxic mice provide us useful insights about the 

cerebellum function and organization, several questions remain.  What are the contribution 

of each cell type in the cerebellum circuit to locomotion activity? How and where cerebellum 

integrates the information of different body parts to produce a smooth and coordinated 

movement? Which gait parameters are controlled by the cerebellum during locomotion? 
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1.3 Assessing motor coordination: Motor behavioral tasks 
 

Tools to manipulate the activity of selective neural subtypes have been growing 

tremendously (Luo, Callaway et al. 2008). The emerging field of optogenetics offers exciting 

neuroengineering tools that combine genetics and optical methods to selectively stimulate or 

silence neural subtypes with a high temporal precision and reversibility (Zhang, Aravanis et 

al. 2007). However, behavior quantification has not grown at the same pace (Anderson and 

Perona 2014). There is a general lack of precise quantification and detailed information in 

the study of mouse locomotor behavior (Kale, Amende et al. 2004, Brooks and Dunnett 

2009), in particular, motor parameters that are cerebellum dependent. 

 

During locomotion, the motor pattern of the stepping limb can be described through 

kinetics (forces), kinematics (movements) and EMG activity (Orlovsky, Deliagina et al. 1999). 

This project focus on kinematic parameters. The step cycle during walk consists in two 

distinct phases: stance (or support) phase and swing (or transfer) phase. In swing phase, the 

limb is lifted above the round and moves forward in relation to the body, while in stance phase 

the limb remains on the ground and the body moves forward (Orlovsky, Deliagina et al. 1999). 

During the step cycle all the joint of the limb perform flexion-extension movements. These 

joints movements must be preserved and coordinated over the whole range of locomotor 

speeds. Coordination across limbs (interlimb coordination) is also crucial to maintain a stable 

and smooth movement. During locomotion and in vertebrates there is a highly stereotyped 

pattern of limb movements, with a defined phase relationship between limbs. Walking, trotting 

and galloping are examples of the different gait patterns and they are speed dependent 

(Gorska, Zmysłowski et al. 1998, Orlovsky, Deliagina et al. 1999).  

 

 Currently, the most common tests for assessing mouse motor phenotypes rely on global 

and indirect measures of coordination and are limited in their quantification of specific 

aspects of gait impairment (Brooks and Dunnett 2009). These parameters are time to fall 

from a rotarod (Walter, Alvina et al. 2006, Lalonde and Strazielle 2007), the time taken to 

cross a fixed bar (Kim, Cook et al. 2009, Cendelin 2014), or stride length through paw print 

analysis (Wang, Parris et al. 2006, Lalonde and Strazielle 2007).  Analyses of mouse gait 

have typically lacked quantification of whole-body movements (across space and time), in an 

automated way, with high spatial and temporal resolution (Brooks and Dunnett 2009, 

Mendes, Bartos et al. 2015). Even the most recent systems that use overground locomotion 

and motorized treadmill to quantify gait have tended to either emphasize throughput 

(Hamers, Lankhorst et al. 2001) or the collection of more detailed trajectories of a particular 

limb (Leblond, L'Espérance et al. 2003, Kale, Amende et al. 2004, Garnier, Falempin et al. 

2008, Zörner, Filli et al. 2010).  
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Because the architecture of the cerebellum is conserved across vertebrates, improved 

understanding of the mechanisms of gait coordination in mice would be helpful for identifying 

therapeutic targets in cerebellar patients (Morton and Bastian 2007). Moreover, the ability to 

specifically manipulate activity within individual cell types in the cerebellum, if combined with 

appropriate behavioral analysis, could make mouse locomotion a powerful system in which 

to establish relationships between activity in individual cell types and particular aspects of 

behavior. 

 

1.4 Thesis outline and main goals 

 

The cerebellum plays an important role in gait coordination. However, how this is 

controlled by neurons within the cerebellar circuit is still not well understood. The aim of my 

PhD project is to investigate the consequences of specific perturbations of cerebellar function 

in order to understand how the cerebellar circuit work as a unit to coordinate movement. This 

thesis had three main aims: (I) building a novel behavioral paradigm that uses high-speed 

videography to track whole-body mouse locomotion (Machado et al., 2015); (II) establishing 

a quantitative frame work to identify cerebellum-dependent gait parameters, by using 

cerebellar ataxic mice (Machado et al., 2015); (III) Using genetic tools to manipulate the deep 

cerebellar nuclei in order to understand a medial-to-lateral functional organization of 

cerebellar outputs (manuscript in preparation).  

In Chapter 2 I described the LocoMouse system. The custom built apparatus: hardware 

and software tracking. The implementation of linear mixed effects models to describe and 

predict basic stride parameters of wild type mice. 

In Chapter 3 I used the LocoMouse system to establish a quantitative framework for 

whole-body coordination. Specific deficits in freely walking ataxic mice (pcd and reeler mice) 

were revealed.  

In Chapter 4 I describe a medial to lateral functional organization of the Cerebellum 

output, by using optogenetic tools to precisely manipulate the deep cerebellar nuclei.  

In Chapter 5 I showed that the quantitative framework provided by the LocoMouse system 

can differentiate and identify specific locomotor parameters that are associated to other 

locomotion circuits. Spinal cord mutant mice were used. 

Finally, in Chapter 6 I will discuss the implications of our approach and experimental 

findings. 
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LocoMouse: A high throughput system to 

quantify locomotion in freely walking mice 
 

 

 

2.1. Introduction 

2.2. Methods 

2.3. Results 

2.3.1. Custom built behavior apparatus 

2.3.1.1. Hardware and data acquisition 

2.3.1.2. Tracking whole body movement in 3D: Computer vision algorithm 

and machine learning 

2.3.2. Wild-type data analysis: Individual limbs in wild-type mice vary 

consistently with walking speed and body-size 

2.3.2.1. Using linear mixed effects models to predict basic stride 

parameters 

2.4. Discussion 
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Carey, A quantitative framework for whole-body coordination reveals specific deficits in 
freely walking ataxic mice. eLife (2015) DOI: http://dx.doi.org/10.7554/eLife.07892 
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system. Data acquisition. Applied linear mixed effects model in WT mice. JF, Developed current tracking 

algorithm with machine learning techniques. MRC wrote the manuscript. ASM, DMD and MRC Analysis and 

interpretation of data.  
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2.1 Introduction 

 

Mice provide a unique opportunity for understanding the neural control of whole-body co-

ordination. In addition to their amenability to genetic circuit dissection, their small size makes 

it possible to analyze even unrestrained, relatively complex whole-body actions within a la-

boratory setting.  

Because of the significant challenges associated with quantifying whole-body coordina-

tion in freely walking animals, assessments of mouse motor coordination phenotypes often 

rely on indirect measures (Mullen, Eicher et al. 1976, Lalonde and Strazielle 2007, Brooks 

and Dunnett 2009, Sheets, Lai et al. 2013), such as time to fall from a rotarod (Walter, Alvina 

et al. 2006, Lalonde and Strazielle 2007) or a fixed bar (Kim, Cook et al. 2009, Cendelin 

2014). While these can be sensitive markers for global motor dysfunction, they lack specific-

ity. Moreover, performance on coordination tasks, or even on a motorized treadmill, does not 

necessarily correspond to the degree of gait ataxia during overground locomotion (Herbin, 

Hackert et al. 2007, Guillot, Asress et al. 2008, Cendelín, Voller et al. 2010, Stroobants, 

Gantois et al. 2013, Suidan, Duerschmied et al. 2013, Camera, Boase et al. 2014). Mean-

while, gait analysis in freely walking mice typically focuses on parameters of individual limbs, 

such as stride length or duration. While ataxia is often associated with changes in these 

parameters, they are also not specific markers for ataxia and may simply reflect the slower 

walking speeds of ataxic mice (Cendelín, Voller et al. 2010, Batka, Brown et al. 2014). Thus, 

traditional measures have failed to quantify the key features of gait ataxia in mice.  

This chapter describes LocoMouse, a high-throughput, automated, markerless system for 

tracking and analyzing 3D, whole-body coordination in freely walking mice.  
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2.2 Methods 

 

Animals 

All procedures were reviewed and performed in accordance with the Champalimaud Cen-

tre for the Unknown Ethics Committee guidelines, and approved by the Portuguese Direcção 

Geral de Veterinária (Ref. No. 0421/000/000/2015). C57BL/6 mice were housed in institu-

tional standard cages (3 animals per cage) on a reversed 12-hr light/12-hr dark cycle with ad 

libitum access to water and food. Experiments were conducted with wildtype controls (n = 

9602; N = 34 mice; 23 male; 11 female; 7-33g, 30–114 days old) (Figure 2.7). 

 

LocoMouse setup 

A custom-designed setup was developed to assess whole body coordination during over-

ground locomotion in mice (Figure 2.1). The LocoMouse apparatus consists of a clear glass 

corridor, 66.5 cm long, 4.5 cm wide and 20 cm high. Mice were filmed crossing the corridor 

with a high-resolution, high-speed camera (Bonito CL-400B, Allied Vision Technolo-

gies, https://www.alliedvision.com). A mirror (66 cm × 16 cm) was placed below the corridor 

at an angle of ∼45° to allow simultaneous collection of side and bottom views in order to 

generate three-dimensional tracking data. Lighting consisted of a matrix of LEDs that emitted 

cool white light positioned to maximize contrast and reduce reflection. Infrared sensors posi-

tioned along the runway automatically triggered the camera and acquisition software once 

the mouse entered the corridor and stopped the acquisition once the mouse reached the 

other end of the corridor or after 25 s. 

 

Data collection 

Mice were handled by the experimenter and allowed to acclimate in the LocoMouse setup 

for several minutes on multiple occasions before data collection. Animals were weighed be-

fore each session. Mice walked freely between two dark boxes on either end of the glass 

corridor. The automatic triggering system was critical for allowing mice to self-initiate trials, 

which reduced animal stress without compromising the quantity of data collected. No food or 

water restriction or reward was used. 

10-15 corridor passages (trials) were collected in each of five daily sessions. A total of 

36,369 strides were collected from wildtype controls, which corresponds to 1069 ± 266 

strides per mouse and 267 ± 66 strides per paw. Animals were not required to walk continu-

ously throughout a trial; if the animal stopped mid-trial, the data before and after the halt were 

still analyzed. 

 

https://www.alliedvision.com/
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Data acquisition 

Movies were collected at 400 frames per second with a spatial resolution of 1440x250 

pixels. Acquisition software was written in Labview and uses 2 National Instruments boards 

(PCIe 1433 and BNC 2120) to record and save the movies, in real time. The tracking algo-

rithm and data analysis software were written in Matlab (Mathworks) and performed offline. 

The LocoMouse Tracker code used in this paper can be downloaded from GitHub 

(https://github.com/careylab/LocoMouse). 

 

Tracking algorithm 

Overview 

To maximize throughput, we used a computer vision algorithm to allow automatic, mark-

erless tracking of features of interest (without the need for surface markers or manual initial-

ization of feature tracks) (Figure 2.3). The algorithm's output was the set of 3D coordinates 

of the features of interest, which were: the center of each of the four paws, the snout, and 

the tail divided into 15 points, for each frame of the movies. The output of the tracking system 

was visually inspected for each trial. Further validation of the automated tracking perfor-

mance is shown in Figure 2.5. 

We used hand labeled data to train linear Support Vector Machine (SVM) classifiers for 

each feature and each view (side and bottom) independently. Positive examples were hand 

labeled on a set of 81 images from a single training video while 10 negative examples for 

each feature were randomly picked from the same images. Training the 6 SVM classifiers 

took approximately 1 hr on a machine with an Intel Core i7-3770 CPU and 16 GB or RAM. 

All experiments were performed with these SVM classifiers with no need to retrain on addi-

tional data. For each trial, the candidate locations for each feature were obtained by filtering 

the input images with the trained detectors. For the paws and snout, the resulting image 

regions were clustered into a small number of point locations using a standard non-maxima 

suppression algorithm. Once the candidate features were identified by the SVM, we consid-

ered the temporal trajectories and selected the candidate tracks that maximized per image 

detection scores while minimizing frame-by-frame displacement with a method based on ex-

isting multi-target tracking frameworks (Russell, de Agapito et al. 2011) that formulate track-

ing as the maximum a posteriori probability estimation over a Bayesian network of candidate 

locations on each image. Best bottom view tracks (x and y) were computed first and then the 

best side view track (z, accounting for image distortion from the optics) that matched the 

bottom view track was selected. For the tail, the interest regions were matched across views 

and the largest resulting 3D region was picked as the final detection. The tail was detected 

independently for every image. Following computation of feature tracks, pixel values were 

converted to millimeters for further analysis. 

https://github.com/careylab/LocoMouse
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Detailed description 

The LocoMouse Tracker code developed and used in this paper has been deposited at 

GitHub (https://github.com/careylab/LocoMouse) and updated versions are available through 

our website. The LocoMouse tracker was developed in MATLAB R2013b (The MathWorks). 

Some auxiliary packages can be found at the Matlab Central File Exchange 

(http://www.mathworks.com/matlabcentral/fileexchange/). The method also relies on the 

LIBSVM library (http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) for Support Vector Machines and 

the code from (Russell, de Agapito et al. 2011) for Multi-target tracking. 

 

Removing background and correcting camera/mirror distortion 

An image of the corridor was recorded before every session. To remove the background, 

we subtracted this image from every frame recorded by the system. To correct for image 

distortion, we recorded a video of a white spherical object moving along the full volume of 

the glass corridor. The two projections of the object were detected by thresholding the (gray-

scale) image at 80% (after removing the background). The horizontal line splitting the image 

into the bottom and side views was defined manually at this point. The corrective image 

transformation makes the bottom and side projections of the object match along the vertical 

line and was computed via least squares. The corrective transformation depends on the po-

sition of the camera relative to the setup and was performed once for every configuration. 

Unless stated otherwise, all steps of the algorithm are performed on corrected images. 

 

Computing bounding box around mouse 

We further isolated the mouse by computing a tight bounding box around it. We started 

by thresholding every input image at 10% and using a median filter to remove noise. For 

every image, the edges of the box are defined as the first and last rows and columns to have 

white pixels. To account for occlusions and noise, the final size of the bounding box was 

defined as the smaller of the mean size plus three standard deviations, and the maximum 

observed size. The final trajectory of the bounding box over the video was determined by 

filtering the box position calculated for each image with a moving average filter of width 5. All 

further steps in detecting the interest features were performed within the bounding box. 

 

Training the detectors 

Feature detectors for the paws, snout and tail were trained using the LIBSVM library. 

Positive examples were manually annotated on a set of 81 training images from a single 

movie. The size of the detectors was chosen manually such that the feature lied within the 

https://github.com/careylab/LocoMouse
http://www.mathworks.com/matlabcentral/fileexchange/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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detector box. Each view was treated independently, unless otherwise stated. The sizes of 

the different feature detectors can be found in Table 1. 

 
Table 1: Image Feature Size 

Feature Bottom view size (in pixels) Side view size (in pixels) 

Paw 30 x 30 20 x 30 

Snout 40 x 40 20 x 40 

Tail segments 30 x 30 25 x 30 

 

The system assumes mice move from left to right. Images were flipped horizontally when 

otherwise. For every feature, 10 negative examples were randomly extracted from within the 

bounding box of the mice for each of the 81 training images (excluding the positively labelled 

regions). 

 

Detecting paw and snout candidates 

The outputs of LIBSVM were used to filter the pre-processed input images. These filters 

provided a score representing the likelihood of a pixel being part of each feature (paw or 

snout). These per-pixel scores were reduced into a small number of candidate locations with 

a standard Non-Maximum Suppression (NMS) algorithm (http://vision.ucsd.edu/∼pdol-

lar/toolbox/doc/) which clusters positively classified pixels into local maxima. Since on the 

side view there is considerable overlap between the features, we used a more conservative 

version of the NMS algorithm, which results in more candidate locations. 

 

Combining bottom and side view candidates 

The 2D candidate locations from each view were combined into 3D candidates by match-

ing their coordinates on the shared axis (horizontal axis). As exact matches do not occur, we 

used a tolerance of 30% of the feature's detector size along the horizontal axis for matching. 

We allowed each bottom view candidate to be matched to many side view candidates, 

but each side view candidate was only (generally) matched to a single bottom view candi-

date. In ambiguous configurations, additional information about the velocity of the candidates 

was used to find the best match. Candidates were classified as moving/not moving according 

to the pixel count within the feature box size after subtracting the previous input image to the 

current image. When candidates could not be disambiguated, both options were allowed to 

remain. 

 

http://vision.ucsd.edu/~pdollar/toolbox/doc/
http://vision.ucsd.edu/~pdollar/toolbox/doc/
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Computing feature tracks 

We used location priors to distinguish between instances of the same class (e.g., to iden-

tify which paw was which). Based on the configuration of the corridor, the priors were defined 

as the inverse of the distance to the closest corner (i.e.on the bottom view, the front right paw 

is closer to the bottom right corner while the hind left paw is closer to the top left corner). The 

prior was defined on a normalized box which allows it to be fit to a bounding box of any size. 

Locations on the normalized box with a distance greater than 0.6 had their prior score set to 

zero. 

 

Multi-target tracking 

After processing the candidate locations at each image, tracking on the bottom view was 

performed using the multi-target tracking algorithm of (Russell et al., 2011). This algorithm 

finds the tracks over all the images which maximizes the per image detection score (weighted 

by the location prior) while minimizing the in-between image distance. In practice the inverse 

distance was considered and the problem is formulated as: 

max
𝒙∈𝐿𝑁.𝐹

𝐶(𝒙) = ∑ [∑ 𝑈(𝑥𝑜,𝑡)𝐹
𝑡=1 +  𝛼 ∑ 𝑃(𝑥𝑜,𝑡, 𝑥𝑜,𝑡+1)𝐹−1

𝑡=1 ]𝑁
𝑜=1 , 

 

where x is a possible (multi-target) track, L is the number of possible locations, N is the num-

ber of objects to track, F the number of images in the video, xo,t a candidate location for ob-

ject o at time t,U(.) the image detection score weighted by the location prior, P(. , .) the in-

verse of the image distance between two points, and α the relative weight between image 

detection scores and image transitions (set empirically to 0.1). In practice we discarded all 

transitions that exceeded v pixels between two images, where v is the sum of the (variable) 

displacement of the bounding box and a fixed value of 15 pixels. An additional constraint was 

added such that only one object could occupy the same candidate location at the same in-

stance in time. 

For the side view, we used the same approach to find the most likely Z trajectory given 

the already computed X and Y tracks. 

 

Data analysis 

The stride cycles of individual paws were automatically broken down into swing and 

stance phases based on the first derivative of the paw position trajectories. Individual strides 

were defined from stance onset to subsequent stance onset. For each stride, average walk-

ing speed was calculated by dividing the forward motion of the body center during that stride 

by the stride duration. All data was sorted into speed bins (0.05 m/s bin width) in a stridewise 

manner, with a minimum stride count criterion of 5 strides per bin, per animal. Individual limb 

movements and interlimb coordination were calculated as follows: 
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Table 2: Individual limb parameters 

Limb parameters Definitions 

Cadence Inverse of stride duration 

Swing velocity 
Displacement of single limb during swing phase divided by swing 

duration 

Stride length Displacement from touchdown to touchdown of single limb 

Stance duration Time in milliseconds that foot is on the ground during stride 

 
 

Modeling stride parameters across control mice 

We used linear mixed effects models (Bates, Maechler et al. 2014) to analyze our data 

and quantify the relationship between fixed (speed, gender, weight, length, age) and random 

(subject) effects and values for each stride parameter. 

To linearize data for inclusion in the model, we first plotted the values of each stride pa-

rameter vs walking speed and generated fits to the data. Different fitting curves (linear, quad-

ratic, cubic, inverse, logarithmic, exponential, power) were tested and selected based on the 

distribution of residuals and R2 values. The curves that provided the best fits to each param-

eter are given in Table 2.1. 

After transforming the data according to these best fit curves, we next asked to what ex-

tent the fixed and random effects contributed to remaining variability in the values of each 

parameter. For the fixed terms, we tested different equations, using additive and interaction 

properties. Random terms took into consideration differences in both slopes and intercepts. 

The equations were selected based on the following criteria: R2 values (marginal and condi-

tional (Nakagawa and Schielzeth 2013), likelihood ratio tests (comparing goodness of fit 

across equations) and collinearity of effects (Table 2.1 A). Due to collinearity, in many cases 

body length (measured directly from the movies) and weight provided good fits to the data. 

We chose to use weight throughout because it provided a platform-independent metric for 

body size that should be more reproducible. 

 

2.3 Results 

 

2.3.1 Custom built behavior apparatus 

 

The noninvasive, markerless LocoMouse system uses high speed cameras and machine 

learning algorithms to automatically detect and track the position of paws, nose, and tail in 

3D with high (2.5 ms) temporal resolution. It’s composed by 3 main parts: the data acquisition 

system, the tracking algorithm and the data analysis. 

 

https://elifesciences.org/content/4/e07892#fig2s1
https://elifesciences.org/content/4/e07892#fig2s1
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2.3.1.1 Hardware and data acquisition 

 

Mice walked across a glass corridor, 66.5 cm long and 4.5 cm wide (Figure 2.1). A mirror 

was placed at 45 degrees under the mouse, so that a single high-speed camera (AVT Bonito 

BW color, 1440x250 pixels @400 frames per second,) recorded both bottom and side views. 

Individual trials consisted of single crossings of the corridor. Infrared (IR) sensors were 

placed along the corridor to detect mice movement. Mice freely initiated trials by walking back 

and forth between two dark ‘home’ boxes on each end of the corridor. Mice ran one session 

per day, during one week. Each session consisted in 10-15 trials. Data collection was per-

formed through a developed acquisition software.  

 

 

Figure 2.1. LocoMouse system for analyzing mouse locomotor coordination.  

(A) LocoMouse apparatus. The mouse walks freely across a glass corridor with mirror below at a 45° angle. 
A high-speed camera captures at 400 fps. Infrared (IR) sensors trigger data collection. (B) An example of a 

single frame. Side and bottom (via mirror reflection) views of the mouse are captured in a single camera.  
 

The acquisition software was written in LabVIEW and uses image (PCIe 1433) and digital 

acquisition (BNC 2120) boards, both from National Instruments. Before starting the acquisi-

tion software, mouse specific properties (mouse ID, weight, sex and age) where introduced 

in the control panel (Figure 2.2A). Then the experimenter placed the mouse inside the ‘home’ 

box. IR sensors were triggered when the mouse entered or exited the corridor, initiating au-

tomatically data collection. The acquisition software was based on a state machine design 

pattern, where distinguishable states exist and each state can lead to one or multiple states. 

In order to complete a trial, the software had to execute sequentially the following states: 1-

collecting mouse specific parameters; 2- background image acquisition; 3- initialization trials 

by triggering IR; 4- video acquisition; 5-saving video. This sequence was repeated until the 

desire number of trials was reached (Figure 2.2B). With this design pattern, several states 

ran in parallel, which allowed to acquired videos, in real time, at a high speed-resolution 
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minimizing the number of frame that were lost.   

 

 

Figure 2.2. Front panel and flowchart of the data acquisition software.  

(A) Mouse specific parameters: mouse ID, age, weight, sex and number of trials are introduced in the front 
panel before starting the acquisition program. (B) Flowchart of the data acquisition software with the se-

quential steps. It has 5 main processes: saving parameters, capturing background image, reading IR sen-
sors, capture and save video. 
 

2.3.1.2 Tracking whole body movement in 3D: Computer vision algorithms and 

machine learning techniques  

 

Besides the acquisition software, a tracking code was also developed in the Lab to max-

imize the throughput. I developed a first version of the tracking that used image processing 

and clustering techniques. It automatically tracked the different mouse body parts (without 

the need for surface markers or manual initialization of feature tracks). However, side view 

tracks weren’t as robust as bottom view tracks due to paw occlusions.  To solve this problem, 

a new version of the tracking software using machine learning was developed. The new 

tracking code was developed in MATLAB R2013b (The MathWorks) and can be downloaded 

from GitHub (https://github.com/careylab/LocoMouse). The data shown here were collected 

from the new tracking code.  

Tracking, by definition, is the identification of the same object over time (Figure. 2.3A). 

The locoMouse tracker was based on computer vision algorithms and machine learning tech-

niques. The first step was to subtract the background image in every single frame of the 

movie. The background image it’s the corridor picture acquired before every session. Then, 

every image was corrected for lens and mirror distortions. Once the frames were cleaned 

and distorted, a Support Vector Machine (SVM) (Figure. 2.3B) was applied to identify several 

potential candidates for the different mouse body parts. Hand labeled data of each feature 

https://github.com/careylab/LocoMouse
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was used to train the Support Vector Machine (SVM) classifiers. After processing the candi-

dates in each image, a multi-target tracking algorithm (Russell, de Agapito et al. 2011) was 

applied to select the final candidates. It’s based on temporal information and the frame-by-

frame displacement (Figure 2.3). For a more detail description of the different steps of the 

tracking code see Methods section.  

 

 
Figure 2.3. Computer vision algorithms and machine learning techniques to track whole-body move-
ments.  

(A) Schematic representation of the tracking definition. It’s a combination of object recognition (appearance) 
with temporal information (dynamics). (B) Machine learning algorithms identify paws, nose, tail segments 

and track their movements in 3D. Example ‘paw’ and ‘not paw’ training images for SVM (Support Vector 
Machine) feature detectors are shown for side and bottom views. (C) Different steps of the software tracking. 

First a background subtraction is applied, then each frame is filtered with SVM detectors that will lead to 
propose candidates. Final, a multi-target tracking algorithm is used to select the final tracks.   

 

The algorithm identifies and tracks all four paws, snout, and 15 tail segments in both bot-

tom and side views for each trial. The left and right side of the mouse was also tracked 

depending on when the mouse crossed the corridor from left or right. As a final output the 

time, forward (x), side-to-side (y) and vertical (z) trajectory of each feature were collected for 

each trial (Figure 2.4A, B). Fewer than 10% of the trials were excluded due to tracking failure 

(typically due to exploration or grooming behavior that resulted in erroneous swing and 

stance detection).  
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Figure 2.4. Trajectories of whole-body in 3D.  

(A) Continuous tracks are obtained by post-processing the feature detections with a Multi-Target Tracking 
algorithm. (B) Top plot: Continuous forward trajectories (x position vs time) for paws, nose, and tail. The 

inset illustrates the color code used throughout the thesis to identify individual features. Medial plot: Contin-
uous vertical (z) trajectories of the two front paws. Final plot: Side-to-side (y) position of proximal (green) to 
distal (yellow) tail segments vs time. (C) Individual strides were divided into swing and stance phases for 

further analysis.   

 

For posterior data analysis, the paw trajectories were automatically divide into stride cy-

cles. The stride cycle consists in two phases, the swing (transfer) and stance (support) 

phases. In the swing phase, the limb is moving relative to the body. It initiates when the paw 

leaves the floor and reaches the anterior extreme position. During the stance phase the paw 

is in contact with the floor (Figure 2.4 C). For the validation of the system, hand label trajec-

tories (x,y,z position) were used to compare the trajectories resulted from the automated 

tracking. Validation of the tracking is provided in (Figure 2.5). 

 Finally, with this high throughput system it was possible to ran 34 wildtype mice in ap-

proximately one week and collect in total 36,369 strides, which corresponds to 1069 ± 266 

strides per mouse and 267 ± 66 strides per paw.  
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Figure 2.5. LocoMouse tracking validation. 

(A) Comparison of manual (gray) and automated tracking (blue) for front left paw across 3 dimensions. From 

left to right, plots show normalized x, y, and z paw position aligned to stance onset (n = 43 strides from 9 
movies of 3 mice). (B) Scatterplots of manual vs automated tracking positions (x, y, and z) for all frames (n 

= 4194) of the same 9 movies. Values where the difference between manual and automated tracking are 
larger than average paw size are color-coded in green. Correlation coefficients are Pearson's r.  

 

2.3.2 Wild-type data analysis: Individual limbs in wild-type mice vary con-

sistently with walking speed and body-size 

 

2.3.2.1 Using linear mixed effects models to predict basic stride parameters 

 

We first analyzed basic stride parameters for individual limbs of wildtype control mice 

(Figure 2.6). Parameters such as stride length (mm), cadence (strides/s), swing velocity 

(m/s), and stance duration (ms), along with the mouse's walking speed, were measured for 

each stride. The data were highly variable (Figure 2.6 A). The walking speed of the mice 

was similarly variable (Figure 2.6 B). We therefore sorted all strides for individual mice into 

speed bins in a stridewise manner and analyzed them with respect to the mouse's walking 

speed. 

 

https://elifesciences.org/content/4/e07892#fig2
https://elifesciences.org/content/4/e07892#fig2
https://elifesciences.org/content/4/e07892#fig2
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Figure 2.6. Basic stride parameters can be predicted using only walking speed and body size. 

(A) Stride length vs walking speed for 9602 individual strides of the front right paws of 34 wildtype mice are 
color-coded by weight for each individual animal. (B) Histogram of average walking speeds for each stride 
from (A). Strides are divided into speed bins of 0.05 m/s. (C–F) Stride length, cadence (1/stride duration), 

swing velocity, and stance duration vs walking speed, respectively. For each parameter, speed-binned me-
dian values are shown for each animal (solid circles, color coded by weight). Data for each animal are 
connected across speeds with a thin dotted line. Thick lines are the output of the linear mixed-effects model, 
for 3 example weights across walking speeds (blue: 9g, cyan:19g, red: 33g). Marginal R-squared values for 
each linear mixed model are shown for each parameter.  

 

The median values of stride parameters for each mouse across speed bins are shown 

in Figure 2.6 C–F (dots connected by dashed lines). Each parameter measured, including 

stride length, cadence, swing velocity, and stance duration (Figure 2.6 C–F), varied consist-

ently with the walking speed of the mouse. Cadence and stride length increased with walking 

speed, indicating that faster walking in mice is associated with longer, more frequent strides 

(Clarke and Still 1999, Lalonde and Strazielle 2007, Batka, Brown et al. 2014). These 

changes, in turn, resulted from linear increases in swing velocity and steep decreases in 

stance duration with increasing walking speed. Further subdividing the data by the body 

weight of each animal (Figure 2.7) revealed that much of the remaining variability in each 

parameter could be accounted for by the mouse's body size (Figure 2.6, color-coded by 

weight). 

To quantify the influence of walking speed, body size, and other potential factors on these 

basic stride parameters, 36,369 strides from an average of 1069 ± 266 strides in 34 mice 

https://elifesciences.org/content/4/e07892#fig2
https://elifesciences.org/content/4/e07892#fig2
https://elifesciences.org/content/4/e07892#fig2
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were analyzed (Figure 2.6). For each parameter, we first linearized the data by fitting appro-

priate functions (e.g., linear, power) to the data with respect to walking speed.  

 

 

Then we generated a multilevel linear mixed-effects model that included potential predic-

tor variables speed, weight, body length, age, and gender either alone or in combination and 

asked to what extent they accurately predicted the measured parameter. This analysis re-

vealed that the value of each stride parameter was readily predicted based solely on walking 

speed and body weight (Table 2.1A). While basic stride parameters also varied with gender 

and age, these effects were related to differences in body size (Table 2.1B); adding neither 

age nor gender improved the predictions once body size was taken into account. The result-

ing best-fit models are plotted as thick lines in Figure 2.6 C–F. These results indicate that 

the equations in Table 2.1A provide quantitative predictions of paw stride parameters for 

mice of a given size, walking at a particular speed. For a more detail description of the linear 

mixed effects model please see Methods section. 

Figure 2.7. Properties of wildtype 
mice used for linear mixed-effects 
model  

(A) Properties of wildtype mice used for 

linear mixed-effects model. A total of 
34 wild-type C57BL/6 mice were used 
for the linear mixed-effects model 
in Figure 2.6. Each individual WT ani-
mal is plotted as a circle (open circles, 
females, N = 11; closed circles, males, 
N = 23). Symbols are color-coded by 
age. The diverse group included a va-
riety of ages (30–114 days), body 
lengths (61–100 mm), and weights (7–
33g). 
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Table 2.1 –Using linear mixed effects models to predict individual limb parameters  

(A) Comparison of model fits for basic stride parameters. Speed, gender, age, body length, weight (fixed 

terms) and subject (random term) were used as predictor variables in the linear mixed-effects model. Table 
rows show tested equations for predicting stride parameters and values used for selection criteria of the 
resulting predictive model. p-values reported for each term are the outcome of a likelihood ratio test com-
paring indicated equations (superscripts). The last two lines (f, g) indicate that age and gender did not im-
prove the predictions beyond the inclusion of speed and body weight. (B) Coefficients of speed and weight 

for basic stride parameters. The final equations for each stride parameter included speed and weight as 
fixed-term predictor variables; subject was included as a random-term. Coefficient values for fixed terms are 
represented. These equations can be used to predict stride parameters for a given mouse walking at a 

particular speed. 
 

2.4 Discussion 

 

The LocoMouse system is an automated, markerless 3D tracking and analysis system 

for mouse locomotion. It provides detailed trajectory information in 3D for all four paws, the 

nose, and tail. We used LocoMouse to analyze locomotor coordination in freely walking 

mice. A multilevel mixed effects linear modeling approach accurately predicted the value of 

gait parameters for individual limbs across trials and across mice, based solely on body 

size and walking speed. 

The LocoMouse system presents a number of technical advantages over existing systems 
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for analyzing mouse locomotion. Available systems have tended to either emphasize 

throughput (Hamers, Lankhorst et al. 2001), or the collection of more detailed trajectories 

(Leblond, L'Espérance et al. 2003, Kale, Amende et al. 2004, Garnier, Falempin et al. 2008, 

Zörner, Filli et al. 2010).  

LocoMouse is unique in that it combines these features, allowing mice to walk as naturally 

as possible through the corridor while increasing throughput with fully automated data col-

lection and analysis (Anderson and Perona 2014). The high spatiotemporal resolution of the 

tracking system itself provides high sensitivity, as evidenced by our ability to distinguish be-

tween gait parameters of animals of different sizes and subtle changes in limb trajectories 

across speeds. 

 The LocoMouse system has several limitations: 

 Joints cannot be tracked and analyzed in an automatic way.  

 The tracking system is restricted to the training conditions of the support vector 

machine:  

 Mice must cross a linear corridor, 

 Movies must be in black and white color with a high spatial and temporal 

resolution and light source  

 Finally, the system can only track black 6 mice.  

Beyond the technical advantages, establishing a comprehensive framework for analyzing 

the large, multidimensional dataset generated by LocoMouse was essential. The multilevel 

linear mixed effects modeling approach and the quantitative analysis of interlimb and whole-

body coordination were crucial for identifying specific, core features of ataxia (a more detail 

analysis will be presented in chapter 3).  

We found that the motion of individual limbs was highly predictable based on walking 

speed and body weight across wildtype mice, even down to the level of 3D trajectories. 

Nearly all previous studies have failed to account for differences in walking speed and body 

size when comparing gait parameters across mice, though this is clearly critical (Koopmans, 

Deumens et al. 2007, Cendelín, Voller et al. 2010, Wuehr, Schniepp et al. 2013, Batka, 

Brown et al. 2014). Moreover, taking account of walking speed and body size allowed us to 

account quantitatively for variability across mice, which can reduce the number of animals 

and trials needed for experiments. 
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Quantifying specific impairments in 

cerebellar ataxic mice (pcd and reeler mice) 
 

3.1. Introduction 

3.2. Methods 

3.3. Results 

3.3.1. Single limb: Differences in forward trajectories of the paw can be 

accounted for by walking speed and body size; impairments are restricted 

to off-axis movement 

3.3.2. Interlimb: Front-hind coordination is specifically impaired, while left-right 

coordination is preserved   

3.3.3. Whole-body: In pcd and reeler the side-to-side (y) tail movement can be 

predicted by a passive model 

3.4. Discussion 

 

Results published: 

Ana S. Machado, Dana M. Darmohray, João Fayad, Hugo G. Marques, Megan R. 
Carey, A quantitative framework for whole-body coordination reveals specific deficits in 
freely walking ataxic mice. eLife (2015) DOI: http://dx.doi.org/10.7554/eLife.07892 
 
Manuscript in preparation: 
Ana S. Machado and Megan R. Carey, Assessing specific locomotor impairments in 
reeler mice. 
 
Author contributions in this chapter for pcd mice: 
ASM and DMD equal contribution. ASM, DMD and MRC, Conception and design, Analysis and interpretation 

of data. ASM, Acquisition of data and Analysis of individual limb and tail. DMD, Analysis of limb trajectories, 

interlimb coordination and support pattern. MRC wrote the manuscript 
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3.1 Introduction 

 

The systematic analysis of gait parameters across mice presented in the chapter 2 pro-

vided a starting point for quantifying locomotor deficits of ataxic mice. Several spontaneous 

mouse mutants have been identified based on their visible gait ataxia (Mullen, Eicher et al. 

1976, Lalonde and Strazielle 2007, Cendelin 2014). Many of these mouse lines exhibit ab-

normal cell patterning within the cerebellum, with different spatiotemporal patterns of neural 

degeneration. Interestingly, the specifics of the motor deficits exhibited by these mice are 

also variable (Lalonde and Strazielle 2007, Brooks and Dunnett 2009, Sheets, Lai et al. 2013, 

Cendelin 2014). Thus, understanding the relationship between circuit dysfunction and motor 

impairment could provide clues into neural circuit mechanisms of motor coordination. Here I 

will quantify and analyze two visibly ataxic cerebellum mutant mice. The Purkinje cell degen-

eration (pcd) and reeler mice. 

 

Purkinje cell degeneration (pcd) mice 

The Purkinje (Pkj) cell degeneration (pcd) mouse is a recessive mutant characterized by 

complete post-natal degeneration of cerebellar Purkinje cells (Figure 3.1 B, E) and subse-

quent partial loss of cerebellar granule cells (Chen, Bao et al. 1996, Le Marec and Lalonde 

1997, Lalonde and Strazielle 2007, Cendelin 2014); The gene affected encodes ATP/GTP 

binding protein 1 (Fernandez-Gonzalez, La Spada et al. 2002). Pcd mice can be easily iden-

tified by eye based on their ataxic, uncoordinated movements (Mullen, Eicher et al. 1976, Le 

Marec and Lalonde 1997). Pcd mice exhibit impaired rotarod performance and deficits in 

eyelid conditioning that have been attributed to their cerebellar abnormalities (Chen, Bao et 

al. 1996, Le Marec and Lalonde 1997). Perhaps surprisingly, given the severity of their ana-

tomical phenotype, the motor deficits of pcd mice are relatively mild compared to other spon-

taneous ataxic mutants (Le Marec and Lalonde 1997, Lalonde and Strazielle 2007). 

 

Reeler mice 

The homozygous reeler mice are a classic mutant ataxic mice discovered in 1951 

(Falconer 1951, Cendelin 2014). Reeler mice have an autosomal recessive mutation (Relnrl). 

This gene is involved in neural cell migration (Beckers, Bar et al. 1994). Thus, the lack of it 

in the mutant mice can cause several defects, in particular abnormal localization of neurons 

and failure of neuronal layer formation. Several brain regions are affected such as: cerebel-

lum (Hamburgh 1963, Terashima, Inoue et al. 1983), hippocampus (Stanfield and Cowan 

1979), neocortex (Mikoshiba, Kohsaka et al. 1980), inferior olive (Blatt and Eisenman 1988) 

and substantia nigra (Kang, Kim et al. 2010). Abnormal cerebellum foliation and reduce size 

is observed in reeler mice (Figure 3.1 C). Besides having lower density of Pkj cells and 
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granule cells, the neurons also have abnormal locations (Goffinet, So et al. 1984, Castagna, 

Aimar et al. 2014). Homozygous reeler mice are characterized by an ataxic and reeling gait, 

with difficulties in maintaining their hindquarters upright (Cendelin 2014). Reeler mice also 

exhibit a poor performance in rotarod, stationary beam and water maze tests (Cendelin 

2014). 

 

 
Figure 3.1. Sagittal sections of the mouse brain to compare cerebellar morphology between wildtype, 

pcd and reeler mice.  

Sagittal sections of the mouse brain, with a focus on the cerebellum region, for (A) wildtype, (B) pcd and (C) 

reeler mice. Each section was stained with Nissl for neurons visualization and anti-calbindin to reveal 

purkinje cells. (B) In pcd mice the cerebellum morphology is maintained, when compared to (A) wildtype, 

however the amount of anti-calbindin staining is clearly reduce. This is a consequence of purkinje cell de-

generation. The size of the cerebellum (C) in reeler mice is much smaller than (A) wildtype mice. Besides 

that, reeler mice also have an abnormal morphology and neurons localization. (D-F) Diagrams of the cere-

bellar neuronal circuit for each mouse, (D) wildtype, (E) pcd mice (purple – lack of pkj cell), (F) reeler mice 

(abnormal neurons localization). 

 

In the previous chapter, a detailed analysis of individual limbs was performed. Now I will 

extend this analysis to quantify limb trajectories in 3D and whole body coordination. Thus, 

the final goal on this chapter is to use LocoMouse to establish a quantitative framework for 

locomotor coordination in mice and analyze the deficits of visibly ataxic cerebellum mutant 

mice.   
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3.2 Methods 

 

Animals 

All procedures were reviewed and performed in accordance with the Champalimaud Cen-

tre for the Unknown Ethics Committee guidelines, and approved by the Portuguese Direcção 

Geral de Veterinária (Ref. No. 0421/000/000/2015). 

Heterozygous Purkinje cell degeneration mice on a C57BL/6 background were obtained 

from Jackson labs (#0537 B6.BR-Agtpbp1pcd/J). Heterozygous reeler (Relnrl) mice on a 

C57BL7/6 were obtained from Jackson labs (#000235 B6C3Fe al a- Relnrl /J).  

Experiments were conducted in two groups: A) homozygous pcd mice (n=3052; N=3 

mice; 2 females, 1 male; 10-16 g; run at several ages each between 41-154 days old) and 

their littermates (n=2256; N=7 mice; 3 females, 4 males; 15-40 g; 34-190 days old). Size-

matched controls for pcd animals (n=3400; N=11 mice) were taken from the wildtype data 

set. B) homozygous reeler mice (n=1965; N=7 mice; 2 females; 5 males; 8-18g; 35-52 days 

old) and their wild type littermates (n=1892; N=12 mice; 8 females, 4 males; 12-25 g; 36-52 

days old).  

 

Data collection 

Mice were handled by the experimenter and allowed to acclimate in the LocoMouse setup 

for several minutes on multiple occasions before data collection. Animals were weighed be-

fore each session. Mice walked freely between two dark boxes on either end of the glass 

corridor. The automatic triggering system was critical for allowing mice to self-initiate trials, 

which reduced animal stress without compromising the quantity of data collected. No food or 

water restriction or reward was used. 

10-25 corridor passages (trials) were collected in each of five daily sessions. For pcd and 

littermates we collected an average of 4252 ± 778 strides per pcd mouse (1063 ± 32 strides 

per animal per paw) and 1310 ± 934 strides per littermate mouse (328 ± 11 strides per animal 

per paw). For reeler and littermates we collected an average of 1079 ± 568 strides per reeler 

mouse (208 ± 147strides per animal per paw) and 622 ± 346 strides per littermate mouse 

(157 ± 87 strides per animal per paw). 

 Animals were not required to walk continuously throughout a trial; if the animal stopped 

mid-trial, the data before and after the halt were still analyzed.  

 

Data analysis 

The stride cycles of individual paws were automatically broken down into swing and 

stance phases based on the first derivative of the paw position trajectories. Individual strides 
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were defined from stance onset to subsequent stance onset. For each stride, average walk-

ing speed was calculated by dividing the forward motion of the body center during that stride 

by the stride duration. All data was sorted into speed bins (0.05 m/s bin width) in a stridewise 

manner, with a minimum stride count criterion of 5 strides per bin, per animal. Individual limb 

movements and interlimb coordination were calculated as follows: 

 

Table 1: Gait parameters 

Limb parameters Definitions 

Cadence Inverse of stride duration 

Swing velocity 
Displacement of single limb during swing phase divided by swing du-

ration 

Stride length Displacement from touchdown to touchdown of single limb 

Stance duration Time in milliseconds that foot is on the ground during stride 

Trajectories 

Trajectories were aligned to swing onset and resampled to 100 equi-

distant points using linear interpolation. Interpolated trajectories were 

then binned by speed and the average trajectory was computed for 

each individual animal and smoothed with a Savitzky-Golay first-or-

der filter with a 3-point window size 

Stance phase 
Relative timing of limb touchdowns to stride cycle of reference paw. 

Calculated as: (stance time−stance timereference paw)/stride duration 

Supports 

Support types were categorized by number of paws on ground ex-

pressed as a percentage of the total stride duration for each stride. 

Paw support categories are four, three, two diagonals, two other 

(homolateral and homologous), one, and zero. 

Paw distance 
The x,y distance from where the front paw lifted off to where the ipsi-

lateral hind paw touched down on the subsequent stride. 

Double support: 

Double support for each limb is defined as the percentage of the 

stride cycle between the touch down of a reference paw to lift-off of 

the contralateral paw. Because at higher speeds (running), the op-

posing limb lifts off before the reference paw touches down, we in-

cluded negative double support by looking backwards in time by 25% 

of the stride cycle duration. Positive values of double support indi-

cate that contralateral lift-off occurred after reference paw touch 

down, and negative values indicate that contralateral lift-off occurred 

before reference paw touch down. 

 

Tail and nose phases 

For each speed bin we correlate the stridewise tail and nose trajectories with the trajectory 

given by the difference between the forward position of the hind right paw and the forward 

position of the hind left paw (also normalized to the stride). The phase is then calculated by 

the delay in which this correlation is maximized. 
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Correlation matrices 

Correlation coefficients were computed for average z trajectories normalized to 100% of 

the FR stride cycle. 

 

Multi-level linear mixed-effects models and statistical analysis 

Because of the complex nature of the data set, including nested data with varying number 

of trials per animal and data points per speed bin, data analysis and statistical comparisons 

were performed with linear mixed effects models. 

 

Statistical analyses 

Statistical analyses were done in Matlab and R. For all comparisons, models were se-

lected by comparing equations specifying additive fixed-effects terms with those specifying 

n-way interaction terms using a likelihood-ratio test and inspection of statistical significance 

of included terms. Depending on the comparison, fixed-effects terms included a subset of 

the following variables: speed, genotype and paw. All models were random-intercepts mod-

els with subject as a random covariate. Unless otherwise indicated, results are reported as 

conditional F tests with Satterthwaite degrees of freedom correction. All variability analyses 

were based on coefficients of variation (CV). 

 

3.3 Results 

3.3.1 Single limb: Differences in forward trajectories of the paw can be 

accounted for by walking speed and body size; impairments are re-

stricted to off-axis movement 

 
Changes in stride parameters are predicted by changes in walking speed and body 
size 

 

Pcd and reeler mice were visibly ataxic when walking on the LocoMouse setup. Con-

sistent with previous studies of cerebellar ataxia in mice (Fortier, Smith et al. 1987, Wang, 

Parris et al. 2006, Cendelín, Voller et al. 2010, Veloz, Zhou et al. 2015), comparing the basic 

stride parameters of visibly ataxic mice, in particularly pcd mice, with littermate control mice 

revealed that the strides, overall, were quite different (Figure 3.2 C–E). Stride lengths were 

shorter (Figure 3.2 C, purple shadows), even when changes in walking speed (Figure 3.2 

A) were taken into account. Cadence and stance durations were also altered (Figure 3.2 

D,E purple shadows). 

 

https://elifesciences.org/content/4/e07892#fig3
https://elifesciences.org/content/4/e07892#fig3
https://elifesciences.org/content/4/e07892#fig3
https://elifesciences.org/content/4/e07892#fig3
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Figure 3.2. Differences in forward paw trajectories in pcd can be accounted for by walking speed and 

body size. Reeler mice and littermate controls have similar body size. 

(A-B) Histogram of walking speeds, divided into 0.05 m/s speed bins for pcd (purple N=3), pcd littermate 

controls (green, N=7), reeler (cyan N=7) and reeler littermate controls (grey, N=12). (C-H) Stride length (C, 

F), cadence (D,G, 1/ stride duration) and stance duration (E-H) vs walking speed for pcd mice (purple), reeler 

mice (cyan), pcd littermate controls (green) and reeler littermate controls (grey). For each parameter, the 

thin lines with shadows represent median values ± 25th, 75th percentiles. Thick lines represent the predic-

tions calculated using the mixed-effect models described in Figure 2.6 and Table 2.1 

 

Since pcd and reeler mice, like many ataxic animals, are smaller than controls (Figure 

3.3), and given that they walk more slowly (Figure 3.2 A), we asked to what extent the altered 

stride parameters in these mutant mice could be accounted for simply by changes in body 

size and walking speed. To do this we used the equations derived from the linear mixed-

effects models in Figure 2.6 to predict stride parameters across walking speeds for mice the 

size of the pcd, reeler mice and their littermates. The models accurately predicted stride pa-

rameters for the littermates, which were not visibly ataxic (Figure 3.2 C–H, green and grey: 

thick lines represent model predictions). Surprisingly, we also found that the models accu-

rately predicted stride parameters for pcd and reeler mice (Figure 3.2 C–H, purple and 

cyan). Thus, although stride parameters of pcd mice were different overall from controls (Fig-

ure 3.2 C–E, purple vs green shadows), they were comparable to those predicted for control 

mice of similar body size walking at similar speeds (Figure 3.2 C–E, the purple thick lines 

representing the model predictions fall on top of the data in the shadows). 

 No differences across reeler mice and littermate controls was observed for the front right 

paw (Figure 3.2 B, F-H). This could be explained by the small differences between their body 
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size (Figure 3.3 A) which reinforce the idea that differences observed in pcd and respective 

littermates are accounted by changes in body size. 

Moreover, a direct comparison between stride parameters for pcd mice and size-matched 

controls walking at the same speeds revealed no difference between the two groups (Figure 

3.3) (stride length F(14,1) = 0.70, p = 0.42; cadence F(14,1) = 0.004, p = 0.95; stance dura-

tion F(14,1) = 1.89, p = 0.17). 

 

 

Figure 3.3. Basic stride parameters for pcd are not different from their size-matched controls. Reeler 

mice and littermates control have comparable body size.  

(A) Properties of homozygous reeler mice (cyan n=7) and littermates controls (grey n=12). (B) Histogram of 

walking speeds, divided in 0.05 m/s speed bins for pcd (purple, N=3 mice, n=3052 strides), littermate con-

trols (green, N=7 mice, n=2256 strides) and size matched controls (black, N=11 mice, n=3400 strides). (C) 

Histogram of stride counts by weight for size-matched controls and pcd. (D-F) Basic stride parameters. For 

each parameter, thick lines represent the prediction, from the mixed-effects models derived from wildtype 

data in Figure 2.6 (including speed and weight as predictor variables), for each group. Pcd (average 

weight=12g; purple line), control littermates (average weight=26g; blue line) and size-match controls (aver-

age weight=12g; black line). (D) Stride length values vs walking speed for pcd, littermate controls and size-

matched controls (median ± 25th,75th percentile). Data are represented by thin lines and shadows, thick lines 

are model predictions. (E and F) Temporal measures of the step cycle; cadence (inverse of stride duration) 

and stance duration, respectively (median ± 25th,75th percentile).  

 

Although, in reeler mice basic stride parameters of the front right paw was not altered 

(Figure 3.2 B, F-H) the same was not true for the hind paws. While stride length, cadence 

and stance duration were maintained, differences in swing duration between reeler mice and 

littermate control were observed (Figure 3.4). 
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Figure 3.4 Basic stride parameters for hind right paw. Differences in swing duration. (A-E)  

Basic stride parameters. (A) Stride length (mm) (C) cadence (s-1) (D) stance duration (ms) and (E) swing 
duration (ms) vs walking speed for reeler mice (cyan) and reeler littermate controls (grey), relative to hind 
right paw. For each parameter, the thin lines with shadows represent median values ± 25th, 75th percentiles. 
Thick lines represent the predictions calculated using the mixed-effect models described in Figure 2.6 and 
Table 2.1. Since we were not able to predict accurately the swing duration parameter, no model prediction 
was plotted in E.  

 

Next we investigated the possibility that there could be changes in variability of stride 

parameters in pcd and reeler mice that were not apparent in the averaged data. Analysis of 

the coefficient of variation revealed that swing length variability was unchanged in pcd com-

pared to size matched controls (F(81,1)=0.14, p = 0.0.71). Surprisingly, both cadence and 

stance duration were less variable in pcd (cadence:F(80,1)=6.90, p < 0.05; stance dura-

tion: F(80,1)=6.90, p < 0.05) . 

Taken together, these results demonstrate that basic stride parameters do not capture 

the ataxic symptoms of pcd and reeler mice, and highlight the importance of accounting for 

walking speed (Koopmans, Deumens et al. 2007, Cendelín, Voller et al. 2010, Batka, Brown 

et al. 2014) and using size-matched control animals when analyzing locomotor parameters. 

For this reason, pcd and reeler animals are compared with size-matched controls from here 

on (Figure 3.3). 

 

Strides of pcd and reeler mice show specific impairments in off-axis paw trajectories 
 

It has been previously hypothesized that detailed analysis of paw trajectories would cap-

ture the gait abnormalities of ataxic mice like pcd and reeler, but detailed 3D paw kinematics 

have not been described for mice. We analyzed the continuous 3D paw trajectories for both 

wildtype, pcd and reeler mice (Figure 3.5 and Figure 3.6). In the wildtype mice, the instan-

taneous forward paw velocity profile changes with speed, the peak paw velocity increases 

with faster speeds. In vertical (z) and side-to-side (y) movement there is no significant differ-

ences between the different speeds (Figure 3.5). 
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Figure 3.5. 3D paw trajectories for wildtype controls.  

(A-C) Average 3D trajectories for front right paw of wildtype control group (N=34; n=9602 strides) during 
swing phase. Traces are binned and color coded by walking speed. (A) Instantaneous forward (x) velocity. 
(B) side-to-side (y) excursion (C) vertical (z) position relative to ground. (D-F) Same as above but for hind 

right paw of wildtype control group. 

 

Surprisingly, we found that the instantaneous forward paw velocity profiles for all paws in 

pcd and for front paws in reeler mice were not distinguishable from those of size-matched 

controls, across speeds (Figure 3.6 A, E; Figure 3.7 A). However, hind paws forward veloc-

ity (Figure 3.7 C) in reeler mice were much slower than size-matched controls (F(82.9,1)=27.3, 

p<0 0.001). Paw velocity peaked early during swing and decelerated before stance onset 

across walking speeds in both control, pcd and reeler mice (Figure 3.6 A, E; Figure 3.7 A). 

Peak swing velocities increased with faster walking speeds but did not vary by genotype 

(pcd: F(10.97,1)=.092, p = 0.77, reeler: F(138.1,1)=.032, p = 0.86). There was also no difference in 

variability of peak swing velocity between genotypes in pcd mice (F(81,1)=0.27, p = 0.60). This 

surprising result reveals that even detailed forward paw trajectories are normal in pcd and 

reeler mice, once changes in walking speed and body size are taken into account. 
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Figure 3.6. Impairments are restricted to off-axis movement for pcd and reeler mice.  

(A-E) Average instantaneous forward (x) velocity of FR paw during swing phase for pcd mice (purple), reeler 
mice (cyan) and size-matched controls (black). Line thickness represents increasing speed. (B-F) x-y posi-
tion of four paws relative to the body center during swing. (C-G) y-excursion for front and hind paws, relative 
to body midline. (D-H) Average vertical (z) position of FR paw relative to ground during swing. 
 

We next examined the horizontal (y) and vertical (z) movements of the paws (Figure 3.6 

B-D; F-H). Pcd mice exhibited a wider base of support than size-matched control mice 

(F(15.51,1)=42.87, p<0 0.001, Figure 3.6 B), while in reeler mice that was not observed 

(F(32.1,1)=0.03, p=0.87, Figure 3.6 F). However, there were subtle changes in side-to-side (y) 

paw trajectories for both reeler and pcd mice (pcd: F(13.88,1)=20.64, p <0.001 and reeler: 

F(28.3,1)=4.3, p < 0.05; Figure 3.6 C-G).  

Further, analysis of the vertical (z) trajectories revealed significantly larger vertical dis-

placement of both front and hind paws of pcd and reeler mice, across speeds 

(pcd:F(66.84,1)=17.16, p <0 0.001 and reeler: F(137.7,1)=13.1, p <0 0.001, Figure 3.6 D-H; Figure 

3.7 C-D). The variability of this vertical displacement was not different in pcd mice 

(F(81,1)=2.47, p = 0.12).  
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Figure 3.7. 3D paw trajectories for pcd and reeler mice.  

(A-C) Hind right paw x-trajectories. (B-D) Hind right paw vertical (z) position relative to ground during 
swing. In pcd (B), hind paws were lifted higher than forepaws, and their peak positions varied more steeply 
with speed in pcd mice(F(153.02,1) = 5.64,p<.05). 

 

Although, forward velocity of front paws in reeler mice was preserved, alteration in hind 

paws across all dimensions was observed. Lower peak velocity (Figure 3.7 C) and slight 

hyper-flexion (Figure 3.7 D) was revealed. In addition, reeler mice has been described with 

incapability in maintaining their hindquarters upright (Cendelin 2014).This observation is con-

sistent with our data.  As it was previous described several brain regions are affected in reeler 

mice, while in pcd mice neurodegeneration was more specific to cerebellum and post-natal. 

Differences across pcd and reeler mice could be explained by the differences in the neuro-

degeneration process   

Thus, despite the visibly ataxic walking pattern of pcd and reeler mice, the results of the 

mixed-effects linear models and the trajectory analyses indicate that the forward motion of 

the paws was remarkably preserved in pcd and reeler mice. Alterations in individual limb 

movements were restricted to off-axis (horizontal and vertical) trajectories. 

 

3.3.2 Interlimb: Front-hind coordination is specifically impaired, while 

left-right coordination is preserved 

 

Analyses of mouse locomotion that have focused on quantifying the kinds of basic stride 

parameters presented in Figure 2.6 have previously failed to quantitatively capture gait 

ataxia in visibly ataxic mice (Cendelín, Voller et al. 2010). We reasoned that this could be 

because human observers are more sensitive to the patterns of movement across different 

parts of the body (Basso, Fisher et al. 2006). Therefore, we analyzed patterns of interlimb 

and whole body coordination in both control, pcd and reeler mice.  

In our experiments, wildtype mice walked in a symmetrical trot pattern across speeds – 

each diagonal pair of limbs moved together and alternated with the other pair (Figure 3.8 A). 

According to the terminology of Hildebrand (1989), at slower speeds there was a tendency 

toward a ‘walking trot’ (front paws in a diagonal pair touch down just before hind paws and 
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the paws are on the ground more than 50% of the time), while at faster speeds a ‘running 

trot’ was observed (diagonal paw pairs strike the ground near-simultaneously and paws are 

on the ground less than 50% of the time). There was no abrupt shift between these gait 

patterns – stance phases varied smoothly with walking speed and duty cycle (Figure 3.8 A 

- C) (Bellardita and Kiehn 2015) .We did not observe galloping or bounding even at the high-

est speeds (Bellardita and Kiehn 2015), probably because the mice freely initiated trials in 

our experiments, rather than being placed in the corridor by the experimenter at the start of 

each trial. For ease of quantification, and because of a lack of categorical gait boundaries in 

our data, we analyzed interlimb coordination in terms of phase values and support patterns 

rather than gait patterns.   

 

 

Figure 3.8. Wildtype mice walked in a symmetrical trot pattern across speeds.  

(A) Polar plot indicating the phase of the step cycle in which each limb enters stance, aligned to stance onset 

of FR paw (red). Distance from the origin represents walking speed. Polar plot for size-matched control mice 
(N=11). (B) Smoothed probability density of diagonal (FL-HR) pair stance phase lags and speed obtained 

by kernel density estimation for all strides of size-matched controls (n = 3400, N = 11). Color code is esti-
mated stride density.  (B) Smoothed probability density of ipsilateral pair (FL-HL) stance phase lags and % 

stance duration for all strides of size-matched controls. Color code is estimated stride density. 

 

The normal pattern of interlimb coordination was markedly disrupted in pcd and reeler 

mice, due to specific and consistent changes in the phase relationship between front and 

hind limbs (pcd: F(77.07,1)=4.11, p<.05 and reeler: F(142.6,1)=20.4, p<.001; Figure 3.9 B,C ; 

Figure 3.9 D, E right). Importantly, in marked contrast to the front-hind limb coupling, left-

right alternation was maintained in pcd and reeler (pcd: F(159,1) =0.018, p=0.89 and reeler: 

F(325.1,1) =0.32, p=0.57; Figure 3.9 B,C: red vs. blue and cyan vs. magenta; Figure 3.9 D,E 

left). Thus, as a result of the de-synchronization of front and hind paw movements, the diag-

onal limbs no longer moved in phase with each other.  
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Figure 3.9. Front-hind limb coordination is specifically impaired in pcd and reeler mice.  

(A-C) Polar plots indicating the phase of the step cycle in which each limb enters stance, aligned to stance 
onset of FR paw (red). Distance from the origin represents walking speed. (A) size-matched control mice 
(N=11). (B) pcd mice (N=3) and (C) reeler mice (N=7). (D) Left-right phase (left) and front-hind (right) phase 
for individual animals of pcd and size-matched controls. (E) Left-right phase (left) and front-hind (right) phase 
for individual animals of reeler and size-matched controls. Circles show average values for each animal. 
Lines show fit of linear-mixed effects model for each variable. 

 

Support patterns, or the configuration of paws on the ground at any given time, vary sys-

tematically with walking speed (Gorska, Zmysłowski et al. 1998). Typically, wildtype mice 

had two diagonal paws on the ground at any given time (2-paw diagonal support, Figure 

3.10 A), but this ranged from 3 paws on the ground during slow walking to 0 paw supports, 

or brief periods of flight, during running at higher speeds, due to changes in stance to swing 

phasing (Figure 3.10 G). Pcd and reeler mice spent more time with more paws on the ground 

(Figure 3.10 B C) (3-paw support pcd: F(82,1) =83.57, p<0.001 and reeler: F(13.5,1) =42,8, 

p<0.001; Figure 3.10 D). Moreover, while % double paw support was the same for pcd and 

size-matched control mice walking at comparable speeds (pcd: F(167,1)=1.06, p=0.31 and 

reeler: F(167,1)=3.27, p>0.05), the upper limit of pcd walking speeds coincided with the transi-

tion from positive to negative % double hind limb supports (Figure 3.10 F, see Materials and 

methods). Thus it appears that the walking speed of pcd mice is limited by the need to have 

at least one hind paw on the ground, for postural stability (Stolze, Klebe et al. 2002).  

Despite their slower walking speeds and increased percent of time spent with more paws 

on the ground, pcd and reeler mice also showed an increase in unstable support configura-

tions such as non-diagonal 2-paw support (Figure 3.10 E) (pcd:F(46.78,1) =7.76,p=0.01 and 

reeler: F(74.1,1)=21.01,p<0.001), particularly at higher walking speeds (pcd: F(67.62,1) =115.82, 
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p<0.001 and reeler: F(72.3,1)=39.4, p<0.001). This increased instability indicates that pcd and 

reeler mice are not simply switching to a more stable gait pattern as a compensatory mech-

anism, but rather, are unable to properly time their front-hind limb movements to generate a 

stable, efficient gait. Further, the changes in interlimb phasing for pcd mice were consistent 

– front-hind phasing was not more variable in pcd (F(164,1)=2.88, p=.091), and in fact left-right 

phasing was even less variable (F(166,1)=9.70, p=.0021). 

 

 

Figure 3.10. Pcd and reeler mice spent more time with more paws on the ground.  

(A-C) Support patterns: Area plot of average paw support types as % of stride cycle, across speeds for (A) 
size-matched controls, (B) pcd mice and (C) reeler mice.  (D) 3 paw and (E) 2-paw other supports for each 
animal (circles). Lines show fit of linear-mixed effects model. (F) Average ± sem percent double support for 
hind paws of pcd, reeler and size-matched controls. (G-H) Stance to swing phases: Polar plots of stance to 
swing phasing aligned to front right paw for (G) controls, (H) pcd mice and (I) reeler mice. 

 

Taken together, these results reveal that temporal measures of interlimb coordination dur-

ing overground locomotion were altered both in pcd and reeler mice. 
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3.3.3 Whole-body movement: Pcd and reeler the side-to-side (y) tail and 

nose movement  
 

Movements not just of the limbs, but of the entire body need to be coordinated during 

locomotion. In order to characterize whole-body locomotor coordination in both control, pcd 

and reeler mice, we analyzed their head and tail movements while they walked freely across 

the corridor (Figure 3.11).  

In control mice, lateral movements of the nose and tail were small (Figure 3.11 A-H in 

black). In striking contrast, the tail of pcd and reeler mice exhibited large side-to-side oscil-

lations during the locomotor cycle (Figure 3.11 A-H in purple and cyan) (compared to size-

matched controls: tail in pcd F(401.02,1) = 5.55,p < 0.05 and reeler F(136,1)=15.01, p<0.05). While 

the nose side-to-side oscillation was also larger for pcd mice, the reeler showed less ampli-

tude (nose: pcd F(53.61,1) = 4.89,p <0.05 and reeler F(139.48,1)=0.35, p=0.82, Figure 3.11 D, H). 

 

 

Figure 3.11. Nose and tail movements across speed bins for controls, pcd and reeler mice.  

(A-C) Average interpolated (y) trajectory of tail segment 1, 8, 15, respectively for wild type mice aligned with 
stance onset of the hind right paw. (D) Average interpolated (y) trajectory of nose for wild type mice aligned 
with stance onset of the front right paw. (E-H) Same as (A-D) but for reeler mice.  

 

To visualize and quantify impairments in whole-body coordination, we compared vertical 

(z) trajectories for each body part, normalized to 100% of the stride cycle. Figure 3.12 sum-

marizes the trajectories of individual body parts as well as interlimb and whole body coordi-

nation of speed- and size-matched control, pcd and reeler mice. During locomotion in control 

mice, the movement of different parts of the body is synchronized, and vertical nose and tail 

movements are relatively small (Figure 3.11 A). In pcd and reeler, however, spatial and 
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temporal coordination across the body is dramatically impaired (Figure 3.11 B, C). This lack 

of correlational structure reflects the failure of pcd and reeler mice to synchronize the move-

ments of different parts of the body.  

 

 

Figure 3.12. Visualization of impaired whole-body coordination in pcd and reeler mice.  

(A) Ribbon plots showing average vertical (z) trajectories for nose, paw and select tail (2, 5, 8, 11, 14) 
segments for (A) size-matched control (N=11), (B) pcd (N=3) and (C) reeler (N=11) mice walking at 0.20 -

0.25 m/s. Data are presented relative to 100% of the stride cycle of the FR paw (x-axis). Nose and paw 
trajectories are z position relative to floor; tail is z relative to floor with mean vertical position of the of base 
of the tail subtracted for clarity.  

 

Taken together, these results suggest that while the forward motion of individual paws is 

largely spared, ataxic pcd and reeler mice have specific deficits in coordinating movement in 

three dimensions across joints, limbs, and body. 

 

3.4 Discussion 

 

Establishing appropriate, sensitive, and specific behavioral measures is an essential first 

step for investigating relationships between brain and behavior (Clark, Freifeld et al. 2013, 

Anderson and Perona 2014). Although deficits in locomotor coordination are readily visible 

to the human eye, identifying the specific, quantitative features of gait ataxia has been more 

difficult (Leblond, L'Espérance et al. 2003, Cendelín, Voller et al. 2010, Dorman, Krug et al. 

2014). Here we used the custom-built LocoMouse system to analyze locomotor kinematics 

and coordination in freely walking mice. The high spatiotemporal resolution and throughput 

of this system provides the most comprehensive description of locomotor kinematics in freely 

walking mice to-date and allowed us to develop a novel analysis framework for mouse loco-

motion that revealed fundamental features of gait ataxia. Our main findings are (1) Basic paw 

stride parameters can be predicted solely based on walking speed and body size. (2) This 

relationship holds in visibly ataxic pcd and reeler (particular front paws) mutants, indicating 

that changes in these stride parameters in ataxic mice do not reflect fundamental features of 
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ataxia. (3) While the forward motion of the paws is spared in pcd and reeler, coordination 

across joints, limbs, and the body is selectively impaired. (4) The nose and tail of pcd mice 

and the tail in reeler oscillate as a passive consequence of forward hind limb motion. Taken 

together, this pattern of deficits reveals that gait ataxia in pcd and reeler mice involves spe-

cific impairments in locomotor coordination across joints, limbs, and body parts. 

 

A quantitative framework for locomotor coordination reveals fundamental features of 
mouse gait ataxia 
 

The statistical models we developed based on a library of data from wildtype mice (Figure 

2.6, Table 1) accurately predicted the forward paw motion of ataxic pcd mice and front paw 

motion of reeler mice (Figure 3.5). This indicates that observed differences in basic stride 

parameters were a secondary consequence of differences in body size and walking speed. 

Further, the forward motion of individual paws was indistinguishable from that of size- and 

speed-matched controls, down to the level of detailed paw trajectories. This important result 

highlights that failure to account for differences in walking speed and body size when com-

paring data across mice and strides can lead to nonspecific effects being misinterpreted as 

symptoms of ataxia  (Koopmans, Deumens et al. 2007, Cendelín, Voller et al. 2010, Batka, 

Brown et al. 2014). Moreover, it is likely that by focusing primarily on the forward movement 

of individual paws, many existing analyses fail to capture the fundamental features of ataxia. 

 

While differences in forward paw motion could be fully accounted for by differences in 

walking speed and body size, in contrast, off-axis paw trajectories, interlimb, and whole-body 

coordination revealed specific patterns of impairment in pcd and reeler (Figure 3.8 – 3.12). 

Differences in off-axis movements (Figure 3.5) suggest that pcd and reeler mice, like human 

cerebellar patients, are unable to coordinate movements across joints within the limb to per-

form normal strides in 3D (Bastian, Martin et al. 1996, Earhart and Bastian 2001). Fur-

ther, pcd and reeler mice exhibited impaired spatial and temporal coordination of movements 

across the four limbs, nose, and tail. Interestingly, while front-hind paw coupling was dramat-

ically altered in pcd and reeler, left-right alternation was preserved entirely, consistent with 

the idea that such alternation is generated within the spinal cord itself (Crone, Zhong et al. 

2009, Kiehn 2011, Dougherty, Zagoraiou et al. 2013). Finally, the large, oscillatory nose and 

tail movements observed in pcd and large amplitude in reeler were not just random, but were 

successfully modeled as a failure to predict and compensate for the passive consequences 

of forward motion of the hind limbs. 

 

Given the diversity of cerebellar phenotypes, it is expected that the specific features of 

gait ataxia will vary across mouse models (Lalonde and Strazielle, 2007). Strikingly, that 
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was not the case when quantification on locomotor deficits in reeler mice was made. The 

neurodegeneration in reeler mice was not specific to the cerebellum region as it was in pcd 

mice. In addition, pcd mice neurodegeneration was pot-natal. Although reeler mice were 

visibly more ataxic than pcd mice, they share similar and specific core features. In reeler 

mice hind paws were completely altered at the level of the individual limb parameters. How-

ever, front paws are remarkably preserved, the rest of impairments are restricted to multi-

joint, interlimb, and whole-body coordination like in pcd mice. The consistency of this fea-

tures across cerebellar mutant mice strength our idea on cerebellar contributions to coordi-

nated movement. 
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Optogenetic manipulation of distinct deep 

cerebellar nuclei differentially effects 

coordinated locomotion in mice 
 

4.1. Introduction 

4.2. Methods 

4.3. Results 

4.3.1. Targeting the deep cerebellar nuclei with spatial and temporal 

precision: from medial to lateral region  

4.3.2. Only medial and interposed nucleus show perturbation in overground 

during optogenetic manipulation. Lateral nucleus shows no effects 

4.3.2.1. Using LocoMouse system to quantify specifically motor impairments 

during deep cerebellar nuclei manipulation. Speed and stance onset by 

trial 

4.3.2.2. Distinguishing and quantifying locomotor parameters that are specific to 

each deep cerebellar nucleus  

4.4. Discussion 
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4.1 Introduction 

 

Smooth and efficient walking requires the coordination of movement across different parts 

of the body (Orlovsky, Deliagina et al. 1999, Morton and Bastian 2007, Veloz, Zhou et al. 

2015). The cerebellum plays an important role in this process. It’s well established that cer-

ebellum has a medial-to-lateral functional organization (Jansen and Brodal 1940, Voogd and 

Glickstein 1998). Cerebellum can be divided into distinct functional zones (medial, interme-

diate and lateral) based on its afferent and efferent projections (Jansen and Brodal 1940, 

Voogd and Glickstein 1998). However, it is still not well understood how the specific neural 

circuit within this zones contributes to whole-body coordination during walk (Morton and 

Bastian 2007).  

 

Lesion studies of the deep cerebellar nuclei, in cats and monkeys, provided an important 

information about the cerebellum functional organization (Chambers and Sprague 1955, 

Udo, Matsukawa et al. 1979, Morton and Bastian 2007). The different outputs are responsible 

for different aspects of motor control (Chambers and Sprague 1955). Lesions in the different 

deep cerebellar nuclei showed that the most basic function; such as posture and balance, 

are controlled by the medial nucleus, while the fine-tuning of limbs movement and motor 

planning is progressively controlled by the interposed and lateral nuclei (Sprague and 

Chambers 1953, Chambers and Sprague 1955, Udo, Matsukawa et al. 1979, Thach, 

Goodkin et al. 1992, Morton and Bastian 2007).  

 

Most of what we know from cerebellum functional organization comes from these lesions 

studies. However, they are poorly spatial defined and lack of specificity(Morton and Bastian 

2007). Tools to manipulate the activity of selective neural subtypes have been growing tre-

mendously (Luo, Callaway et al. 2008). Optogenetic tools combine genetics and optical 

methods to selectively stimulate or silence neural subtypes with a high temporal precision 

and reversibility (Zhang, Aravanis et al. 2007). However, analyses of mouse gait have typi-

cally lacked detail about the precision and timing of limb movements. These parameters are 

required to perform a complete analysis of motor coordination. Therefore, a quantitative be-

havior analysis with high temporal resolution and precision is crucial (Brooks and Dunnett 

2009, Anderson and Perona 2014). 

 

Here I combine the Locomouse system with optogenic tools to perform acute manipulation 

across the three different nuclei. Our goal is to understand how different output regions of 

the cerebellum differentially contribute to locomotor coordination. 
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4.2 Methods 

 

Animals 

Experiments were conducted with homozygous L7-Cre mice crossed with an animal ho-

mozygous for ChR2-eYFP. A total of 19 L7CreChR2YFP mice (11 males; 8 females; 19-28g, 

12–18 weeks old) were housed in institutional standard cages (3 animals per cage) on a 

reversed 12-hr light/12-hr dark cycle with ad libitum access to water and food. All procedures 

were reviewed and performed in accordance with the Champalimaud Centre for the Un-

known Ethics Committee guidelines, and approved by the Portuguese Direcção Geral de 

Veterinária (Ref. No. 0421/000/000/2015).  

  

Surgical procedure 

Animals are anesthetized with isoflurane/O2/N2O (1.5%/30%/68.5%) and secured in the 

stereotaxic frame for surgery. A circular craniotomy was performed with a dental drill with the 

following coordinates for each group: Medial: AP=-6,24 ML=0,72; Interposed A: AP=-6,00 

ML=1,56; Lateral: AP=5,80 ML=2,00. Fiber optic cannulas (MFC_100/125-

0.22_3.75mm_SM3_FLT) were fixed with dental cement and were positioned vertically. Fol-

lowing surgery, we administer Dolorex analgesia through IP injection, and the mice are 

checked at least daily for the entire experiment. The mice rest in their cage for 3 days before 

the experiments.  

 

In vivo electrophysiology 

Optrodes were built with a fiber optic cannula (MFC_100/125-

0.22_3.00mm_ZF1.25_FLT) glued at ~300um up to the electrode (Quartz-insulated tungsten 

tetrodes from Thomas Recording -tip type A, impedances between 1-3 MOhm) and vertically 

inserted into craniotomies. L7CreChR2YFP were head-fixed and allowed to move in place 

freely on a spinning disk. Recordings were performed with an Intan digital amplifier/head 

stage with the Open Epys digital acquisition board. A TTL pulse was generated to delivered 

brief pulses of light through a patch cord coupled to the optrode. The blue Light came from a 

473 nm laser (473 nm DPSS Laser System; Output: > 200mW; Stability < 1%) and TTL pulse 

was controlled with custom written software using LabView. Recordings were monitored 

online using a custom Bonsai software interface.  All recordings were digitized from the wide-

band signal (0.1 Hz - 10kHz, sampled at 30kHz), and sorted offline using the KlustaKwik 

suite for unit clustering and custom Matlab code for unit analysis. 
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Histology 

Subsets of animals at the end of behavioral experiments were perfused to confirm ChR2-

YFP expression and optical fiber placement. Mice were anesthetized with ketamine/xylazine 

and perfused with 4% paraformaldehyde (P6148, Sigma-Aldrich) and brain removed. Brain 

was stored in 4% paraformaldehyde overnight and kept in cryoprotectant solution (PBS in 

30% sucrose). Coronal sections (50 µm) were cut in a cryostat (CM3050S, Leica, Germany), 

mounted on glass slides with mowiol mounting medium (81381, Sigma-Aldrich, St. Louis, 

MO). Each section was stained with nissl and anti-calbindin. Scanning images for YFP and 

transmitted light were acquired with an upright fluorescence microscope (Axio Imager M2, 

Zeiss, Oberkochen, Germany) equipped with a digital CCD camera (AxioCam MRm, Zeiss) 

with a 10X objective. 

 

Data collection on LocoMouse 

Data collection was performed in three groups of animals: (a) medial nucleus (N=6 nto-

tal=6162 nnon-stim=5416, nstim=746 n: #strides); (b) interposed A nucleus (N=7 ntotal=6921 nnon-

stim=5880, nstim=1041); (c) lateral nucleus (N=6 ntotal=4404 nnon-stim=3681, nstim=723). 

 

Mice were handled by the experimenter and allowed to acclimate in the LocoMouse setup 

before data collection. Animals were weighed before each session. Mice walked freely be-

tween two dark boxes on either end of the glass corridor.  No food or water restriction or 

reward was used. For a more detail description of the LocoMouse setup please read (Meth-

ods Chapter 2). 

 

Optogenetics experiments.  

Two days before stimulation protocol the mice make several passages on the LocoMouse 

corridor with a Mono Fiberoptic Patchcord implanted to get used to it. After the habituation, 

we perform one session per mouse for 7 consecutive days. Each session consists of 20 – 

30 corridor passages. We used a blue laser (473 nm DPSS Laser System; Output: > 200mW; 

Stability < 1%) and a Mono Fiberoptic Patchcord (MFP_100/110/900-0.22_1.5m_FC-CM3) 

to delivery brief pulses of light. The stimulation protocol consisted of 30% trials with light 

stimulation and 70% no Light stimulation, randomly interleaved during the session. TTL pulse 

was controlled with custom written software using LabView. Light stimulation consisted in 

50Hz (frequency) with intensities 2 – 5 mW during 300 – 900 ms. An infrared LED was syn-

chronized with the stimulation protocol and detection time was collected. The Laser power 

was calibrated using a powermeter (PM130D, Thorlabs) before and after each animal ses-

sion. The optical fiber patchord was screwed to the M3 implanted connector with the animal 

freely moving, in the beginning of each experiment. 
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Data acquisition 

Movies were collected at 400 frames per second with a spatial resolution of 1440x250 

pixels. Acquisition software was written in Labview and uses 2 National Instruments boards 

(PCIe 1433 and BNC 2120) to record and save the movies, in real time. The tracking algo-

rithm and data analysis software were written in Matlab (Mathworks) and performed offline. 

The LocoMouse Tracker code used in this paper can be downloaded from GitHub 

(https://github.com/careylab/LocoMouse). 

 

Data analysis 

The stride cycles of individual paws were automatically broken down into swing and 

stance phases based on the first derivative of the paw position trajectories. Individual strides 

were defined from stance onset to subsequent stance onset. For each stride, average walk-

ing speed was calculated by dividing the forward motion of the body center during that stride 

by the stride duration. All data was sorted into speed bins (0.05 m/s bin width) in a stridewise 

manner, with a minimum stride count criterion of 5 strides per bin, per animal. Individual limb 

movements and interlimb coordination were calculated as follows: 

 

Trial analysis 

Velocity (x,y): Instantaneous trail velocity relative to nose by trial (m/s) 

Trial duration: Total trial duration (s) 

Stance onset: All the stance onset in time of FR paw during trial (s) 

 

Individual limb parameter 

Cadence: Inverse of stride duration (s-1) 

Swing velocity: x displacement of single limb during swing phase divided by swing duration 

(m/a). 

Stride length: x displacement from touchdown to touchdown of single limb (mm). 

Stance duration: Time in milliseconds that foot is on the ground during stride (ms). 

Trajectories: Trajectories were aligned to swing onset and resampled to 100 equidistant 

points using linear interpolation. Interpolated trajectories were then binned by speed and the 

average trajectory was computed for each individual animal and smoothed with a Savitzky-

Golay first-order filter with a 3-point window size (% norm). 

Interlimb and whole-body coordination parameters 

Stance phase: relative timing of limb touchdowns to stride cycle of reference paw. Calculated 

as: (stance time−stance timereference paw)/stride duration (%). 

https://github.com/careylab/LocoMouse
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Supports: support types were categorized by number of paws on ground expressed as a 

percentage of the total stride duration for each stride. Paw support categories are four, three, 

two diagonals, two other (homolateral and homologous), one, and zero (%). 

 

Statistical analyses 

Statistical analyses were done in Matlab and R. For all comparisons, models were se-

lected by comparing equations specifying additive fixed-effects terms with those specifying 

n-way interaction terms using a likelihood-ratio test and inspection of statistical significance 

of included terms. Depending on the comparison, fixed-effects terms included a subset of 

the following variables: speed, genotype and paw. All models were random-intercepts mod-

els with subject as a random covariate. Unless otherwise indicated, results are reported as 

conditional F tests with Satterthwaite degrees of freedom correction.  

 

4.3 Results 

 

4.3.1 Targeting the deep cerebellar nuclei with spatial and temporal preci-

sion: from medial to lateral region  

 

To examine the medial to lateral functional organization of the cerebellum (Figure 4.1 A) 

in freely walking mice, we used L7-Cre mice crossed with ChR2-eYFP mice to express the 

light-sensitive ion channel channelrhodorpsin-2 (ChR2) in Purkinje cells. An optical fiber was 

implanted above each nucleus and closed to the Purkinje cell terminals. The fibers were 

placed only in the right side of the cerebellum. The careful selection of coordinates, the lower 

power intensity from fiber tip and the cannula small numeric aperture (NA=0.22), allowed to 

minimize light dispersion to nearby regions (light wavelength of 473 nm, NA=0.2, light power 

from fiber tip = ~2mW, depth of 2 mm and Irradiance=0.06 mW/mm2) (Figure4.1 B). Each 

animal had one fiber implanted in one nucleus. Mice received blue light pulses in randomly 

alternated trials. Light onset was mostly trigged during ongoing movements. (Figure 4.1 C). 

Histological analysis performed at the end of the experimental protocol confirmed the ex-

pression of ChR2-YFP and fiber localization. ChR2-YFP was selectively expressed in 

Purkinje cells (Pkj cells) throughout the cerebellum and was also visible in the axons project-

ing to the deep cerebellar nuclei (DCN) (Figure 4.1 D). In vivo, single-unit optrode recordings 

from DCN in response to activation of ChR2 in Pkj cells showed that Pkj cells strongly inhibit 

DCN neurons during laser stimulation. Similar effects were observed across the different 

cerebellar nuclei (medial, interposed A (intA) and lateral Figure 4.1 E-G). Recordings were 

performed in awake mice. 
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4.3.2 Only medial and interposed nucleus show perturbation in over-

ground during optogenetic manipulation. Lateral nucleus shows no 

effects  

Figure 4.1 Using L7CreChR2YFP mice to target the deep cerebellar nuclei: from medial to lateral 
region  

(A) Schematic illustration of deep cerebellar nuclei projections. (B) Medial to lateral inputs and outputs 

of cerebellum with the optogenetic approach. Purkinje cells (green), expressing ChR2-YFP through 
transgenic mice L7CreChR2YFP, were photoactivated with blue light delivered through an implanted 
optical fiber. The tip of the optical fiber was located above each deep cerebellar nucleus and close to 
Pkj cells axons. The cerebellum circuit is repeated across medial to lateral region and it’s composed by 
mf: mossy fibers; gc: granule cells; pf: parallel fibers; pkj: purkinje cells; cf: climbing fibers. (C) Experi-

mental protocol scheme. A total of 19 transgenic mice (L7creChR2YFP) with 12-18 weeks old were 
used. The mice were divided into three groups: a) medial nucleus N=6; b) interposed nucleus N=7; c) 
lateral nucleus N=6. In each group a single optical fiber was implanted on the right side of the cerebel-
lum. The photostimulation protocol consisted of stimulated (stim, blue) and non-stimulated (nostim, 
grey) trials. Every session started with a block of non-stim trials.  Stimulated and non-stimulated trials 
were randomly alternated with proportion of 3/10. (D) Photomicrographs of coronal cerebellar section 

showing the fiber location and the expression off ChR2eYFP in Pkj cells. The section was stained with 
Nissl for neurons visualization. The tip of the optical fiber is located above the interposed A nucleus. (E-
G) In vivo recordings from deep cerebellar nuclei cells in response to 300ms light delivered to purkinje 

cells axons (activation of ChR2) in awake mice. Cyan boxes are the Laser pulse duration. Top row: 
Single extracellular traces in response to blue laser; bottom row: peri-stimulus time histograms for each 
nucleus. (E) In vivo recordings from the medial nucleus, (F) interposed A nucleus and (G) lateral nu-

cleus. 
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4.3.2.1 Quantifying motor impairments during deep cerebellar nuclei manipula-

tion. Speed and stance onset by trial 

 

To quantify locomotor impairments during optogenetic manipulation in each DCN, we 

used the LocoMouse system (described in Chapter 2 and Chapter 4).   Acute disruption of 

neural activity in medial and interposed nuclei immediately perturbed ongoing locomotion 

(p<0.001, paired t-test). In contrast, similar manipulation of Purkinje cell inputs to the lateral 

nucleus had no observable effect on ongoing locomotor behavior. (Figure 4.2 A, C). Differ-

ences across deep cerebellar nuclei were revealed when velocity in y axis was analyzed. 

Mice with medial nucleus manipulation did not exhibited a side-to-side nose oscillation.  On 

the contrary, IntA perturbation showed an increased side-to-side nose (y) oscillation. Mice 

shifted to the right (ipsi) side immediately after stimulation onset and to the left side after 

stimulation offset, suggesting a perturbation on the right side of the body (Figure 4.2 B).  

Across animals, the average timing (~100 ms) relative to laser onset and speed perturbation 

in x indicates that medial and intA optogenetic manipulation led to locomotion perturbation 

(Figure 4.2 D). 

 

The step frequency by trial was also analyzed. Histograms of stance onset (time) across 

all trials are plotted in Figure 4.2 G, H and I. Activation of Pkj cells terminals above the medial 

and intA nucleus led to a drastically reduction of the number of stance onset. Differences 

across deep cerebellar nuclei were revealed when light duration was increased.  Only in the 

medial nucleus perturbation, the lower number of stance onsets was maintained throughout 

the light period, suggesting that the mice become nearly immobile during that time (Figure 

4.2 G, H). These perturbations, both in medial and intA, led to longer trial durations when 

compared to non-stim trials. No significant differences were observed during activation of Pkj 

cells axons in the lateral nucleus (Figure 4.2 I). 

 

4.3.2.2 Distinguishing and quantifying locomotor parameters that are specific to 

each deep cerebellar nucleus 

 

To identify the different locomotor aspects that are specifically related to the manipulation 

of each nucleus, we used the framework analysis for whole-body coordination described in 

the previous chapter 2 and 3. Activation of Pkj cells terminals in the medial and intA nucleus 

result in visibly locomotor impairments when mice walked on the LocoMouse setup.  
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Comparing the basic stride parameters of stimulated trials with non-stim trials, relative to 

front right paw, revealed that the strides, overall, were quite different during photostimulation 

(Figure 4.3 D, G, J and E, H, L). Impairments resulting from medial nucleus manipulation 

were more severe than the interposed A nucleus. Stride lengths were shorter (medial F(63,1) = 

31,1, p <0.0001; intA F(74,1) = 12,2, p < 0.01 Figure 4.3 D, E, orange and magenta shadows), 

even when changes in walking speed (Figure 4.3 A, B) were taken into account. Swing and 

stance durations were also altered (medial F(63,1) = 43,1, p <0.0001; intA F(74,1) = 13,2, p < 

0.01 Figure 4.3 J, L, N, M orange and magenta shadows). 

Figure 4.2. Optogenetic manipulation of medial and interposed nuclei reduce ongoing movement 
during overground locomotion  

(A) Average trial nose speed (in x) relative to stimulation onset for each nucleus and controls. (B) Av-

erage trial nose speed (in y) relative to stimulation onset for medial (top), intA (bottom) and controls. 
Cyan boxes are the laser duration (300 ms). The lines with shadows represent the mean ± SEM. Stim-
ulated trials are represented with different colors (medial-orange, intA–magenta; lateral-blue). Control 
trials with grey (fiber control – light grey; Non-stim trials - dark grey). (C)  Average speed in pre and post 

stimulation intervals for individual mice (thin lines are color coded according to each nucleus) and the 
mean values for each populationn. (D) Delay response to speed (in x) perturbation for individual mice 
and mean population. (G-I) Stance onset histograms by trial for each nucleus, relative to FR paw. Top 

row: non-stimulated trials (dark grey), bottom row: stimulated trials at different laser durations (300ms, 
900ms) for each nucleus (colors). All trials were aligned to the stimulation onset. Small plot (top right): 
cumulative distribution of trial duration for each nucleus. (G) Medial nucleus: non-stimulated trials (dark 
grey), stimulated trials (orange). (H) IntA nucleus: non-stimulated trials (dark grey), stimulated trials 

(magenta). (I) lateral nucleus: non-stimulated trials (dark grey), stimulated trials (blue).  
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Impairments on the swing velocity were more visible in the medial nucleus manipulation (me-

dial F(62,1) = 23,1, p <0.0001; intA F(74,1) = 9,2, p < 0.05  Figure 4.3 G). No significant differ-

ences on basic stride parameters across all four paws were observed during activation of Pkj 

cells axons in the lateral nucleus (lateral ex: stride length F(72,1) = 0.03, p = 0.9, Figure 4.3 

F, I, M). 

 

Since DCN manipulations were performed in the right side of the cerebellum and each side 

of the cerebellum controls the ipsilateral side of the body, we asked to what extent the altered 

strides parameters where different across the left and right body side. Basic stride parame-

ters for all paws are plotted in Figure 4.4 A, B. Acute disruption of neural activity in medial 

nucleus led to severe differences in both spatial and temporal parameters across all four 

paws (medial F(62,4) = 27,3, p <0.0001, Figure 4.4 A, B – orange shadow). Stride length did 

not vary across walking speed (Figure 4.4 A – orange shadow). In contrast, optogenetic 

Figure 4.3. Basic stride parameters are severely impaired during optogenetic manipulation in 
medial nucleus. Interposed stimulation showed a mild perturbation. 

 (A-B) Stride count histogram binned by average walking speed for each group. Strides are divided into 
speed bins of 0.05 m/s. Stimulated strides are plotted with different colors. (A) medial- orange, (B) intA–
magenta; (C) lateral-blue). Strides with no stimulation are plotted as grey. (D-M) Basic stride parame-
ters: (D-F) Stride length (mm), (G-I) swing velocity (m/s) and (J-M) swing duration (ms) and (N-P) stance 

duration (ms) by walking speed for the FR paw. The median and ± 25th, 75th percentiles are represented 
for each group of animals. 
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manipulation of the interposed A nucleus result in shorter stride lengths of front right paw and 

diagonal pair (hind left paw, due to the symmetrical trot) and shorter stance duration for the 

right (ipsi) side paws (both front and hind, intA stance duration F(74,2) = 10,3, p <0.01Figure 

4.4 A, B – magenta shadow). Basic stride parameters, of all four paws, are severely im-

paired during the medial nucleus manipulation. Interposed nucleus manipulation showed 

mild differences towards right (ipsi) side paws. 

 

Optogenetic manipulation of medial and interposed A nuclei induce impairments in 

3D paw trajectories 

 

Figure 4.4. All four paws are severely impaired during optogenetic manipulation in medial nu-
cleus. Only the right side is affected in the Interposed A nucleus. 

(A) Basic stride parameters: Stride length (mm) across walking speed for all four paws. Medial nucleus 

perturbation in orange shadows, interposed A nucleus in magent shadows and non-stim strides in grey 
shadow. (B) Stance duration (ms) across walking speed for all four paws. Medial nucleus perturbation 

in orange shadows, interposed A nucleus in magent shadows. The median and ± 25th, 75th percentiles 
are represented for each group of animals.  



63 

 

Next we analysed the continuous 3D paw trajectories for both stimulated and non-stim 

strides (Figure 4.5). In the non-stim stride (grey lines) the instantaneous forward paw velocity 

profile changes with speed. Paw velocity peaked early during swing and decelerated before 

stance onset across walking speeds. In vertical (z) and side-to-side (y) movement there is 

no significant differences between the different speeds (Figure 4.5 – grey lines).  

 

Impairments on trajectories across the 3 dimension (x, y and z) where observed for medial 

and intA nuclei manipulation (Figure 4.5 – orange and magenta lines). Instantaneous for-

ward paw velocity profile was clear altered. Paw velocity peak was slower during medial and 

intA nuclei perturbation. Besides the perturbation on peak flexion, the time to peak was also 

Figure 4.5. Optogenetic manipulation of medial and interposed A nuclei induce impairments in 

3D paw trajectories. 

(A-C) Average instantaneous x velocity of FR paw during swing phase for (A) Medial nucleus manipu-
lation (orange) (B) IntA nucleus manipulation (magenta) (C) Lateral nucleus manipulation (blue) and 
non-stim strides (dark grey). Line thickness represents increasing speed. (D-F) Average x-y position of 
four paws relative to body center during swing.  (J-M) Average vertical (z) position for FR paw relative 
to ground during swing.  
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impaired, suggesting an abnormal interjoint coordination of the limb (medial F(62,1) = 31,3, p 

<0.0001; intA F(74,1) = 14,3, p <0.01, Figure 4.5 A, B – orange and magenta lines). Hori-

zontal (y) movement analysis showed paw trajectory perturbation on side-to-side (y) move-

ment during swing phase, indicating an abnormal direction of the limb movement (medial 

F(62,1) = 16,3, p <0.01; intA F(74,1) = 8,3, p <0.05, Figure 4.5 D, F – orange and magenta 

lines). Stimulated trials did not exhibit a wider base of support (Figure 4.5 D, F – orange 

and magenta lines). Further, analysis of the vertical (z) trajectories revealed significantly 

shorter vertical displacement during medial and intA nuclei manipulation across speeds (me-

dial F(62,1) = 28,3, p <0.0001; intA F(73,1) = 21,3, p <0.01; Figure 4.5 G, H – orange and 

magenta lines). No significant differences on 3D paw trajectories were observed during ac-

tivation of Pkj cells axons in the lateral nucleus (lateral: F(71,1) =0.02, p =0.8; Figure 4.5 C, F, 

I). Impairments on trajectories across the 3 dimension (x, y and z) where observed for medial 

and intA nuclei manipulation (Figure 4.5 – orange and magenta lines). Instantaneous for-

ward paw velocity profile was clear altered. Paw velocity peak was slower during medial and 

intA nuclei perturbation. Besides the perturbation on peak flexion, the time to peak was also 

impaired, suggesting an abnormal interjoint coordination of the limb (medial F(62,1) = 31,3, p 

<0.0001; intA F(74,1) = 14,3, p <0.01, Figure 4.5 A, B – orange and magenta lines). Hori-

zontal (y) movement analysis showed paw trajectory perturbation on side-to-side (y) move-

ment during swing phase, indicating an abnormal direction of the limb movement (medial 

F(62,1) = 16,3, p <0.01; intA F(74,1) = 8,3, p <0.05, Figure 4.5 D, F – orange and magenta 

lines). Stimulated trials did not exhibit a wider base of support (Figure 4.5 D, F – orange 

and magenta lines). Further, analysis of the vertical (z) trajectories revealed significantly 

shorter vertical displacement during medial and intA nuclei manipulation across speeds (me-

dial F(62,1) = 28,3, p <0.0001; intA F(73,1) = 21,3, p <0.01; Figure 4.5 G, H – orange and 

magenta lines). No significant differences on 3D paw trajectories were observed during ac-

tivation of Pkj cells axons in the lateral nucleus (lateral: F(71,1) =0.02, p =0.8; Figure 4.5 C, F, 

I). 

We next investigate if differences in 3D paw trajectories were present in all four paws. For 

that, analysis on paw peak velocity were performed across speed, paws and individual ani-

mals (Figure 4.6). Once again, acute disruption of neural activity in medial nucleus led to 

strong differences in all four paws, while in the intA nucleus impairments were mainly re-

stricted to the front right paw (medial F(62,4) = 26,7, p <0.001; intA F(74,1) = 15,3, p <0.01; 

Figure 4.6 A-B orange, magenta dots). No significant differences were observed in the 

lateral nucleus (lateral F(72,4) =1.1, p =0.51, Figure 4.6 C). 
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Taken together, both basic stride parameters and 3D trajectories findings revealed that 

the medial nucleus perturbation led to the most severe impairments, both in spatial and tem-

poral parameters, across all four paws. Slower walking speed was also observed. In contrast, 

perturbation on interposed A nucleus, led to middle and restricted differences in the right side 

of the body. Differences on the temporal parameters (stance duration) were restricted to the 

right side of the body (front and hind paws), while differences on spatial parameter (stride 

length) where specific to the front right paw. 

 

Interlimb coordination 

Wildtype mice walked in a symmetrical trot pattern across speeds – each diagonal pair of 

limbs moved together and alternated with the other pair, represented as a polar plot in Figure 

4.7 A, B, C – grey markers. In the polar plot the phase of the step cycle in which each limb 

enters stance were plotted. Each paw is aligned to the onset of FL paw (triangle marker). 

Figure 4.6 Instantaneous peak velocity reveals specific differences across paws and nucleus, 
during photostimulation. 

(A-C) Peak velocity during swing phase across walking speed for each nucleus and each paw (color 
stimulated strides, grey non-stim strides). (A) Medial nucleus. (B) Interposed A nucleus (C) Lateral 
nucleus. Circles show average values for each animal. Thick lines represent linear fits to the data  
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Distances from the origin represent walking speeds. The FR paw was represented as solid 

circle, the FL paw as triangle, HR paw as diamond marker and HL paw as solid square. In 

our experiments, no other gait patterns besides the symmetrical trot pattern was observed in 

the range of speeds analyzed (0.05-0.8 m/s) (Figure 4.7 A, B, C – grey markers), as  

previously described in chapter 3. An increase variability and slightly differences in both left-

right phase and front-hind phase were observed across animals in both medial and intA nu-

clei manipulation when compared with non-stim trials (Figure 4.7 A, B – orange, magenta 

markers). However, those differences were not statistical significant.  The left-right phases 

of individual animals are plotted in Figure 4.7 D, E - right (medial F(70,1) = 2.09, p = 0.2; intA 

F(76,1) = 0.06, p = 0.8), while front-hind phases are represented in Figure 4.7 D, E - left. 

(medial F(67,1) = 0.3, p = 0.6; intA F(74,1) = 1.5, p = 0.23) No alteration was observed in the 

lateral nucleus (LR: lateral F(72,1) = 0.3, p = 0.5; FH: lateral F(74,1) = 0.1, p = 0.73  Figure 4.7 

C, F). 

 
Mice with medial and interposed A nucleus optogenetic manipulation spent more 

time with more paws on the ground 

 

Support patterns, or the configuration of paws on the ground at any given time, vary sys-

tematically with walking speed (Górska et al., 1999) (Figure 4.8 A). Typically, wildtype mice  

Figure 4.7 Interlimb coordination between stimulated strides and no stimulated trials. 

(A-C) Polar plot indicating the phase of the step cycle in which each limb enters stance, aligned to 

stance onset of FR paw (circle marker). Distances from the origin represent walking speed, average 
values are plotted. (G) The FR paw is represented as a circle marker, FL- triangle, HR – diamond and 
HL – square marker. (A-C) Polar plots for deep cerebellar manipulation mice (colors) overlaid on top 
of non-stim strides (grey), respectively. (D-F) Left-right phase (right) and Left-right phase (left) for 

deep cerebellar manipulation mice (colors) non-stim strides (grey), respectively, across speeds. Cir-
cles show average values for each animal. Lines show fit of linear-mixed effects model for each varia-
ble. 
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had two diagonal paws on the ground at any given time, but this ranged from 3 paws on the 

ground during slow walking to 0 paw supports, or brief periods of flight, during running at 

higher speeds, due to changes in stance to swing phasing (Figure 4.8 I-J). Mice with medial 

and intA nucleus manipulation spent more time with more paws on the ground (Figure 4.8 

B, F, C, G). The increase in percentage of 3 and 4 paws support was more drastic during 

medial nucleus perturbation (medial F(63,1) = 43,7, p <0.0001; intA F(72,1) =21,2, p < 0.0001, 

Figure 4.8 B, F). In addition, the non-diagonal 2-paw support (unstable support configura-

tion) was not altered (medial F(63,1) = 1.9, p = 0.2; intA F(73,1) =1.6, p =0.2, Figure 4.8 E). 

Thus, it appears that activation of Pkj cells terminals in the medial and intA nucleus led to a 

Figure 4.8 Mice with medial and interposed A nucleus photostimulation spent more time with 
more paws on the ground. No significant differences were found in interlimb coordination. 

 (A-D) Support patterns. Area plot of average paw support types as a percentage (%) of stride cycle, 
across speeds for (A) Non-stim strides, (B) Medial nucleus manipulation (orange) (C) IntA nucleus ma-
nipulation (magenta) (D) Lateral nucleus manipulation (blue). (E) 2-paw other supports for each animal 
(circles) (F-G) Percentage of 3 paws support for each animal (circles) - average values across speeds. 
Lines show fit of linear-mixed effects model. (I-J) Stance to swing phases: Polar plots of stance to swing 
phasing aligned to front right paw for (I) medial nucleus manipulation, (H) interposed A nucleus manip-

ulation and (I) lateral nucleus manipulation. 
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more stable support configuration, which could be explained by postural instability. No sig-

nificant differences were observed during activation of Pkj cells axons in the lateral nucleus 

(lateral F(74,1) = 0.8, p = 0.4, Figure 4.8 D, H, L). 

 

Movements not just of the limbs, but of the entire body need to be coordinated during 

locomotion. In order to characterize whole-body locomotor movement in both stimulated 

strides and non-stim strides, we analyzed their head and tail movements while mice walked 

freely across the corridor. No significant differences were found in the side-to-side (y) nose 

movements during acute disruption of neural activity in medial and interposed nuclei (medial 

F(63,1) = 1.4, p = 0.24; intA F(73,1) =0.9, p =0.32, Figure 4.9 A-C). In contrast, impairments 

were restricted to tail oscillations during medial and interposed nuclei manipulation (Figure 

4.9 D-E). The amplitude of the tail oscillation much was smaller in stimulated trials than non-

Figure 4.9. Nose and tail movements across speed bins for medial, int A and lateral nuclei opto-
genetic manipulation.  

(A-C) Average interpolated (y) trajectory of nose aligned with stance onset of the front right paw for (A) 
medial nucleus perturbation (B) interposed A nucleus perturbation (C) lateral nucleus perturbation. (D-
F) Average interpolated (y) trajectory of tail segment 1, 6, 12 aligned with stance onset of the hind right 
paw, respectively for (D) medial nucleus perturbation (E) interposed A nucleus perturbation (F) lateral 

nucleus perturbation. 



69 

 

stim trials, suggesting a restriction of the tail movement (medial F(63,1) = 13,4, p <0.001; intA 

F(73,1) =16,1, p <0.001, Figure 4.9 C, F). 

 

Taken together, these findings indicate that the perturbation of each cerebellar nuclei re-

sult in different motor impairments, suggesting that the different nuclei are responsible for 

different locomotor aspects, consistent with previous studies.  

 

4.4 Discussion 

 

In this study, we combined optogenetic tools and quantitative behavioral analysis to ex-

plore how different output regions of the cerebellum differentially contribute to locomotor co-

ordination. The combination of these tools provides a powerful system to understand mouse 

locomotion. It is now possible to establish relationship between, acute changes in neural 

activity of individual cell type and specific motor output in freely walking mice. 

 

 Our results with acute manipulation are broadly consistent with previous anatomical and 

lesion studies (Chambers and Sprague 1955, Udo, Matsukawa et al. 1979, Morton and 

Bastian 2007). They also suggest a medial-to-lateral functional organization of cerebellar 

outputs. We demonstrated that (a) acute disruption of neural activity in medial nucleus led to 

severe impairments across the whole body. (b) Perturbation during optogentic manipulation 

of the interposed A nucleus were restricted to the right side of the body (ipsilateral to the fiber 

implementation) and in particular to front right limb. (c) No motor alteration was observed 

during lateral nucleus manipulation on overground locomotion. 

 

The LocoMouse system allowed to differentiate and describe in great detail specific motor 

perturbation that resulted from acute manipulation of each nucleus. In the medial nucleus 

manipulation mice reduce forward velocity and become nearly immobile throughout period 

of light stimulation. Walking speed during photostimulation was much slower. Gait parame-

ters in all four paws were severely impaired both in the spatial and temporal aspects. In 

addition, gait parameters did not vary (in proportion) with increasing walking speeds. Mice 

drastically increased the number of paws on the ground during locomotion. These findings 

could be explained by postures and balance instability where whole body parts must be af-

fected. 

 During Interposed nucleus manipulation mice drastically reduce speed at the stimulus 

onset. However, they still maintained the ability to walk. Analysis on side-to-side (y) move-

ment revealed that mice shifted to the right (ipsi) side immediately after stimulation onset, 

suggesting a perturbation on the right side of the body. Mild impairments on basic stride 
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parameters (spatial and temporal) and paw trajectories were revealed. Once again, those 

impairments were restricted to the right side of the body, in particular to the front right limb.  

These findings indicates that interposed A nucleus is more involved in the ipsilateral limb 

motor control (deficits on the stride length of hind left paw are due to the symmetrical trot). 

Finally, the lateral nucleus manipulation did not show any alteration during overgound 

locomotion, suggesting that lateral nucleus is not required during ongoing movements or in 

simple behaviors such as walking in a straight line. 
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5.1 Introduction 

 

The quantitative framework for whole-body coordination (LocoMouse system) revealed 

specific impairments that are associated with ataxic mutant mice during overground locomo-

tion (described in chapter 2 and 3). Thus, the combination of high temporal-spatial resolution 

with precise quantitative analysis is fundamental to reveal specific motor impairements 

(Brooks and Dunnett 2009, Anderson and Perona 2014, Veloz, Zhou et al. 2015). Although, 

the LocoMouse system revealed in great detail locomotor impairments in cerebellum mutant 

mice, it’s not known if it’s reproducible to other regions of the nervous system (Machado, 

Darmohray et al. 2015). The next question is: Can LocoMouse identify and differentiate lo-

comotor parameters that are associated with perturbations in other locomotor circuits? Are 

those parameters specific of spinal cord mutation? To investigate the robustness and speci-

ficity of the LocoMouse system, spinal cord mutant mice were used.  

   

During spinal cord development, the Notch signaling pathway is required for cell diversity 

(Peng, Yajima et al. 2007). In Mice, there are several genes coding for Notch ligands, some 

of them are the 3 Delta ligands, Delta1, Delta3 and Delta4 (also known as Dll1, Dll3 and Dll4) 

(Louvi and Artavanis-Tsakonas 2006). During the development of spinal cord V2 domain, 

Dll1 and Dll4 ligands cooperate to generate cell diversity (Rocha, Lopes et al. 2009, Ramos, 

Rocha et al. 2010). V2a and V2b Interneurons (INs) are generated in this domain. Simulta-

neous deletion of one copy of Dll1 and two copies of Dll4 result into an increase of V2a INs 

and a decrease in V2b INs. 

 

Mice normally use trotting at fasts speeds. Transgenic mouse model in which the V2a 

interneurons have been ablated showed transition to a galloping as speed increases. Left–

right limb coordination is alterted at fasts speeds (Crone 2008, Crone, Zhong et al. 2009, 

Azim, Jiang et al. 2014).   Although no apparent locomotor aleration in mice with deletion in 

DII1/2  were visible by eye observation, we used the LocoMouse (Machado, Darmohray et 

al., 2015) system to quantify specifically putative impairments in locomotion. Here we show 

that deleting two Dll4 copies or one Dll1 copy and two Dll4 copies results in individual limb 

and tail motor deficits while interlimb coordination was preserved, no alteration in gait pattern 

was observed even at fasts speeds. We also correlated these alterations with histology anal-

ysis of adult spinal cords.  
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5.2 Methods 

 

Ethics Statement 

Animal experiments were approved by the Animal Ethics Committee of IMM 

(AEC_027_2010_DH_Rdt_general_IMM) and were conducted according to National and Eu-

ropean Regulations. 

 

Mouse housing and breeding 

All animals were fed ad-libitum and housed in SPF facilities. 

The Nestin-Cre strain (Tronche, Kellendonk et al. 1999) was a kind gift from Rüdiger Klein 

(Max Planck Institute, Munich, Germany). Floxed Dll1 (Hozumi, Negishi et al. 2004) and 

floxed Dll4 (Koch, Fiorini et al. 2008) mice were kindly provided by Julian Lewis (Cancer 

Research UK, London, UK). 

Mice carrying either the conditional floxed Dll1 allele (Dll1f/f) or the floxed Dll4 allele 

(Dll4f/f) were crossed with Nestin-Cre mice and the Dll1f/+Nestin-Cre or Dll4f/+Nestin-Cre 

progeny was identified by PCR. Dll4f/+Nestin-Cre mice were crossed with Dll4f/f mice to 

produce litters containing conditional single knockout mice (Dll4f/fNestin-Cre) and littermate 

controls. While Dll4f/fNestin-Cre mice are viable and fertile, Dll1 conditional deletion is em-

bryonically fatal. 

The Dll1 and Dll4 mice were intercrossed to obtain double mutant animals with different 

allelic dosages and sibling controls.  

 

Spinal cord collection and preparation for immunofluorescence 

Briefly, adult spinal cords were collected in cold PBS and fixed in 4% paraformaldehyde 

at 4ºC overnight. After fixation, specimens were cryoprotected in 30% sucrose and embed-

ded in 7.5% gelatin: 15% sucrose. Spinal cords were then conserved at -80ºC until sectioning 

in a cryostat. Cervical and thoracic sections of 12 μm were used in the analysis. 

 

Immunofluorescence 

For immunofluorescence, sections were degelatinized at 37ºC for 20 min, followed by a 

pre-treatment with glycine 0.1 M for 10 min at room temperature (RT). Permeabilization was 

performed using Tritonx100 (0.5%) for 10 min, followed by blocking (either or 6% albumin in 

TBST for 1h30 min or 10% Fetal Bovine Serum in TBST for 30 min, at RT). Primary antibod-

ies against NeuN (MAB377 Merck Millipore) or CHX10 (Exalpha X1180P) were incubated 

O/N at 4ºC. Sections were then subsequently washed and incubated with appropriate sec-

ondary antibodies (Molecular Probes) for 1 h at RT. DAPI counterstain and Mowiol mounting 

followed. 
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Animals and data collection on LocoMouse 

Data collection was performed on four groups of animals (a) Dll1f/+Dll4f/+Nestin-Cre mice 

(N=6; n=7495; female=1; male=5; 3-5 months old) (b) Dll4f/fNestin-Cre mice (N=5; n=7025; 

male=5; 3-5 months old) (c) Dll1f/+Dll4f/fNestin-Cre mice (N=5; n=6637; female=1; male=4; 

3-5 months old) and (d) their littermate controls (N=18; n=21,501; female=5; male=14; 2 -5 

months old) 

 

Mice were handled by the experimenter and allowed to acclimate to the LocoMouse setup 

before data collection. Animals were weighed before each session. Mice walked freely be-

tween two dark boxes on either end of the glass corridor.  No food or water restriction or 

reward was used. For a more detailed description of the LocoMouse setup please read paper 

(Machado, darmohray et al., 2015) 

 

More than 15 corridor passages (trials) were collected in each of five daily sessions. Mov-

ies were collected at 400 frames per second with a spatial resolution of 1440x250 pixels. A 

total of 21,501 strides were collected from littermate controls, which corresponds to 1131 ± 

134 strides per mouse. For Dll1f/+Dll4f/+Nestin-Cre mice we collected a total of 7495 strides 

(1249 ± 238 strides per mouse). For Dll4f/fNestin-Cre mice we collected a total of 7025 

strides per mouse (1045 ± 224 strides per animal per paw) and for Dll1f/+Dll4f/fNestin-Cre 

mice we collected a total of 6637 strides (1327 ± 324 strides per mouse). 

 

Data acquisition 

Movies were collected at 400 frames per second with a spatial resolution of 1440x250 

pixels. Acquisition software was written in Labview and uses 2 National Instruments boards 

(PCIe 1433 and BNC 2120) to record and save the movies, in real time. The tracking algo-

rithm and data analysis software were written in Matlab (Mathworks) and performed offline. 

The LocoMouse Tracker code used in this paper can be downloaded from GitHub 

(https://github.com/careylab/LocoMouse). 

 

Data analysis 

Tracking and data analysis were performed offline. We used the tracking algorithm and 

data analysis software from the LocoMouse system . The LocoMouse Tracker can be down-

loaded from GitHub (https://github.com/careylab/LocoMouse).  

 

The stride is composed by the swing and stance phase.  The trajectories of individual 

https://github.com/careylab/LocoMouse
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paws were automatically broken down into swing and stance phases based on the first de-

rivative of the paw position trajectories. Individual strides were defined from stance onset to 

subsequent stance onset. For each stride, average walking speed was calculated by dividing 

the forward motion of the body center during that stride by the stride duration. All data was 

sorted into speed bins (0.05 m/s bin width) in a stridewise manner, with a minimum stride 

count criterion of 5 strides per bin, per animal. A list of individual limb movements and inter-

limb coordination and its calculation is provided: 

 

Trial analysis 

Velocity (x,y): Instantaneous trail velocity relative to nose by trial (m/s) 

Trial duration: Total trial duration (s) 

Stance onset: All the stance onset in time of FR paw during trial (s) 

Individual limb parameter 

Cadence: Inverse of stride duration (s-1) 

Swing velocity: x displacement of single limb during swing phase divided by swing duration 

(m/a). 

Stride length: x displacement from touchdown to touchdown of single limb (mm). 

Stance duration: Time in milliseconds that foot is on the ground during stride (ms). 

Trajectories: Trajectories were aligned to swing onset and resampled to 100 equidistant 

points using linear interpolation. Interpolated trajectories were then binned by speed and the 

average trajectory was computed for each individual animal and smoothed with a Savitzky-

Golay first-order filter with a 3-point window size (% norm). 

Interlimb and whole-body coordination parameters 

Stance phase: relative timing of limb touchdowns to stride cycle of reference paw. Calculated 

as: (stance time−stance timereference paw)/stride duration (%). 

Supports: support types were categorized by number of paws on ground expressed as a 

percentage of the total stride duration for each stride. Paw support categories are four, three, 

two diagonals, two other (homolateral and homologous), one, and zero (%). 

 

Immuno-positive cells were counted and expressed as a percentage of total cell numbers 

(DAPI+). Images were taken with a motorized widefield fluorescence Microscope (Zeiss Axi-

overt 200M). Except when otherwise specified, a minimum of 3 animals (from independent 

litters) were analyzed.  

 

Statistical analysis  

Statistical analyses were done in Matlab and R. For all comparisons, models were se-

lected by comparing equations specifying additive fixed-effects terms with those specifying 
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n-way interaction terms using a likelihood-ratio test and inspection of statistical significance 

of included terms. Depending on the comparison, fixed-effects terms included a subset of 

the following variables: speed, genotype and paw. All models were random-intercepts mod-

els with subject as a random covariate.  Unless otherwise indicated, results are reported as 

conditional F tests with Satterthwaite degrees of freedom correction. 

Cell counting results were represented as mean ± standard error of the mean. Statistical 

significance was considered when p<0.05 using the student’s t-test. 

 

5.3 Results 

 

5.3.1 Using LocoMouse to reveal specific motor impairments in spinal 

cord mutant mice  

 

The LocoMouse system (Figure 5.1. A-B) was used to quantify specific motor impair-

ments in different groups of spinal cord mutant mice: (a) Dll1f/+Dll4f/+Nestin-Cre (green) 

N=6; (b) Dll4f/fNestin-Cre N=5 (red); (c) Dll1f/+Dll4f/fNestin-Cre N=5 (blue) (Figure 5.1. C). 

As it was previous described in chapter 2, the LocoMouse apparatus is composed by two 

dark boxes, a high-speed camera, a glass corridor, a mirror and motion sensors (Figure 5.1 

A). Individual trials (single movies) consisted in single passages on the corridor. Each group 

of animals ran 5 sessions (with ~ 20 trials each) during a week. Movies, were than processed 

offline using the LocoMouse Tracker (Machado, Darmohray et al., 2015, GitHub: 

https://github.com/careylab/LocoMouse). The LocoMouse Tracker automatically detects and 

tracks the position of all four paws, nose and 15 tail segments in 3D with high temporal 

(2.5ms) and spatial resolution (Figure 5.1. B). The tracks of the four paws were then divided 

into swing and stance phases for further analysis. 

 

For a general overview of the animal’s performance in the behavioral task, the total trial 

duration were analyzed. Only Dll4f/fNestin-Cre (red) mice showed longer trial durations (Fig-

ure 5.1. D). No impairments were observed for Dll1f/+Dll4f/+Nestin-Cre mice (green).  

 

5.3.2 Kinematic parameters of a single limb: Stride length is impaired in 

Dll4f/fNestin-Cre and Dll1f/+Dll4f/fNestin-Cre mice 

 

As a starting point for quantifying specific motor impairments we first analyzed the basic 

kinematic parameters, such as stride length (mm), cadence (s-1) and stance duration (ms) 

across walking speeds (Figure 5.2). Since mice were allowed to walk freely in the corridor a 

https://github.com/careylab/LocoMouse
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variety of walking speeds was obtained. We therefore sorted all strides for individual mice 

into speed bins in a stridewise manner and analyzed them with respect to the mouse's walk-

ing speed. A total of 10894 strides from the front right (FR) paw were collected. Dll4f/fNestin-

Cre (red) mice walked slower when compared to the other groups. (Figure 5.2. A). As it was 

previous described, kinematic parameters vary with walking speed (Clarke and Still, 

1999; Lalonde and Strazielle, 2007; Batka et al., 2014; Machado, Darmohray et al., 2015). 

(Figure 5.2. B-D). 

 

 Taking into consideration the walking speeds of each group, only the stride length 

showed significant perturbations. The stride length was shorter for Dll4f/fNestin-Cre (red) and 

Dll1f/+Dll4f/fNestin-Cre (blue) mice, even when compared with the model prediction (dash 

grey lines) (Figure 5.2. C). Both front and hind paws showed shorter stride lengths 

(Dll1f/+Dll4f/+Nestin-Cre: F(49.5,1)=2.1, p=0.02; Dll4f/fNestin-Cre: F(39.4,1)=4.2, p=0.04; 

Dll1f/+Dll4f/fNestin-Cre: F(44.4,1)=6, p=0.01, Figure 5.2. H).  

 

The model prediction, which accurately predicted the control animals, was based on the 

Figure 5.1. Using the LocoMouse system to quantify specifically motor impairments in spinal 
cord mutant mice. 

(A) LocoMouse setup schematic, composed of two dark boxes, a glass corridor, motion sensors, a cam-
era and a mirror (at 45º). Mice cross the corridor from one dark box to another. (B) An example of a 

single frame captured at 400 frames per second with the side and bottom view (mirror reflection). Con-
tinuous tracks (in x, y, z) for nose, paws and tail segments are plotted on top of the frame. The tracks 
were obtained from the LocoMouse Tracker (ref). (C) Experimental protocol. Three groups of spinal cord 
mutant mice, Dll1f/+Dll4f/+Nestin-Cre (green, n=6), Dll1f/+Dll4f/fNestin-Cre (blue, n=5), Dll4f/f Nestin-
Cre (red, n=5), and their littermate controls n=18 were tested. After habitation, animals ran 5 sessions 
(~15 passages each session) in the LocoMouse system during a week. (D) Cumulative distribution of 

trial duration for each group. 

 

https://elifesciences.org/content/4/e07892#bib14
https://elifesciences.org/content/4/e07892#bib14
https://elifesciences.org/content/4/e07892#bib36
https://elifesciences.org/content/4/e07892#bib6
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linear mixed-effects model that took into consideration the speed and weight of group animal  

(Machado, Darmohray et al., 2015). Animal properties were plotted in Figure 5.2 B and alt-

hough there was a slight difference in weight between groups (Control mice w=26.6g; 

Dll1f/+Dll4f/+Nestin-Cre (green) w=25.8; Dll4f/fNestin-Cre (red) w=25g; Dll1f/+Dll4f/fNestin-

Cre (blue) w=22.6g), in general those differences were not meaningful. Cadence, swing ve-

locity and stance duration did not show impairments (F(74.6,3)=2.35, p=0.8 and F(639,3)=0.52, 

p=0.7, Figure 5.2 D, E, F). Swing duration for Dll4f/fNestin-Cre (red) and Dll1f/+Dll4f/fNestin-

Cre (blue) was, on average, slightly lower than the control animals (but with no statistically 

significant differences; F(32.9,3)=2.3, p=0.1). No impairment was observed in the kinematic 

parameters for Dll1f/+Dll4f/+Nestin-Cre mice (green). 

 

5.3.3 3D paw trajectories: Side to side (y) and vertical (z) movement are 

perturbed during swing phase for Dll4f/fNestin-Cre and 

Dll1f/+Dll4f/fNestin-Cre mice 

Figure 5.2. Stride length is impaired in Dll4f/fNestin-Cre and Dll1f/+Dll4f/fNestin-Cre mice. 

(A) Stride count histogram binned by average walking speed for each group. Strides are divided into 

speed bins of 0.05 m/s. A total of 10894 strides from the FR paw were collected during a week and 
further analyzed. (B) Specific mouse properties for all 35 animals. Dll1f/+Dll4f/+Nestin-Cre n=6; 
Dll1f/+Dll4f/fNestin-Cre n=5, Dll4f/fNestin-Cre n=5 and littermate controls n=18. Each animal is plotted 
as a circle, open circles are females n=7 and solid are males n=23.  (C-G) Basic stride parameters: 
(C) Stride length (mm), (D) cadence (s-1) and  (E) stance duration (s) (F) swing velocity (m/s) (G) 

swing duration (ms)  by walking speed for the FR paw. The median and ±  25th, 75th percentiles are 
represented for each group of animals. Dash grey lines represent the model prediction based on the 
walking speed and weight of the animals (maximum and minimum values). (H) Box plots (median and 

25th, 75th percentiles values) are used to compare the data distribution of stride length at a speed bin 
of 0.25 m/s . Front and hind paws are represented for each group. 
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Next we examined the continuous 3D paw trajectories for size-matched control, and spinal 

cord mutant mice: Dll1f/+Dll4f/+Nestin-Cre, Dll4f/fNestin-Cre and Dll1f/+Dll4f/fNestin-Cre 

mice (Figure 5.3). Spinal cord mutant mice when compared to size-matched control animals 

did not exhibit differences in forward paw velocity profile across speeds (Figure 5.3. A-C). 

Forward paw velocity profile changes with speed, Paw velocity peaked early during swing 

Figure 5.3. Side to side (y) and vertical (z) movement are perturbed during swing phase for 
Dll4f/fNestin-Cre and Dll1f/+Dll4f/fNestin-Cre mice.  

(A-C) Average instantaneous x velocity of FR paw during swing phase for (A) Dll1f/+Dll4f/+Nestin-Cre 
(green) mice (B) Dll4f/fNestin-Cre (red) mice (C) Dll1f/+Dll4f/fNestin-Cre (blue) mice and size-matched 
controls (grey). (D-F) Average x-y position of four paws relative to body center during swing. (D) 
Dll1f/+Dll4f/+Nestin-Cre (green) mice (E) Dll4f/fNestin-Cre (red) mice (F) Dll1f/+Dll4f/fNestin-Cre (blue) 
mice and size-matched controls (grey). (G-I) Average side to side movement (y) for FR (top) and FL 
(bottom) paws relative to body midline across a range of speeds: 0.15 – 0.45 m/s. (G) Dll1f/+Dll4f/+Nes-
tin-Cre (green) mice (H) Dll4f/fNestin-Cre (red) mice (I) Dll1f/+Dll4f/fNestin-Cre (blue) mice and size-
matched controls (grey). (J-M) Average vertical (z) position for FR paw relative to ground during swing. 
(J) Dll1f/+Dll4f/+Nestin-Cre (green) mice (L) Dll4f/fNestin-Cre (red) mice (M) Dll1f/+Dll4f/fNestin-Cre 

(blue) mice and size-matched controls (grey). Thick lines represent average values and shadows stand-
ard deviation.  
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and decelerated before stance onset across speeds. No significant differences between 

paws and genotypes were observed (F(472.6,3)=0.74, p=0.5).   

 

We then analyzed the off-axis movements (y and z trajectories). The distance in y from 

the body center to all four paws (base of support) for the spinal cord mutants were not altered 

F(39,3)=0.3, p=0.8, Figure 5.3 D-F). However, the side-to-side trajectory (y excursion) during 

swing for both Dll4f/fNestin-Cre (red) and Dll1f/+Dll4f/fNestin-Cre (blue) mice showed impair-

ments relative to control animals (Figure 5.3 G-I Dll1f/+Dll4f/+Nestin-Cre: F(16.9,1)=0.74, 

p=0.4; Dll4f/fNestin-Cre: F(19.3,1)=10.9, p=0.003; Dll1f/+Dll4f/fNestin-Cre: F(10.9,1)=7.3, 

p=0.02). Further, analysis of the vertical (z) trajectories revealed significantly differences for 

Dll4f/fNestin-Cre (red) and Dll1f/+Dll4f/fNestin-Cre (blue) mice (Figure 5.3 J-M). Lower ver-

tical z positions across speeds was exhibited for front and hind paws (Dll1f/+Dll4f/+Nestin-

Cre: F(34.2.,1)=0.67, p=0.4; Dll4f/fNestin-Cre: F(40.9,1)=30.5, p<0.001; Dll1f/+Dll4f/fNestin-Cre: 

F(30.9,1)=23, p<0.001). No impairment was observed in the 3D paw trajectory for 

Dll1f/+Dll4f/+Nestin-Cre (green) mice.  

 

5.3.4 Interlimb: Gait and support patterns are preserved during over-

ground locomotion 

 

Wildtype mice walked in a symmetrical trot pattern across speeds – each diagonal pair of 

limbs moved together and alternated with the other pair, represented as a polar plot in Figure 

4. A (bottom) and in a more conventional format the Hildebrand pots in Figure 4. B. In the 

polar plot the phase of the step cycle in which each limb enters stance were plotted. Each 

paw is aligned to the onset of FR paw. Distances from the origin represent walking speeds. 

The FR paw was represented as solid circles, the FL paw as triangles, HR paw as diamond 

markers and HL paw as solid squares Figure 5.4. A (top). In our experiments, no other gait 

patterns besides the symmetrical trot pattern was observed in the range of speeds analyzed 

(0.05-0.8 m/s), as previously described (Machado, Darmohray et al., 2015). Surprisingly, the 

symmetrical trot pattern was preserved in all spinal cord mutant mice when compared to 

control (Figure 5.4. C-D: top row). The left-right alternation was maintained   

(Dll1f/+Dll4f/+Nestin-Cre: F(106.3,1)=2.4, p=0.1; Dll4f/fNestin-Cre: F(102.1,1)=1.9, p=0.2; 

Dll1f/+Dll4f/fNestin-Cre: F(97.2,1)=0.29, p=0.6)., Figure 5.4. C-D: bottom row). No increase in 

variability was observed.  
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Support patterns, or the configuration of paws on the ground at any given time, vary sys-

tematically with walking speed (Górska et al., 1999). Typically, wildtype mice had two diago-

nal paws on the ground at any given time (2-paw diagonal support), but had support patterns 

that ranged from 3 paws on the ground during slow walking to 0 paw supports, or brief periods 

of flight, during running at higher speeds, due to changes in stance to swing phasing. The 

supports pattern for control animals were represented in Figure 5.4 F, while the spinal cord 

mutant mice were represented in Figure 5.4 G-I (top row). No differences were observed 

between the mutants and control animals. As an example, the percentage of 3 paw support 

was used to highlight this point.  (Dll1f/+Dll4f/+Nestin-Cre: F(312.,1)=1.7, p=0.2; Dll4f/fNestin-

Figure 5.4. Gait and support patterns are preserved during overground locomotion. 

(A, C-E) Polar plot indicating the phase of the step cycle in which each limb enters stance, aligned to 

stance onset of FR paw (circle marker). Distances from the origin represent walking speed, average 
values are plotted. The FR paw is represented as a circle marker, FL- triangle, HR – diamond and HL – 
square marker. (A) Polar plot for control mice. (B) Average Hildebrand plot aligned to FR stance onset 
for speeds between 0.15 and 0.20 m/s. Grayscale represents probability of stance. (C-E) Top row: Polar 

plots for spinal cord mutant mice (colors) overlaid on top of control animals (grey). Bottom row: Left-right 
phase for spinal cord mutant mice (colors) and controls (grey) across speeds. Circles show average 
values for each animal. Lines show fit of linear-mixed effects model for each variable. (F-I) Support 

patterns. Area plot of average paw support types as a percentage (%) of stride cycle, across speeds for 
(F) controls, (G) top row – Dll1f/+Dll4f/+Nestin-Cre (green) mice; (H) top row - Dll4f/fNestin-Cre (red) 
mice; (I) top row - Dll1f/+Dll4f/fNestin-Cre (blue). (G-I) Bottom row: Percentage of 3 paws support for 

each animal (circles) - average values across speeds. Lines show fit of linear-mixed effects model. 
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Cre: F(232,1)=0.8, p=0.4; Dll1f/+Dll4f/fNestin-Cre: F(302,1)=0.9, p=0.3, Figure 5.4 G-I bottom 

row). 

 

5.3.5 Nose and tail oscillation across speed bins and tail segments: Im-

pairments are restricted to tail movement in Dll4f/fNestin-Cre and 

Dll1f/+Dll4f/fNestin-Cre mice 

 

In order to characterize whole-body locomotor coordination in both control and spinal cord 

mutant mice, we analyzed their head and tail movements while they walked freely across the 

corridor. In the size-matched control animals and Dll1f/+Dll4f/+Nestin-Cre (green) mice the 

lateral movements of nose and tail segments were similar to each other (Dll1f/+Dll4f/+Nestin-

Cre:  nose F(14.9,1)=1.5, p=0.6 and tail F(153,1)=2.3, p=0.8  , Figure 5.5 A, D). 

 

 

Figure 5.5. Nose and tail oscillation across speed bins and tail segments. Impairments are re-
stricted to tail movement in Dll4f/fNestin-Cre and Dll1f/+Dll4f/fNestin-Cre mice.   

(A-C) Average interpolated side to side (y) trajectory of nose for (A) Dll1f/+Dll4f/+Nestin-Cre (green) mice; 
(B) Dll4f/fNestin-Cre (red) mice; (C) Dll1f/+Dll4f/fNestin-Cre (blue) and control (grey) mice. Nose trajec-
tories are aligned with stance onset of the front right paw. (D-F) Average interpolated (y) trajectory of tail 
segment: 4, 8, 14  for (D) Dll1f/+Dll4f/+Nestin-Cre (green) mice; (E) Dll4f/fNestin-Cre (red) mice; (F) 
Dll1f/+ Dll4f/fNestin-Cre (blue) and control (grey) mice. Tail trajectories are aligned with stance onset of 

the hind right paw. Thick lines and shadows represent the average values and standard deviation, re-
spectively, for each group of animals. 
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 In contrast, impairments of Dll4f/fNestin-Cre (red) and Dll1f/+Dll4f/fNestin-Cre (blue) mice 

were restricted to tail oscillations, while the lateral nose movement was preserved 

(F(22.5,2)=1.7, p=0.4, Figure 5 5 B, C). The amplitude of the tail oscillation was much smaller 

than size-matched control animals (F(232.1,2)=30.7, p<0.001, Figure 5.5 E, F). 

 

Taken together, these results suggest that the impairments in the spinal cord mutant mice, 

namely Dll4f/fNestin-Cre (red) and Dll1f/+Dll4f/fNestin-Cre (blue), were restricted to intralimb 

parameters while the interlimb coordination was preserved. Lateral (y) and vertical (z) move-

ment were clearly perturbed in both single paw movement and tail segments. The kinematic 

parameters revealed perturbation on a spatial level, with shorter stride lengths.    

 

Histologic characterization of Dll1 and/or Dll4 mutant spinal cords 

 

We characterized Dll1 and/or Dll4 mutant cervical and thoracic spinal cords in terms of 

total numbers of neurons (NeuN positive) and V2a interneurons (CHX10 positive). Cervical 

spinal cords of Dll4f/fNestin-Cre mutants did not exhibit significant changes in the numbers 

of NeuN positive neurons (Figure 5.6 A and B). However, the numbers of V2a interneurons 

increased from 2,2±0,4% in the wildtype to 4,0±0,2% in the Dll4f/fNestin-Cre mutant (p<0,05, 

Figure 5.6 C and D).  Thoracic spinal cord exhibited no significant changes in the numbers 

of either NeuN positive neurons or V2a interneurons (Figure 5.6 A-D).  

Numbers of NeuN positive neurons increased from 16,0±1,4% in the wildtype to 

22,8±0,9% in the Dll1f/+Dll4f/fNestin-Cre mutant cervical spinal cord (p<0,05, Figure 5.6 A 

and B). V2a interneurons increased from 2,2±0,4% to 4,2±0,6% (p<0,05, Figure 5.6 C and 

D). In the same mutants, thoracic spinal cord had significant changes in the numbers NeuN 

positive neurons (from 17,9±0,6% to 24,3±3,0%, p<0,05, Figure 5.6 A and B) and V2a in-

terneurons (from 4,0±0,3% to 7,5±1,0%, p<0,05, Figure 5.6 C and D). 

Overall, both Dll4f/fNestin-Cre and Dll1f/+Dll4f/fNestin-Cre exhibited increases in the 

numbers of V2a INs: Dll4f/fNestin-Cre at the cervical level and Dll1f/+Dll4f/fNestin-Cre both 

in cervical and thoracic spinal cord segments. Numbers of total neurons are only increased 

in Dll1f/+Dll4f/fNestin-Cre mice in the cervical and thoracic segments of the spinal cord. 
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Figure 5.4. Gait and support patterns are preserved during overground locomotion. 

(A, C-E) Polar plot indicating the phase of the step cycle in which each limb enters stance, aligned to 

stance onset of FR paw (circle marker). Distances from the origin represent walking speed, average 
values are plotted. The FR paw is represented as a circle marker, FL- triangle, HR – diamond and HL – 
square marker. (A) Polar plot for control mice. (B) Average Hildebrand plot aligned to FR stance onset 
for speeds between 0.15 and 0.20 m/s. Grayscale represents probability of stance. (C-E) Top row: Polar 

plots for spinal cord mutant mice (colors) overlaid on top of control animals (grey). Bottom row: Left-right 
phase for spinal cord mutant mice (colors) and controls (grey) across speeds. Circles show average 
values for each animal. Lines show fit of linear-mixed effects model for each variable. (F-I) Support 

patterns. Area plot of average paw support types as a percentage (%) of stride cycle, across speeds for 
(F) controls, (G) top row – Dll1f/+Dll4f/+Nestin-Cre (green) mice; (H) top row - Dll4f/fNestin-Cre (red) 
mice; (I) top row - Dll1f/+Dll4f/fNestin-Cre (blue). (G-I) Bottom row: Percentage of 3 paws support for 

each animal (circles) - average values across speeds. Lines show fit of linear-mixed effects model. 
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5.4 Discussion 

 

The LocoMouse system combines high spatial-temporal resolution with machine learning 

techniques to automatically track the different body parts, allowing mice to walk as naturally 

as possible (Machado, Darmohray et al., 2015). The LocoMouse System allowed for detailed 

characterization of specific motor perturbations that resulted from deletion of the Dll1 and/or 

Dll4 ligands in the developing V2 domain of the spinal cord. This will contributed to an un-

derstanding of the role the cells (particularly in the spinal cord) under the developmental 

programming of the notch signaling pathway play in locomotion. The ability to quantify with 

high sensitivity and precision motor impairments is particularly crucial when motor perturba-

tions in mice are difficult to observe using the human eye, which was the case of Dll1 and/or 

Dll4 mutant mice. 

Our main findings in Dll4f/fNestin-Cre and Dll1f/+Dll4f/fNestin-Cre mice are related to im-

pairments in intra-limb and tail parameters. We found that (a) stride lengths were shorter; (b) 

limb trajectories were particularly perturbed in the y and z dimensions; and (c) side-to-side 

tail movement was impaired. No motor impairments were observed in Dll1f/+Dll4f/+Nestin-

Cre mice. 

 

Dll1 and Dll4 are required to generate cell diversity in the pV2 domain. Dll4+ precursors 

have been speculated to give rise to V2a INs, whereas the neighboring Dll4- precursors, 

which receive the Dll4 ligand and activate the Notch pathway, differentiate into V2b INs 

(Peng, Yajima et al. 2007). Accordingly, our histology results showed that deletion of the two 

Dll4 alleles (Dll4f/fNestin-Cre mice) in the spinal cord results in an increase of V2a INs 

(CHX10 positive cells), at the level of the cervical spinal cord. The increase of V2a INs is 

probably responsible for the observed perturbation of limb and tail trajectories during over-

ground locomotion. In addition, impairment in forelimbs could cause abberant hindlimb move-

ments as well. 

 

In the spinal cord domains where Dll1 is the only expressed Notch ligand, inactivation 

leads to an increased rate of neurogenesis and premature differentiation of neural progeni-

tors. In the pV2 domain where Dll1 is co-expressed with Dll4, progenitors are not exhausted 

and cell diversity is maintained: Dll4 partially compensates for Dll1 loss (Rocha et al 2009).~ 

 

In Dll1f/+Dll4f/fNestin-Cre mice, deletion of one copy of Dll1 and two copies of Dll4 in the 

spinal cord results in an aggravation of phenotype comparing to Dll4f/fNestin-Cre mice: there 

is an increase of V2a INs not only at the cervical level but also at the thoracic level. NeuN+ 



87 
 

neurons at the level of the cervical and thoracic spinal cord were also increased in 

Dll1f/+Dll4f/fNestin-Cre mice. In accordance with the higher values of V2 INs, the differences 

observed in the intra-limb parameters were also more dramatic for Dll1f/+Dll4f/fNestin-Cre 

mice when compared to Dll4f/fNestin-Cre mice. The stride length is clearly shorter and the y 

excursion of the tail is more impaired. Dll1f/+Dll4f/+Nestin-Cre spinal cords were not ana-

lyzed histologically as no motor impairments were observed in these mice. 

 

As a conclusion, increasing numbers of V2 INs, resulting from deletion of Dll1 and/or Dll4, 

leads to specific impairments restricted to intra-limb parameters, while the interlimb coordi-

nation was preserved. Dll1f/+Dll4f/fNestin-Cre mice had a more striking phenotype as com-

pared to Dll4f/fNestin-Cre mutants. 
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Conclusions  
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The use of LocoMouse to quantify whole-body coordination in mice 

 

Here I described the LocoMouse system, an automated tool for specific quantitative kin-

ematic analysis in small laboratory animals, such as mice. With the LocoMouse we can ob-

serve the animal from 2 sides simultaneously which provides sensitive, specific and detailed 

readouts for movement (in 3 dimensions, x, y and z) of all different body parts, i.e. nose, 

limbs, tail. This also makes LocoMouse a unique translational tool given that most of motor 

impairments in humans are assessed in a similar way (Machado, Darmohray et al. 2015). 

 

Mice walk as naturally as possible through the LocoMouse corridor and data is collected 

automatically. In this way, animals are accurately and consistently screened for locomotor 

impairments in a high-throughput fashion. A tracking code was also developed to maximize 

the throughput. It combines machine learning and multi-target tracking algorithms (Russell, 

de Agapito et al. 2011) with high spatiotemporal resolution. With the LocoMouse tracking 

system and during this project we tracked animals of different sizes, different ages, different 

genders, different mutant mouse models, acute manipulation and track trajectories across 

several walking speeds. Hundreds or even thousands of strides per animal were used to 

quantify locomotion.  

 

The ability to collect such a large dataset was fundamental for establishing a comprehen-

sive framework for whole-body coordination in mice. To this multidimensional dataset we 

applied multilevel linear mixed effects model  to quantify and predict individual limb gait pa-

rameters. From these approach, several equations can now be used to predict stride param-

eters for a given mouse walking at a particular speed. The whole-body movement quantifi-

cation, quantifying limbs, nose and tail movement relative to each other, were crucial to iden-

tify specific core features of ataxia. 

 

Ataxic mutant mice used as a model to investigate cerebellar contributions to coordi-

nated movement 

 

To investigate the role of cerebellum in gait coordination we used pcd and reeler mice as 

cerebellar ataxic mice. The major neuroanatomical finding in pcd is the complete postnatal 

degeneration of cerebellar Purkinje cells and subsequent loss of granule cells and related 

structures (Mullen et al., 1976; Lalonde and Strazielle, 2007; Morton and Bastian, 2007). 

While, in reeler neurodegeneration is associated with abnormal localization of neurons, a 

failure of neuronal layer formation and a reduce number of cells in cerebellum. In light of 

these extensive anatomical defects and the existing body of literature on mouse ataxia, the 

remarkable preservation of forward paw motion in pcd (all four paw) and in reeler (only front 
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paws) was surprising. Moreover, previous studies have associated Purkinje cell modulation 

with the step cycle of individual limbs (Armstrong and Edgley, 1984; Edgley and Lidierth, 

1988; Udo et al., 2004) and movement kinematics (Pasalar et al., 2006; Heiney et al., 2014). 

The most likely interpretation of the surprisingly intact forward paw motion in pcd and reeler is 

that it reflects the presence of inevitable compensatory mechanisms. Given this capacity for 

compensation, the specific and persistent impairments in multi-joint, interlimb, and whole-

body coordination in pcd and reeler are particularly striking. 

 

While many lines of evidence suggest that the cerebellum provides internal models for 

motor control (Wolpert et al., 1998; Ito, 2008), there has been disagreement about the nature 

of these models (Ebner and Pasalar, 2008; Medina, 2011). Studies from some systems, in-

cluding eye movements, have suggested that the cerebellum acts as an inverse model that 

computes a command to achieve desired movement (Shidara et al., 1993). Other work, par-

ticularly on reaching movements, the cerebellar-like nuclei of electric fish, and locomotor ad-

aptation, has suggested that the cerebellum provides a forward model that predicts the con-

sequences of movements (Bastian et al., 1996; Kennedy et al., 2014; Pasalar et al., 2006; 

Morton and Bastian, 2006). These predictions can then be used to optimize joint angle com-

binations within a limb (Bastian et al., 1996), synchronize interlimb coordination or to cancel 

out the unintended passive consequences of movements of other parts of the body. We 

found that while on-axis paw kinematics are preserved in the absence of cerebellar a normal 

function, the ability to predict and actively cancel the passive consequences of movements 

of other parts of the body appears to be beyond the limits of compensatory mechanisms 

available to pcd and reeler mice. Therefore, our results raise the intriguing possibility that the 

absence of forward models, rather than a failure to execute appropriate movement kinemat-

ics per se, could form the basis for impaired coordination associated with gait ataxia in mice. 

 

Given the diversity of cerebellar phenotypes, it is expected that the specific features of 

gait ataxia will vary across mouse models (Lalonde and Strazielle, 2007). Strikingly, that was 

not the case when quantification on locomotor deficits in reeler mice was made. The neuro-

degeneration in reeler mice was not specific to the cerebellum region as it was in pcd mice. 

In addition, pcd mice neurodegeneration was pot-natal. Although reeler mice were visibly 

more ataxic than pcd mice, they share similar and specific core features. In reeler mice hind 

paws were completely altered at the level of the individual limb parameters. However, front 

paws are remarkably preserved, the rest of impairments are restricted to multi-joint, interlimb, 

and whole-body coordination like in pcd mice. The consistency of this features across cere-

bellar mutant mice strength our idea on cerebellar contributions to coordinated movement. 
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Combining optogenetic tools with LocoMouse revealed specific gait parameters of the 

different cerebellar outputs  

 

Most of what is known from medial-to-lateral organization and the contributions of different 

cerebellar regions to motor coordination comes from lesion experiments, ataxic mutant mice 

and patients with cerebellar disorders (Morton and Bastian 2007). These manipulations are 

chronic and irreversible. Furthermost, they are poorly spatially defined. Thus, lack of speci-

ficity and compensatory mechanisms are unavoidable (Morton and Bastian 2007).  

 

Optogenetic tools allows us to manipulate the activity of selective neural populations. It 

combines genetics and optical methods to selectively stimulate or silence specific neurons 

with a high temporal precision and reversibility (Zhang et al., 2007).  In this project, we com-

bined optogenetic tools with the LocoMouse system to differentiate and quantify locomotor 

aspects associated with manipulation of different deep cerebellar nuclei. 

 

Since it was not possible to genetically target the different deep cerebellar nuclei, we used 

L7CreChR2 mice to manipulate the cerebellar outputs. In these mice, ChR2 is expressed in 

Purkinje cells. Purkinje cells are the cerebellar cortex output and they inhibit the deep cere-

bellar nuclei. Therefore, buy activating Purkinje cells we can increase inhibition to the deep 

cerebellar nuclei. 

 

Acute disruption of neural activity in DCN led to specific motor deficits associated to each 

nucleus. This was already expected from previous lesion and anatomy studies (Chambers 

and Sprague 1955). Activation of Purkinje cells terminals in the medial nucleus led to severe 

motor deficits across all four paws, reduce (in some animals almost immobilized) velocity 

and increase of the number of paws on the ground. These features suggest a posture and 

balance instability. These behavior is consistent with the medial nucleus projections (Morton 

and Bastian 2007). Medial nucleus projects to the ipsi vestibular nucleus and then to the 

medial motor system which will influencing the lateral vestibulaspinal tracks. Vestibulaspinal 

tracks are responsible to maintain posture and balance during ongoing movements (Sprague 

and Chambers 1953, Chambers and Sprague 1955). Interposed A nuclei manipulation re-

vealed motor deficits at the level of the limb movement control. Both spatial and temporal 

parameters of the front right paw were specific altered (ipsilateral to nucleus manipulation). 

The interposed nuclei project to the red nucleus and to the thalamic nuclei. These nuclei then 

project directly to the lateral motor system. Finally, no deficits on ongoing movements during 



94 

 

overground locomotion were observed in the lateral nucleus manipulation. The lateral nu-

cleus projects to the lateral motor system, in particular, to the ventrolateral nucleus of the 

thalamus and then to the motor cortex (Asanuma, Thach et al. 1983). Lesions in this nucleus 

have suggested a role in the initiation of planned and complexed movements and not on the 

execution of ongoing movement of simple behavior such as walking in a straight line. 

 

LocoMouse applications: Motor impairments in spinal cord mutant mice and the effect 

of serotonin activation in motor coordination 

 
Spinal cord mutant mice: Mutation in the notch signaling pathway 

The LocoMouse allowed to describe in detail specific motor perturbations that resulted 

from deletion of the Dll1 and/or Dll4 ligands in the developing V2 domain of the spinal cord, 

therefore, contributing to the understanding of the role of Notch signaling pathway in neuro-

genesis. The main findings are related to impairments in intra-limb and tail parameters, while 

interlimb coordination was preserved. Alterations in histologic analysis of adult spinal cords 

are also consistent with the motor deficits. Manuscript in preparation: Alexandra I. Rosa*., 

Ana S. Machado*., Sara Ferreira, Domingos Henrique*., Megan R. Carey*., Cell-fate deci-

sions mediated by Notch signaling during spinal cord embryonic development affect motor 

performance of individual limbs and tail in adulthood.  

 

Serotonin activation and its implications in motor coordination 

The LocoMouse system was used to access the effect of serotonin activation on motor 

coordination (data not showed in this thesis). In the this study, they found that activating 

dorsal raphe nucleus (DRN) 5-HT neurons induced a strong suppression of spontaneous 

locomotor behavior in the open field with rapid kinetics (onset ≤ 1 s). Inhibition of locomotion 

was independent of measures of anxiety or motor impairment and could be overcome by 

strong motivational drive. This work is in press at eLife (Patrícia A. Correia*, Eran Lottem*, 

Dhruba Banerjee, Ana S. Machado, Megan R. Carey, Zachary F. Mainen, Transient inhibition 

and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neu-

rons, submitted) 

 

Cerebellar contributions to coordinated locomotion  

 

It is interesting to consider that both cerebellar mutant mice (chronic manipulation) and 

mice with acute manipulations revealed perturbations in limb interjoint coordination, interlimb 

coordination and tail segment oscillation. 
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 Acute manipulation through Purkinje cells activation led to motor deficits during individual 

limb movements. These findings are consistent with studies that associated Purkinje cells 

modulation with the step cycle of individual limbs (Armstrong and Edgley, 1984; Edgley and 

Lidierth, 1988; Udo et al., 2004) and movement kinematics (Pasalar et al., 2006; Heiney et 

al., 2014).  However, pcd and reeler mice showed an intact forward paw motion. The differ-

ences between these two manipulations could be explained by differences between chronic 

and acute manipulation. As it was previous mentioned, the most likely interpretation of the 

surprisingly intact forward paw motion in pcd and reeler mice is that it reflects the presence 

of inevitable compensatory mechanisms. 

 

In addition to this, during acute manipulation the limbs movement amplitude (z) was sup-

pressed, while in the chronic manipulation limbs movement amplitude increased. A similar 

observation was found in the tail oscillation. This could be explained by the fact that in pcd 

and reeler mice Purkinje cells were absent or reduced, whereas in the acute manipulation 

Purkinje cells were activated, suggesting a potential role of Purkinje cells in movement am-

plitude modulation. In any case, both manipulations chronic and acute revealed impairments 

in the same core features.  

 

Comparisons between cerebellar ataxic mice with spinal cord mutant mice and (mice with 

activation of 5-HT neurons – not shown) allowed us to differentiate and strength our findings 

on cerebellum-dependent locomotor parameters. Spinal cord mutant mice revealed specific 

impairments at the intralimb level, while in cerebellar mutant mice the motor perturbations 

were more restricted to impairments on coordinating movements across whole body. No mo-

tor deficits were found during 5-HT neurons activation. We characterized distinct motor defi-

cits associated with manipulations in different brain regions and identified and quantified core 

features of cerebellar ataxia in mice. 

 

 

 

 

Future work 

 

Due to the different domains embraced in this thesis, suggestions for future work are 

divided according to the following categories: (i) tracking improvement; (ii) optimizing DCN 

manipulation; (iii) Apply the quantitative framework for mouse locomotion that we have de-

veloped to other mouse mutants and manipulations. 
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(i) Tracking improvement: 

 Speedup the tracking process (ideally to real-time); 

 Improve the SVM feature detector by incorporating a larger training set of good and 

bad tracks; 

 Apply new algorithms techniques like convolutional neural networks to increase the 

detection accuracy of the different mouse body parts; 

  Expand the tracking system to other experimental conditions, e.g. treadmill, lad-

ders. In addition, apply the tracking system to non-black 6 mice.  

 

 (ii) Optimize DCN manipulation: 

 Fine-tuning the stimulation conditions for each deep cerebellar nucleus; 

 Improving data analysis to precise temporal manipulation. 

 

 (iii) Apply the quantitative framework for mouse locomotion that we have developed to other 

mouse mutants and manipulations. 

 

 

 

Concluding remarks 

 

In conclusion, the novel quantitative framework for mouse locomotion presented in this 

project highlights the importance of considering 3D, interlimb and whole-body coordination 

and dissociating them from the control of individual paw kinematics, particularly when ana-

lyzing cerebellar contributions to locomotion. Together with the sophisticated genetic tools 

available for manipulating neural circuits in mice, the current approach makes mouse loco-

motion a powerful system for investigating the neural control of coordinated movement and 

establishing relationships between neural circuit activity and behavior.  
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