656 research outputs found

    Introduction to a system for implementing neural net connections on SIMD architectures

    Get PDF
    Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized communication. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network

    Fault-tolerant interconnection networks for multiprocessor systems

    Get PDF
    Interconnection networks represent the backbone of multiprocessor systems. A failure in the network, therefore, could seriously degrade the system performance. For this reason, fault tolerance has been regarded as a major consideration in interconnection network design. This thesis presents two novel techniques to provide fault tolerance capabilities to three major networks: the Baseline network, the Benes network and the Clos network. First, the Simple Fault Tolerance Technique (SFT) is presented. The SFT technique is in fact the result of merging two widely known interconnection mechanisms: a normal interconnection network and a shared bus. This technique is most suitable for networks with small switches, such as the Baseline network and the Benes network. For the Clos network, whose switches may be large for the SFT, another technique is developed to produce the Fault-Tolerant Clos (FTC) network. In the FTC, one switch is added to each stage. The two techniques are described and thoroughly analyzed

    On Money as a Means of Coordination between Network Packets

    Full text link
    In this work, we apply a common economic tool, namely money, to coordinate network packets. In particular, we present a network economy, called PacketEconomy, where each flow is modeled as a population of rational network packets, and these packets can self-regulate their access to network resources by mutually trading their positions in router queues. Every packet of the economy has its price, and this price determines if and when the packet will agree to buy or sell a better position. We consider a corresponding Markov model of trade and show that there are Nash equilibria (NE) where queue positions and money are exchanged directly between the network packets. This simple approach, interestingly, delivers improvements even when fiat money is used. We present theoretical arguments and experimental results to support our claims

    A taxonomy of parallel sorting

    Get PDF
    TR 84-601In this paper, we propose a taxonomy of parallel sorting that includes a broad range of array and file sorting algorithms. We analyze the evolution of research on parallel sorting, from the earliest sorting networks to the shared memory algorithms and the VLSI sorters. In the context of sorting networks, we describe two fundamental parallel merging schemes - the odd-even and the bitonic merge. Sorting algorithms have been derived from these merging algorithms for parallel computers where processors communicate through interconnection networks such as the perfect shuffle, the mesh and a number of other sparse networks. After describing the network sorting algorithms, we show that, with a shared memory model of parallel computation, faster algorithms have been derived from parallel enumeration sorting schemes, where keys are first ranked and then rearranged according to their rank
    corecore