
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1984-04

A taxonomy of parallel sorting

Bitton, Dina

http://hdl.handle.net/10945/46758

A razoaoay of .arallel Sortia.

Dina Bitton1
David J. DeWitt11

David K. Hsiao*
Jaishankar Menon**

TR 84-601
April 1984

1Department of Computer Science
Cornell University
Ithaca. New York 14853

11Computer Science Department
University of Wisconsin
Madison. Wisconsin 53706

*Department of Computer Science
Naval Postgraduate School
Monterey. California 93940

**IBM Research Center
San Jose. California 93940

A TAXONOMY OF PARALLEL SORTING

by

Dina Bitton +, David J. DeWitt + +

David K. Hsiao * and Jaishankar Menon"

+ Department 01 Computer Science, CorneD Univenity,
Ithaca, NY 14853.

+ + Computer Science Department, Univenity 01 Wisconsin,
Madison, WI 53706.

• Department 01 Computer Science, Naval P08tlraduate School,
Monterey, CA 93940.

•• mM Research Center, San Jose, CA 93940.

ABSTRACT

In this paper, we propose a taxonomy of parallel sorting that includes a broad range of array
and file sorting algorithms. We analyze the evolution of research on parallel sorting, from the
earliest sorting networks to the shared memory algorithms and the VLSI sorters. In the context
of sorting networks, we describe two fundamental parallel merging schemes - the odd-even and
the bitonic merge. Sorting algorithms have been derived from these merging algorithms for paral­
lel computers where processors communicate through interconnection networks such as the perfect
shuffle, the mesh and a number of other sparse networks. After describing the network sorting
algorithms, we show that, with a shared memory model of parallel computation, faster algorithms
have been derived from parallel enumeration sorting schemes, where keys are first ranked and
then rearranged according to their rank.

Parallel sorting algorithms are evaluated according to a number of criteria, related not only
to their time complexity, but also to their feasibility from a computer architecture point of view.
We show that in addition to their attractive communication schemes, network sorting algorithms
have non-adaptive schedules that make them suitable for implementation. In particular, they are
easily generalized to block-sorting algorithms, that utilize limited parallelism to solve large sorting
problems. We also address the problem of sorting large mass-storage files in parallel, using
modified disk devices or intelligent bubble memories. Finally, the newer area of VLSI sorting is
mentioned as an active and promising direction of research on parallel sorting.

3

1. INTRODUCTION

Sorting, in computer terminology, is defined as the process or rearranging in ascending or

descending order a set or values stored in contiguous memory locations. It is orten the case that

computer programs such as compilers or editors choose to sort tables and lists or symbols stored

in memory, in order to enhance the speed and the simplicity or algorithms used to access them

(ror search or insertion or additional elements, ror instance). Because or its practical importance

as well as its theoretical interest, the problem or sorting values stored in random access memory

(internal 8orting) has been the rocus or extensive research on algorithms. First, 8erial 80rting

algorithms were investigated. Then, with the advent or parallel processing, parallel 80rting algo­

rithms became a very active research area. Many efficient serial algorithms are known that can

sort an array or size n in at most O(nlogn) comparisons, the theoretic lower bound ror this prob­

lem. Various properties or these 8erial internal 80rting algorithms, in addition to their time com­

plexity, have also been investigated. In particular, sorting algorithms have been evaluated with

respect to time-memory trade-off8 (that is the amount or additional memory required to run the

algorithm, in addition to the memory storing the initial sequence), 8tability (that is the require­

ment that equal elements retain their original relative order), or their sensitivity to the initial dis­

tribution or the values (in particular, best case and worst case complexity have been investigated).

In the last decade, parallel processing has added a new dimension to research on internal

sorting algorithms. Several models or parallel computation have been considered, ror which the

notion or "contiguous" memory locations and the way multiple processors access memory are

defined in different ways. In order to clearly state the parallel sorting problem, one must first

define what is meant by a sorted sequence in a parallel processor. When processors share a com­

mon memory, the notion or contiguous memory locations is identical to the serial processor's

memory case. Thus, the time complexity or a sorting algorithm can be expressed in terms or

number or comparisons (perrormed in parallel by all or some or the processors) and internal

memory moves, as in the ~erial case. On the other hand, when processors do not share memory

and communicate along the lines or an interconnection network, a convention to order the proces­

sors and, thus, the union or their local memory locations is required to define the sorting

problem. When parallel processors are used, the time complexity of a sorting algorithm is

expressed in terms of parallel comparisons and exchanges between processors adjacent in the

interconnecting network.

Shared memory models of parallel computation have been instrumental in investigating the

intrinsic parallelism that exists in the sorting problem. While the first results on parallel sorting

were related to sorting networks IBatcher 19681, faster parallel sorting algorithms were first pro-

posed for theoretical models of parallel processors with shared memory IHirschberg 1978,

Preparata 19781. A chain of results in this area has led to a number of parallel sorting schemes

that exhibit a O(logn) time complexity. For the most part, research on parallel sorting has been

concerned with pure theoretical issues. Typically, the parallel sorting problem is stated as the

problem of sorting n numbers with n or more processors, all sharing a large common memory,

that they may access with various degrees of contention (e.g. parallel reads and parallel writes

with arbitration). It is only recently that feasibility issues such as limited parallelism or, in the

context of VLSI sorting, trade-offs between hardware complexity (expressed in terms of chip area)

and time complexity, are being addressed.

Besides its use in rearranging numbers in memory, sorting is often advocated in the context

of information processing. In this context, sorting consists of ordering a file of data records, in i-

tially stored on a mass-storage device. The records are ordered with respect to the value or a key,

which might be a single field or the concatenation of several fields in the record. Because of

memory limitations, file sorting cannot be performed in memory and external sorting algorithms

must be used. Files are sorted either to deliver a well-organized output to a user (e.g. a telephone

directory), or as an intermediate step in the execution of a complex database operation ISelinger

et al. 1979, Bitton and DeWitt 1983J. External sorting schemes are usually based on iterative

merging IKnuth 1973, 5.4J. Even when fast disk devices are used as mass-storage devices,

input/output accounts for most of the execution time in external sorting. l

1 It is estimated that the OS/VS Sort/Merge program connmes a.a much a.a 25% of all I/O time on IBM sYlltema
[Bryant 19801.

5

Despite the clear need ror rast sorting or large files, the availability or parallel processing has

not generated much interest in research on new external sorting schemes. The reasons that

explain the relatively small number or studies dealing with parallel external sorting !Even 1974,

Bitton 1982J are most likely related to the necessity or adapting these sorting schemes to mass­

storage device characteristics.

It may seem that advances in computer technology could eliminate, or at least significantly

reduce the use or sorting as a tool ror perrorming other operations. For example, when sorting is

used in order to Cacilitate searching, one may advocate that the advent oC associative memories

will suppress the need or sorting. However, associative stores remain too expensive ror widespread

usage, especially when large volumes or data are involved. Also in the case that sorting is

required Cor the sole purpose or ordering data, the only way to reduce sorting time is to develop

rast parallel sorting schemes, possibly by integrating the sorting capability into mass-storage

memory IChen et al. 1978, Chung et al. 1980J.

In this paper, we propose a taxonomy oC parallel sorting, that includes both internal and

external parallel sorting algorithms. We analyze the evolution or research on parallel sorting -

rrom the earliest sorting networks to the shared memory model algorithms and the VLSI sorters.

We attempt to classiCy a broad range or parallel sorting algorithms, according to various criteria

that include not only their time efficiency, but also the architectural requirements that they rely

upon. The goal or the present study is to provide a basic understanding as well as a unified view

or the body or research on parallel sorting. It would be beyond the scope or a single paper to sur­

vey in detail the models or computation that have been proposed, or to analyze in depth the com­

plexity or the algorithms surveyed. We have kept to a minimum the discussion on algorithm

complexity, and we only describe the main upper-bound results ror the number or parallel com­

parison steps required by the algorithms. Rather than theoretical problems related to parallel

sorting (which have been treated in depth in a number or studies le.g. Borodin 1983, Shiloah et al.

1981, Valiant 19811), we emphasize problems related to the reasibility or parallel sorting with

present or near term technology.

The remainder or this paper is organized as rollows. In Section 2, we show that certain rast

serial sorting algorithms can be parallelized but this approach leads to simple and relatively slow

parallel algorithms. Section 3 is devoted .to the network sorting algorithms. In particular, we

describe in detail several sorting networks that perrorm Hatcher's bitonic sort. Section 4 surveys

a chain or results that led to the development or very rast sorting algorithms: the shared memory

model parallel merging [Valiant 1975, Gavril 19751, and the shared memory sorting algorithms

[Hirschberg 1978, Preparata 19781. In Section 5, we address the issue or limited parallelism and in

this context, we define "block-sorting" parallel algorithms, that sort M.p elements with p proces­

sors. We then identiry two methods (or deriving a block-sorting algorithm. In Section 6, we

address the problem or sorting a large file in parallel. We show that previous results on parallel

sorting are mostly applicable to internal 80rting schemes, where the array to be sorted is entirely

stored in memory, and propose external parallel sorting as a new research direction. Section 7

contains an overview of recently proposed designs for dedicated sorting devices. Finally, Section

8 summarizes this survey and indicates possible directions (or future research on parallel sorting.

t. P ARALLELIZING SERIAL SORTING ALGORITHMS

Parallel processing makes it possible to perform more than a single comparison during each

time unit. Some models of parallel computation (the sorting networks, in particular) assume that

a key is compared to only one other key during a time unit, at that parallelism is exploited by

comparing different pairs o(keys simultaneously. Another possibility is to compare a key to

many other keys simultaneously. For example, in [Muller and Preparata 19751, a key is compared

to (n-1) other keys in a single time unit, using (n-1) processors.

Paralle,lism may also be exploited to move many keys simultaneously; After a parallel com­

parison step, processors conditionally exchange data. The concurrency that can be achieved in

the exchange steps is limited either by the interconnection scheme between the processors (if one

exists), or by memory conflicts (ir shared memory is used for communication).

7

With a parallel processor, the analog to a comparison and move step in a uniprocessor

memory becomes a parallel comparison-exchange or pairs or keys. Thus, it is natural to measure

the performance or parallel sorting algorithms in terms or the number or comparison-exchanges

they require. Then, the speedup or a parallel sorting algorithm can be defined as the ratio

between the number or comparison-moves required by an optimal serial sorting algorithm, and the

number or comparison-exchanges required by the parallel algorithm.

Since a serial algorithm that sorts by comparison requires at least O(nlogn) comparisons to

sort n elements IKnuth 1973, p.I83j, the optimal speedup would be achieved when, using n pro­

cessors, n elements are sorted in O(logn) parallel comparisons. It does not, however, seem possible

to achieve this bound by simply parallelizing one or the well-known O(logn)-time serial sorting

algorithms. These algorithms appear to have serial constraints that cannot be relaxed. A simple

example will illustrate this problem. Consider a 2-way merge sort IKnuth 1973, p.I60I. The algo­

rithm consists or logn phases. During each phase, pairs or sorted sequences (produced in the pre­

vious phase) are merged into a longer sequence. During the first phases, a large number or proces­

sors can be used to merge different pairs in parallel. However, there is no obvious way to intro­

duce a high degree or parallelism in later phases. In particular, the last phase that consists or

merging 2 sequences or n/2 elements each is a serial process that may require as many as n-1 com­

parisons.

On the other hand, parallelization or straight sorting methods that require 0(n2) comparis­

ons seems easier, but this approach can at most produce O(n)-time parallel sorting algorithms

when O(n) processors are used (since by perrorming n comparisons instead or 1 in a single time

unit, the execution time can be reduced rrom 0(n2) to O(n)). An example ror this kind or paral­

lelization is a well-known parallel version or the common bubble-sort, called the odd-even transpo­

sition sort (Section 2.1).

Partial parallelization or a rast serial algorithm can also lead to a parallel algorithm or order

O(n). For example, the serial tree selection sort can be modified so that all the comparisons at

the same level or the tree are perrormed in parallel. The result is a parallel tree sort that is

8

described in Section 2.2. This parallel algorithm is used in the database Tree Machine IBentley

and Kung 19791.

2.1. The odd-even transposition sort

The serial "bubble-sort" proceeds by comparing and exchanging pairs of adjacent items. In

order to sort an array (x1,x2,·.·,xn), (n-1) comparison-exchanges (x1,x2), (x2,x3), ... ,(xn_1,xn) are

perCormed. This results in placing the maximum at the right end oC the array. Arter this first

step, xn is discarded, and the same "bubble" sequence of comparison-exchanges is applied to the

shorter array (x1,x2, ... ,xn_1). By iterating (n-1) times, the entire sequence is sorted.

The serial odd-even transposition sort IKnuth 1973, p. 651 is a variation oC the basic bubble

sort, with a total of n phases, each requiring n/2 comparisons. Odd and even phases alternate.

During an odd phase, odd elements are compared with their right adjacent neighbor; thus the

pairs (x1,x2), (~,x4)"" are compared. During an even phase, even elements are compared with

their right adjacent neighbor; that is, the pairs compared are (~,x3)' (x4,x5)'.... To completely

sort the sequence, it has been shown that a total of n phases (alternately odd and even), is

required IKnuth 1973, p. 65).

This algorithm calls Cor a straightCorward parallelization IBaudet and Stevenson 19781. Con-

sider n linearly connected processors and label them PI' P 2"'" P n' We assume that the links are

bidirectional, so that p. can communicate with both p. 1 and P.+ l' Also assume that initially,
I ~ I

Xi resided in Pi Cor i=1,2, ... ,n. To sort (Xl' x2'···,xn) in parallel, let PI' P 3' P 5' ... be active dur­

ing the odd time steps, and execute the odd phases oC the serial odd-even transposition sort in

parallel. Similarly, let P 2' P 4' ... be active during the even time steps, and perCorm the even

phases in parallel.

Note that a single comparison-exchange requires 2 transfers. For example, during the first

step, x2 is transCerred to PI and compared to Xl by P l' Then, iC Xl >x2' Xl is transCerred to P 2;

otherwise, x2 is transCerred back to P 2' Thus the parallel odd-even transposition algorithm sorts

n numbers with n processors in n comparisons and 2n transCers.

1 2 3 4 .5 6 7 8 12141 6 I 8

x x I I 1 3 .5 7

x x I

x x

STEP 1 STEP 2

X 2 I 4 I 6 I 8 I 2 I 4 I 6 X 8

X 3 I 7 X 3 x 7

1 5 x 5

X 1

STEP 3 STEP 4

FIGURE 1: PARALLEL TREE SELECTION SORT

9

2.2. A parallel tree-sort algorithm

In a serial tree selection sort, n numbers are sorted using a binary tree data structure. The

tree has n leaves, and initially, one number is stored in each leaf. Sorting is performed by select­

ing the minimum of the n numbers, then the minimum of the remaining (n-l) numbers, etc.

The binary tree structure is used to find the minimum by iteratively comparing the numbers

in two sibling nodes, and moving the smaller number to the parent node (see Figure 1). By simul­

taneously performing all the comparisons at the same level of the binary tree, a parallel tree-sort

is obtained IBentley and Kung 19791.

Consider a set or (2n-l) processors interconnected to form a binary tree with a processor at

each of the n leaf nodes in addition to every interior node of the tree. Starting with one number

at each leaf processor, the minimum can be transferred to the root processor in log2(n) parallel

comparison and transfer steps. At each step, a parent receives an element from each of its two

children, performs a comparison, retains the smaller element and returns the larger one. After the

minimum has reached the root, it is written out. From then on, empty processors are instructed

to accept data from non empty children and to select the minimum if they receive 2 elements. At

every other step, the next element in increasing order reaches the root. Thus sorting is completed

in time O(n).

Both the odd-even transposition sort and the parallel tree sort constitute two simple parallel

sorting algorithms, derived by performing in parallel the sequence of comparisons required at

different stages of the bubble sort and the tree selection sort. Both algorithms use O(n) processors

to sort an arbitrary sequence of n elements in O(n) comparisons. We will show that faster parallel

sorting algorithms have been developed by exploiting the intrinsic parallelism in sorting, rather

than parallelizing serial sorting algorithms.

3. NETWORK SORTING ALGORITHMS

It is somehow surprising that a simple hardware problem, namely designing a multiple-input

multiple-output switching network, has motivated the development and the proliferation of paral-

10

lei sorting algorithms. The earliest results in the parallel sorting area are found in the literature

on sorting networks IVan Voorhis 1971, Batcher 1968]. Since then, a wide range of network topo­

logies have been proposed, and their ability to support fast sorting algorithms has been exten­

sively investigated. In Section 3.1, we will describe in detail the odd-even and the bitonic merg­

ing networks. In Section 3.2, we show that parallel sorting algorithms for SIMD (Single Instruc­

tion Multiple Data stream) machines are derived from the bitonic network sort. In particular, we

describe two bitonic sort algorithms for a mesh-connected processor [Thompson and Kung 1977,

Nassimi and Sahni 1979].

Several other networks are of major interest. In particular, the Cube [Pease 1977] and the

Cube-Connected-Cycles [Preparata and Vuillemin 1979] have been shown to be suitable for sort­

ing as well as for a number of numerical problems. It has been shown that sorting, based on the

bitonic merge, can be implemented as a routing strategy on these networks. It is beyond the

scope of this paper to investigate in detail these networks. We will concentrate on explaining the

basic merge patterns that determine the routing strategies, on all these networks, and deriving the

O(log2n} lower bound for sorting time on Batcher's networks.

3.1. Sorting networks

Sorting networks originated as fast and economical switching networks. Since a sorting net­

work with n input lines can order any permutation of (1,2, ... ,n), it can be used as a multiple-input

multiple-output switching network [Batcher 1968]. To design a fast sorting network, it is neces­

sary to exploit the possibility of having a number of comparator modules perform comparisons in

parallel. Implementing a serial sorting algorithm on a network of comparators [Knuth 1973,

p.220], results in a serialization of the comparators, and consequently, increases the network

delay.

One of the first results in parallel sorting is due to Batcher [Batcher 1968], who presented

two methods to sort n keys with O(nlog2n} comparators in time O(log2n}. As shown in Figure 2,

a comparator is a module that receives two numbers on its two input lines A, B and outputs the

minimum on its output line L and the maximum on its output line H. A serial comparator

11

receives A and B with their most significant bit first and can be realized with a small number oC

gates. Parallel comparators, where several bits are compared in parallel at each step, are Caster

but obviously more complex. Both oC Batcher's algorithms, the "odd-even sort" and the "bitonic

sort", are based on the principle oC iterated merging. Starting with an initial sequence oC 2k

numbers, a specific iterative rule is applied to create sorted runs oC length 2, 4, 8, ... , 2k during

successive stages oC the algorithm.

----> A

----> B

L---~ MIN (A,B)

I---~ MAX (A,B) H

FIGURE 2 A COMPARISON-EXCHANGE MODULE

3.1.1. The odd-even merge rule

The iterative rule Cor the odd-even merge is illustrated in Figure 3. Given two sorted

sequences (aI' a2, ... , an) and (b l , b2, ... , bn), two new sequences (the "odd" and "even"

sequences) are created: one consists oC the odd numbered terms and the other oC the even num­

bered terms Crom both sequences. The odd sequence (c I ' c2' ...) is obtained by merging the ~d

Ii

a, CI e,

02 n C2 e2
L

element e3
H 03 odd - merge

°4 sorter e4
L
H e5

• • e6 •
• L • e7 H

On-I en

an

b, dl

b2 d2 •
n

b3 element d3 •

even-merge
• b4 sorter

•
•
• e2"-1

• L • e2n H
bn dn

FIGURE 3: THE ITERATIVE RULE FOR THE ODD-EVEN MERGE

terms (aI' a3, ...) with the odd terms (bI , b3, ...). Similarly, the even sequence (d I , d2, ...) is

obtained by merging (a2, a4, ...) with (b2, b4, ...). Finally, the sequences (cI , c2' ...) and (dl' d2,

...) are merged into (el' e2, ... , e2n) by performing the following comparison-exchanges:

el = cI

e2i = min(ci+ I,di)

e2i+ 1 = max(ci+ I,di), for i=I,2, ...

The resulting sequence will be sorted (for a proof, the reader is referred to [Knuth 1973, p.

224,2251). To sort 2k numbers using the odd-even iterative merge rule, requires 2k- I (1 by 1)

m.,rging networks (i.e. comparison-exchange modules), followed by ~-2 (2 by 2) merging net­

works, followed by 2k-3 (4 by 4) merging networks, etc. Since a 2i+ 1 by 2i+ 1 merging network

requires one more step of comparison-exchange than a 2i by rj merging network, it follows that an

input number goes through at most 1+ 2+ 3+ ... + k = k(k+ 1)/2 comparators. This means that

2k numbers are sorted by performing k(k+ 1)/2 parallel comparison-exchanges. However, the

number of comparators required by this type of sorting network is (k2_k+ 4)2k-2_1 [Batcher 19681.

3.1.2. The bltonle merge rule

For the bitonic sort, a different iterative rule is used (Figure 4). A bitonic sequence is

obtained by concatenating two monotonic sequences, one ascending and the other descending. A

cyclic shift of this concatenated sequence is also a bitonic sequence. The bitonic iterative rule is

based on the observation that a bitonic sequence can be split into two bitonic sequences by per-

forming a single step of comparison-exchanges. Let (a!' a2, ... , a2n) be a bitonic sequence such

min(aI,an+ 1)' min(a2,an+ 2)""

and max(aI,an+ 1)' max(a2,an+ 2)""

are both bitonic. Furthermore, the first sequence contains the n lower elements of the original

sequence, while the second contains the n higher ones. It follows that a bitonic sequence can be

2 AB pointed out by one of the refereea, the restriction to equal length ascending and descending parts is not neces­
sary. However, we have made this assumption for the sake of clarity in explaining the bitonic merge rule.

L

02n
H

n
element
bitonic
sorter

n
element
bitonic
sorter

en-I

en

en ... 1

en ... 2

•

e2n-1

e2n

FIGURE 4: THE ITERATIVE RULE FOR THE BITONlC MERGE

" .r

4~~r---~~--~~~

5

6
7

Indicates a comparator which
inverts its output I i nes.

FIGURE 5: BATCHER'S·BITONIC SORT FOR 8 NUMBERS

13

sorted by sorting separately two bitonic sequences each half as long as the original sequence.

To sort t' numbers using the bitonic iterative rule, we can iteratively sort and merge

sequences into larger sequences, until a bitonic sequence of 2k is obtained. This bitonic sequence

can be split into "lower" and "higher" bitonic subsequences. Note that the iterative building pro­

cedure of a bitonic sequence must use some comparators that invert their output lines and output

a pair of numbers in decreasing order (to produce the decreasing part of a bitonic sequence). Fig­

ure 5 illustrates that bitonic sort network for 8 input lines. In general, the bitonic sort of 2k

numbers requires k(k+ 1)/2 steps, each using 2k-1 comparators.

After the first bitonic sorter was presented, it was shown that the same sorting scheme could

be realized with only n/2 comparators, with perfect shuffle interconnection IStone 19711. Stone

noticed that if the inputs were labeled by a binary index, then the indices of every pair of keys

that enter a comparator at any step of the bitonic sorting network, would differ by a single bit in

their binary representations. Stone also made the following observations: The network has logn

stages. The ith stage consists of i steps, and at step i inputs that differ in their least significant

bit are compared. This regularity in the bitonic sorter suggests that a similar interconnection

scheme could be used between the comparators of any two adjacent columns of the network.

Stone concluded that the perfect shuffle interconnection could be used throughout all the

stages of the network. "Shuming" the input lines (in a manner similar to shuming a deck of

cards) is equivalent to shifting their binary representation to the left. Shuming twice shifts the

binary representation of each index twice. Thus, the input lines can be ordered before each step

of comparison-exchanges by shuming them as many times as required by the bitonic sort algo­

rithm. The network that realizes this idea is illustrated in Figure 6 for 16 input lines. In general,

for n=2k input lines, this type of bitonic sorter requires a total of (n/2)(logn)2 comparators,

arranged in (logn)2 ranks of (n/2) comparators each. The network has logn stages, with each

stage consisting of logn steps. At each step, the output lines are shumed before they enter the

next rank of comparators. The comparators in the first (Iogn)-i steps of the ith stage do not

exchange their inputs. Their only use is to shume their input lines.

'0

"

'8

"
"0

'11

'12

'13

zI<

ZIS

St.ace 1

".----'"

zyz
Y-LI-Y

Stage 2 ___ ---A

z -1:;JemiDtz, Y)
v~ muiz,y)

Stage 3

FIGURE 6: STONE'S MODIFIED BITONIC SORT

stora.ge register compa.rators

Stnge oj

FIGURE 7: STONE'S ARCmTECTURE FOR THE BITONIC SORT

14

Instead or a multistage network, the bitonic sort can also be implemented as a recirculating

network, which requires a much smaller number or comparators. For example, an alternative

bitonic sorter can be built with a single rank or comparators connected by a set or shirt registers

and shuftle links, as shown in Figure 7. Since the ith stage or the bitonic sort algorithm requires i

comparison-exchanges, Batcher's sort requires

1+ 2+ 3+ ... + logn = 10gn(logn+ 1)/2

parallel comparison-exchanges. Stone's bitonic sorter, on the other hand, requires a total or

(logn)2 steps, because additional steps are needed ror shuftling the input lines (without performing

a comparison). In both cases, the asymptotic complexity is 0(log2n) comparison-exchanges. This

provides a speedup or O(n/logn) over the O(nlogn) complexity or serial sorting. Thererore, it

improves significantly the previous known bound or O(n) ror the time to sort n elements with n

processing elements.

Siegel has shown that the bitonic sort can be also perrormed by other types or networks in

time 0(log2n) ISiegel 19771. Among the networks he considered, are the Cube and the Plus-Minus

2i networks. Essentially, the data exchanges required by the bitonic sort scheme can be realized

on these networks too (in ract, the perrect shuffle may be seen as an emulator or the Cube).

Siegel proves that simulating the shuftle on a large class or interconnection networks takes

0(log2n) time, and thus, that sorting can also be perrormed within this time limit. Finally, one

should also mention the versatile Cube-Connected-Cycle8 (CCC), a network that efficiently emu-

lates the Cube and the shuftle, and yet requires only 3 communication ports per processor

IPreparata and Vuillemin 19791. A bitonic or an odd-even sort can also be perrormed on the CCC

in time 0(log2n).

3.2. Sorting on an SIMD maehlne

Sorting networks are characterized by their "non adaptivity" property. They perform the

same sequence or comparisons regardless or the result or intermediate comparisons. In other

words, whenever two keys Ri and Rj are compared, the subsequent comparison ror Rj in the case

that RI· < R. are the same as the comparison that R. would have entered in the case R. < RI .. J J J

16

The non-adaptivity property makes the implementation or an algorithm very convenient ror an

SIMD machine. An SIMD (single instruction stream, multiple data stream) machine is a system

consisting or a control unit and a set or processors with local memory and interconnected by an

interconnection network. The processors are highly synchronized. The control unit broadcasts

instructions which all the active processors execute simultaneously (a mask specifies a subset or

processors that are idle during an instruction cycle). Since the sequence of comparisons and

transfers required in a network sorting algorithm is determined when the sorting operation is ini­

tialized, a central controller can supervise the execution or the algorithm by broadcasting at each

time step the appropriate compare-exchange instruction to the processors.

3.2.1. Sorting on an array processor

The sorting problem can be also defined as the problem of permuting numbers between the

local memories associated with processors of an SIMD machine. In particular, assuming that one

number is stored in the local memory of each processor of a mesh-connected machine, sorting may

be viewed as the process of that permutes the numbers stored in neighboring processors until they

conrorm to some ordering or the mesh. The processors or an n by n mesh-connected parallel pro­

cessor may be indexed according to a prespecified rule. The row-major or column-major indexing

are commonly accepted ways to order an array. Thompson and Kung adapted the bitonic sorting

scheme to a mesh-connected processor, with three alternative indexing rules: the row-major, the

snake-like row-major, and the shuffled row-major rules [Thompson and Kung 1977). These rules

are shown in Figure 8. Assuming that n2 keys with arbitrary numbers are initially distributed so

that exactly one number resides in each processor, the sorting problem consists of moving the ith

smallest number to the processor indexed by i, ror i=1, ... ,n2. As with the sorting networks,

parallelism is used to simultaneously compare pairs or numbers, and a number is compared to

only one other number at any given unit of time. Concurrent data movement is allowed but only

in the same direction, that is all processors can simultaneously transfer the content of their

transrer register to their right, left, above or below neighbor. This computation model is SIMD

since at each time unit a single instruction (compare or move) can be broadcast for concurrent

Row-mojor. indexing Snake-like row-mojor indexing

Shuffled row-mojor indexing

FIGURE 8: ARRAY PROCESSOR, INDEXING SCHEMES

18

execution by the set of processors specified in the instruction. The complexity of a method which

solves the sorting problem for this model can be measured in terms of the number oC comparison

and unit-distance routing steps. For the rest of this section we refer to the unit-distance routing

step as a move. AIly algorithm that is able to perform such a permutation will require at least

4(n-l) moves, since it may have to interchange the elements from two opposite corners of the

array processor (and this is true Cor any indexing scheme). In this sense a sorting algorithm which

requires O(n) moves is optimal.

The odd-even and the bitonic network sorting algorithms have been adapted to this parallel

computation model, leading to two algorithms that perform the mesh sort in O(n) comparisons

and moves IThompson and Kung 1977]. The first algorithm uses an odd-even merge of two

dimensional arrays and orders the keys with snake-like row-major indexing. The second uses a

bitonic sort and orders the keys with shuffied row-major indexing. A third algorithm that sorts in

row-major order with similar performance was later obtained INassimi and Sahni 1979]. The

latter algorithm is also an adaptation or the bitonic sort where the iterative rule is a merge of two

dimensional arrays. Finally, an improved version or the two-dimensional odd-even merge was

recently proposed IKumar and Hirschberg 1983]. Based on this merge pattern, a two- dimensional

array can be sorted in row-major order, in time O(n) and a smaller proportionality constant than

the previous algorithms.

3.3. Summary

In this section we have examined two well-known sorting networks, and shown that the sort­

ing network concept has been extended to various schemes or synchronous parallel sorting.

Although some consideration was given to the hardware complexity, the complexity of sorting on

these networks has mainly been characterized in terms or execution time and number or process­

ing elements utilized. Thus, our baseline ror evaluating the various sorting schemes employed by

these networks was the number or comparison-exchanges required, and we did not systematically

account ror the degree or network interconnection as a complexity measure or the sorting network

algorithms. It is beyond the scope or this study to provide a comprehensive analysis or intercon-

17'

nection networks. However, an extensive literature exists on this topic, and we have listed some

references for the interested reader IPease 1977, Siegel 1977, Thompson 1980, Preparata and

Vuillemin 1979, Siegel 1979, Feng 1981, Nassimi and Sahni 19821.

Until very recently, the best known performance for sorting networks was an O(log2n) sort­

ing time with O(nlog2n) comparators. We have shown that the bitonic network sort can be inter­

preted as a sorting algorithm that sorts n numbers in time O(log2n) with n/2 processors. In Sec­

tion 4, we will show that in an attempt to develop faster parallel sorting algorithm, a more Oexi­

ble parallel computation model than the network comparators - the shared memory model - has

been successfully investigated. However, a recent theoretical result may now renew the interest in

network sorting algorithms IAjtai et aI. 19831. A network of O(nlogn) comparators is shown that

can sort n numbers in O(logn) comparisons. Unfortunately, unlike the odd-even or the bitonic

sort, this algorithm is not suitable for implementation. It is based on a complex graph construc­

tion that may make the proportionality constant (in the lower bound for the number of comparis­

ons) unacceptably high.

4. SHARED MEMORY PARALLEL SORTING ALGORITHMS

After the time bound of O(log2n) was achieved with the sorting networks algorithms, atten­

tion was directed towards improving this bound to the theoretical lower bound of O(logn). In this

section, several parallel algorithms are described that sort n elements with O(logn) comparisons.

These algorithms assume a shared memory model of parallel computation. While the sorting net­

work algorithms are based on comparison-exchanges of pairs, the shared-memory algorithms, for

the most part, use enumeration to compute the rank of each element. Sorting is performed by

computing in parallel the rank of each element, and routing the elements to the location specified

by their rank. Thus, while in the network sorting algorithms, individual processors decide locally

about their next routing step, by communicating with their nearest neighbors, in the shared

memory algorithms, any processor may access any location of the global memory, at every com­

putation step. As shown in Section 3, the network algorithms assume a sparse interconnection

scheme and differ only by the network interconnection topology. The shared memory sorting

18

algorithms rely on parallel computation models that differ in whether or not they allow read and

write conflicts, and how they resolve these conflicts IBorodin and Hopcroft 19821. Clearly, the

shared memory models are more powerful. However, they are mostly of theoretical interest, while

the network models are more suitable to implemention with current or near-term technology.

In the remainder of this section, we will first describe a modified sorting network scheme

that sorts by enumeration, using 0(n2) processing elements IMuller and Preparata 19751. We

then survey two parallel merge algorithms, that are faster than the non-adaptive network merge

algorithms (the odd-even and the bitonic merge described in Section 3), and sorting algorithms

that combine enumeration with parallel merge procedures IPreparata 19781. In addition to these

enumeration sorting algorithms, we will describe a parallel bucket sorting algorithm IHirschberg

19781.

4.1. A modtfled sorting network

In a first attempt to reduce the number of comparisons required for sorting, by increasing

the degree of parallelism beyond O(n), Muller and Preparata first proposed a modified sorting net­

work, based on a different type of comparators (Figure 9). These comparators have 2 input lines

and one output line. The two numbers to compare are received on the A and B lines. The output

bit x is 0 if A < B and 1 if A > B. To sort a sequence of n elements, each element is simultane­

ously compared to all the others in one unit of time, by using a total of n(n-1) comparators. The

output bits rrom the comparators are then red into a parallel counter, that computes, in logn

steps, the rank of an element by counting the number or bits set to 1 as a result of comparing this

element with all the other (n-l). Finally, a switching network, consisting of a binary tree with

(logn)+ 1 levels or single-pole, double-throw switches, routes the element of rank i to the ith ter­

minal of the tree. There is one such tree for each element, and each tree uses (20-1) switches.

Routing an element through this tree requires logn time units, and this determines the algorithm

complexity. A diagram ror this type of network is presented in Figure 9.

At the cost of additional hardware complexity, the above algorithm sorts n elements in

O(logn) time, with 0(n2) processing elements. This algorithm was the first to use an enumeration

-- ...
02 Cl2 - Parallel - CI'

..
Counter · - · c: · (1st.) CD Cin

• E --
CD · • • - · • w · •

• Cit c
0 -- ..
en · Parallel at .-
~ · - 0 · Counter
Co

(it h) • E Cln
0 .. ~ · u · · • dlm dim-I · · • dlO

an Cnn • -.. --
I

.,,0 I ~
o ...

Io/' .. ~ I
I/I~ I

- I I I
:~~~

:a..... ... ,O 10 ..
I I "'""0 -.

I

FIGURE 9: MULLER AND PREPARATA'S SORTING NETWORK

Ita

8cheme for parallel sortiDg. The idea of sorting by eDumeratioD was exploited to develop other

very fast parallel sortiDg algorithms !Hirschberg 1978, Preparata 19781. that improve Muller and

Preparata's result by reduciDg the Dumber of processiDg elemeDts. EveD from a theoretical poiDt

of view, the requiremeDt of D2 processors for achieviDg a speed of O(logD) is Dot satisfactory. A

parallel sortiDg algorithm could theoretically achieve the same speed with oDly O(D) processors, if

it had a parallel speedup of order D.

4.2. Faster parallel merglng algorithms

ID additioD to the idea of usiDg eDumeratioD, optimal parallel sortiDg algorithms may use

faSt mergiDg procedures. ID a study of parallelism iD comparisoD problems, Valiant preseDts aD

recursive algorithm that merges two sorted sequeDces of D and m elemeDts (D<..m) with mD pro-

cessors iD 210g(log D) + 0(1) comparisoD steps (compared to 10gD for the bitoDic merge !ValiaDt

19751. OD the other hand, Gavril proposes a fast mergiDg algorithm that solves the problem of

mergiDg two sorted sequeDces of leDgth D aDd m with a smaller Dumber of processors p<..D<..m

!Gavril 19751. This algorithm is based OD biDary iDsertioD, and requires oDly 210g(D+ 1) + 4(D/p)

comparisoDs wheD D=m.

Both ValiaDt's aDd Gavril's mergiDg algorithms assume a shared memory model of computa-

tioD. All the processors utilized caD simultaDeously access elemeDts of the iDitial data, or inter-

mediate computatioD results.

4.3. Bucket sorting

Hirschberg's algorithm is a "bucket sort" that sorts D Dumbers with D processors iD time

O(logD), provided that the Dumbers to be sorted are iD the raDge {O,I, ... ,m-l} IHirschberg 19781.

A side effect of this algorithm is that duplicate Dumbers -if they appear iD the iDitial sequeDce- are

elimiDated iD the sortiDg process. If memory cODfticts were igDored, there would be a straightCor-

ward way to parallelize a bucket sort: It would be sufficieDt to have m buckets aDd to assigD ODe

Dumber to each processor. The processor that gets the ith Dumber is labeled P., and it is respOD­
I

sible for placiDg the value i iD the appropriate bucket. For example, if P 3 had the Dumber 5, it

20

would place the value 3 in bucket 5. The problem with this simplistic solution, is that a memory

conflict may result when several processors simultaneously attempt to store different values or i in

the same bucket.

The memory contention problems may be solved by increasing substantially the memory

requirements. Suppose there is enough memory available ror m arrays, each or size n. Each pro­

cessor can then write in a bucket without any rear or memory conflict. To complete the bucket

sort, the m arrays must be merged. The processors perrorm this merge operation by searching, in

a binary tree search method, ror the marks or "buddy" active processors. If Pi and Pj discover

each other's mark and i<j, then Pi continues and Pj deactivates (hence, dropping a duplicate

value).

Hirschberg also generalizes this algorithm so that duplicate numbers remain in the sorted

array. But this generalization degrades the perrormance or the sorting algorithm. The result is a

method which sorts n numbers with n l + 11k processors in time O(klogn) (where k is an arbitrary

integer).

A major drawback or the parallel bucket sort (in addition to the lack or reasibility or the

shared memory model) is its (m.n) space requirement. Even when the range or values is not very

large, it would be desirable to reduce this requirement. In the case or a wide range or values (ror

example, when the sort keys are arbitrary character strings rather than integer numbers), the

algorithm cannot be utilized.

4.4. Sorting by enumeration

Parallel enumeration sorting algorithms, that do not restrict the range or the sort values and

yet run in time O(logn), are described in IPreparata 1978\. The keys are partitioned into subsets,

and a partial count is computed ror each key in its respective subset. Then, ror each key, the

sum or these partial counts is computed in parallel, giving the rank or that key in the sorted

sequence. Preparata's first algorithm use Valiant's merging procedure IValiant 1975], and sorts n

numbers with nlogn processors in time O(logn). The second algorithm uses Batcher's odd-even

merge, and sorts n numbers with nl + 11k processors in time O(klogn). The perrormance or the

latter algorithm is similar to Hirschberg's (Section 3.3), but it has the additional advantage of

being free of memory contention. Recall that Hirschberg's model required simultaneous fetches

from the shared memory, while Preparata's method does not (since each key participates in only

one comparison at any given unit of time).

4.6. Summary

Despite the improvement achieved by eliminating memory conflicts, the more recent shared

memory algorithms are still far from being suitable for implementation. Any model requiring at

least as many processors as the number of keys to be sorted, all sharing a very large common

memory, is not feasible with present or near term technology. In addition, these models usually

ignore significant computation overheads such as, for instance, the time associated with the reallo­

cation of processors during various stages of the sort algorithm (although a first attempt at intro­

ducing this factor in a computation model is made in [Vishkin 19811).

However, the results achieved are of major theoretical importance, and the methods used

demonstrate the intrinsic parallel nature of certain sorting procedures. It may also happen that

ruture research will succeed in refining the shared memory model for parallel computation, and by

that, make it more reasonable from a computer architecture point of view. An attempt to classify

the various types of assumptions underlying recent research on shared memory models of parallel

computation is made in [Borodin and Hopcroft 19821. Of particular interest is the class of algo­

rithms that allow simultaneous reads, but allow simultaneous writes only if all processors try to

write the same value [Shiloah and Vishkin 19811.

6. BLOCK SORTING ALGORITHMS

For all the parallel sorting algorithms described in previous sections, the problem size (that

is, the number of records or keys to be sorted) is limited by the number of processors available.

Thus, these algorithms implicitly assume that the number of processors is very large. Typically,

n processors are utilized to sort n records.

22

This type of assumption was initially justified when parallel sorting algorithms were

developed for implementing fast switching networks. In this context, there are two reasons that

explain and justify the n (or n/2) processors requirement to sort n numbers: First, in a switching

network, the processors are simple hardware boxes that compare and exchange their two inputs.

Second, since the number of processors is proportional to the number of input lines to the net­

work, it can never be prohibitively high.

However, for a general purpose sorting algorithm, it is desirable to set a limit on the number

of processors available, so that the number of records that can be sorted will not be bounded by

the number of processors. Furthermore, it must be possible to sort a large array with a relatively

smail number of processors. In general, research on parallel algorithms (for sorting, searching and

various numerical problems) is based on the assumption of unlimited parallelism. It is only

recently that technology constraints, on one hand, and a better understanding of parallel algo­

rithms, on the other hand, are motivating a new trend of research: algorithms for computers with

a relatively small number of processors. An excellent illustration of this trend is a systematic

study of quotient networks, in IFishburn and Finkel 19821, for networks such as the perfect shuffle

and the hypercube. Quotient networks are architectures that exploit limited parallelism in a very

efficient way. The idea is that given a network of p processing units, a problem of size n, for

arbitrarily large n, can be solved by having each processing unit emulate a network of size

O(n/p), with the same topology. Then, together the p processing units emulate a network of size

O(n).

In the area of parallel sorting, until now, the problem of limited parallelism has not been

systematically addressed. In the following, we propose some basic ideas for further research in

this direction. When p processors are available, and n records are to be sorted, one possibility is

to distribute the n records among the p processors so that a block of M = fD/P) records is stored

in each processor's local memory (a few dummy records may have to be added to constitute the

last block). The processors are labeled PI' P 2' ... , P p' according to an in!iexing rule that is usu­

ally dictated by the topology of the interconnecting network. Then, the processors cooperate to

redistribute the records so that

23

(1) the block residing in each processor's memory constitutes a sorted sequence Si or length M.

(2) the concatenation or these local sequences, Sl,S2'''Sp' constitutes a sorted sequence or

length n.

For example, ror 3 processors, the distribution or the sort keys berore and arter sorting could be

the rollowing:

berore arter

PI 2,7,3 1,2,3

P 2 4,9,1 4,5,6

P3 6,5,8 7,8,9

Thus, we now have a convention ror ordering the total address space or a multiprocessor, and we

have defined parallel sorting or an array or size n, where n may be much larger than p.

Algorithms to sort large arrays or files that are initially distributed across the processors'

local memories, can be constructed as a sequence or block merge-split steps. During a merge-split

step, .a processor merges two sorted blocks or equal length (that were produced by a previous

step), and splits the resulting block into a "higher" and a "lower" block, that are sent to two des­

tination processors (like the high and low outputs in a comparison-exchange step).

A block sorting algorithm is obtained by replacing every comparison-exchange step (in a sort­

ing algorithm that consists or comparison-exchange steps) by a merge-split step. It is easy to ver­

iry that this procedure produces a sequence which is sorted according to the above definition.

There are two ways to perrorm a merge-split step. One is based on a 2-way merge IBaudet

and Stevenson 19781; the other on a bitonic merge IHsiao and Menon 19801. In Sections 5.1 and

5.2, we describe both methods, and illustrate them by investigating the block sorting algorithms

that they generate, based on the odd-even transposition sort (Section 2.1) and the bitonic sort

(Section 3.1.2). An important property or the parallel block sorting algorithms generated by both

methods is that, like the network sorting algorithms, they can be executed in SIMD mode (see

Section 3.2).

5.1. Two-way merge-spUt

A two-way merge-split step is defined as a two-way merge oC 2 sorted blocks oC size M, Col­

lowed by splitting the result block oC size 2M into two halves. Both operations are executed

within a processor's local memory. The contents oC a processor's memory beCore and after a two­

way merge-split is shown in Figure 10.

FIGURE 10: MERGE-SPLIT BASED ON 2-WAY MERGE

After 2 sorted sequences oC length M have been stored in each processor's local memory, the pro­

cessors execute in parallel a merge procedure and fill up an output buffer O[1..2M] (thus, a two­

way merge-split step requires a local memory oC size at least 4M). After all processors have com­

pleted the parallel execution of the merge procedure, they split their output buffer, and send each

half to a destination processor. The destination processors' addresses are determined by the

comparison-exchange algorithm on which the block-sorting algorithm is based.

5.1.1. Block odd-even sort based on 2-way merge-spUt

Initially, each of the p processors' local memory contains a sequence oC length M. The algo­

rithm consists oC a preprocessing step (step 0), during which each processor independently sorts

the sequence residing in its local memory, and p additional steps (steps 1 to p), during which the

processors cooperate to merge the p sequences generated by step o. During step 0, the processors

:25

perrorm a local sort using any rast serial sorting algorithm. For example, a local 2-way merge or

a quick-sort can be used. Steps 1 to p are similar to steps 1 to P or the odd-even transposition

sort (see Section 2.1). During the odd (even) steps, the odd (even) numbered processors receive

rrom their right neighbor a sorted block, perform a 2-way merge, and send back the higher M

records. The algorithm can be executed synchronously by p processors, odd and even processors

being alternately idle.

6.1.2. Block bltonle lIort based on 2-way merge-lIpllt

Using Batcher's bitonic, p records can be sorted with p/2 processors in log2p shuffie steps

and 1/2((logp)+ 1)(logp) comparison-exchange steps. Suppose that each processor has a local

memory, large enough to store 4M records. In this case, a processor can perrorm a 2-way merge

split on 2 blocks or size M. By replacing each comparison-exchange step by a 2-way merge-split

step, we obtain a block bitonic sort algorithm, that can sort M.p records with p/2 processors in

log2p shuffie steps, and 1/2((logp)+ 1)(logp) merge-split steps. During a shuffie step, each proces­

sor sends to each or its neighbors a sorted sequence of length M. During a merge-split step, each

processor performs a 2-way merge of the 2 sequences of length M (that it has received during the

previous shuffle step, and splits the resulting sequence into two sequences of length M. The algo­

rithm is illustrated in Figure 11, for 2 processors and M=2.

In the general case, the algorithm requires p/2 processors, where p is a power of 2, each with

a local memory of size 4(M.p), to sort M.p records.

LO LO LO - PI -- PI PI ,
~

HI 1814/- HI 1\ r
~

-- HI
14131

,4131 ~ LO~
lal5/ ,6151

HI L.---' ""- LO P2 - P2 P2
LO - HI HI

Step I Step 2 Step 3

FIGURE 11: BLOCK-BITONIC SORT BASED ON 2-WAY MERGE

28

5.1.3. Processor synchronization

When M is large, or when the individual records are long, transferring blocks of M.p records

between the processors introduce time delays that are by several order of magnitudes higher than

the instruction rate of the individual processors. In addition, depending on the data distribution,

the number of comparisons required to merge 2 blocks of M records may vary Thus, for the exe­

cution of block sorting algorithms based on 2-way merge-split, a coarser granularity for processor

synchronization might be more adequate than the SIMD mode of execution, where processors are

synchronized at the machine instruction level. A more adequate multiprocessor model Cor these

algorithms is one where processors operate independently of each other, but can be synchronized

by exchanging messages among themselves or with a controlling processor, at intervals of several

thousand instructions. At initiation time of a block sorting algorithm, the controller assigns a

number of processors to its execution. Because other operations may be already in the process of

being executed, the controller maintains a free list and assigns processors Crom this list. In addi­

tion to the availability of processors, the size of the sorting problem is also taken into considera­

tion by the controller to determine the optimal processor allocation.

5.2. Bltonlc merge-exchange

Consider the situation where 2 processors Pi and P j each contain a sorted block of length M,

and we want to compare and exchange records between the processors so that the lower M records

reside in Pi and the higher M in Pj" One way to obtain this result is to execute the following

three steps:

P j sends its block to Pi

Pi performs a 2-way merge-split

Pi sends high half block to Pj

However, as indicated in the previous section the 2-way merge-split requires a processor's local

memory of size 4M. Another alternative is that P j send one of its records at a time, and wait for

27

a return record from Pi before sending the next record. Suppose that M records (xl' x2' ... , xM)

are stored in increasing order in Pi's memory, and the M records (YI' Y2' ... , YM) are stored in

decreasing order in Pj'S memory. Let Pj send Y1 to Pi· Pi then compares xl and YI' keeps the

lower of the 2 and sends back to Pj the higher record. This procedure is then repeated for

(x2,y 2), ... ,(xM'YM). It is known that this sequence of comparison-exchanges constitutes the

"bitonic merge" and results in having the highest M records in P., and the lowest M in P. IAlek-
J I

seyev 1969, Knuth 19731. Thus, the merge-split operation can now be completed by having Pi

and Pj each perform a local sort of their M records. Figure 12 illustrates the bitonic merge­

exchange operation for M=5.

FIGURE 12: BITONIC MERGE-EXCHANGE STEP

It is important to notice that the data exchanges are synchronous (unlike in the 2-way merge-split

operation). Thus, the block sorting algorithms based on the bitonic merge-exchange are more

suitable for implementation on parallel computers that require a high de~ee of synchronization

between their processors.

The bitonic merge-exchange also requires substantially less buft'er space than the 2-way

merge-split. Because the 2-way merge-split merges 2 blocks of size M within a processor's local

memory, it requires (4.M) space. The bitonic merge-exchange requires space for only M+ 1

28

records. Finally, the comparisons (of pairs of records) and the transfers are interleaved in every

bitonic merge-exchange step. While for the 2-way merge-split, an entire block of data must be

transferred to a processor's memory before the merge operation is initiated, for the bitonic

merge-exchange, it is possible to overlap each record's transfer time with processing time.

However, a major disadvantage of the bitonic merge-exchange is the necessity to perform a

local sort of M records in each processor, after the exchange step is completed. To perform the

local sort, a serial sorting algorithm that permutes the records in place (such as Heap Sort) should

be used. Otherwise, the local sort might require more memory than the exchange. Note that the

sequences generated by the bitonic exchange are bitonic. Thus sorting these sequences requires at

most (M/2).logM comparisons and local moves.

5.2.1. Block odd-even sort based on bltonlc merge-exchange

As with the block odd-even merge based on two-way merge (Section 5.1.1), we start with M

records in each processor's memory, and perform an initial phase where each processor indepen-

dently sorts the sequence in its memory. However, Steps L.p are different. During odd (even)

steps, odd (respectively even) numbered processors perform a bitonic merge-exchange with their

right neighbor. Figure 13 illustrates this algorithm for p=4 and M=5.

5.2.2. Block bltonlc sort based on bltonlc merge-exchange

A fast and space-efficient block sorting algorithm can be derived from Stone's version of the

bitonic sort, that was described in Section 3.1.2. Consider a network of p identical pro~essors,

where p is a power of 2, interconnected by two types of links (Figure 14):

(i) 2-way links, between pairs of adjacent processors: P cf l' P ~ 3"';

(ii) one-way shuffle links, connecting each P. to its shume processor.
If each processor has a local memory of size M+ 1, \hen M.p records can be sorted by alternating

local-sort, block-bitonic exchanges between neighbor processors and shum~ procedures. During a

shulfle procedure, each processor sends the records that were in its memory, in order, to the

corresponding location of the shulfle processor's memory and receives the records that were in the

20 retords in tour processor memories
after initial preprocessing

~

9 8 3 2 ~ 17

I 2 3 5 6 ~
~ 19 12 8 5 0

~ 2 4 5 9 13

I
compare and exchange (PO, PI) and (P2, P3)

1
r---

1 2 3 3 Z ~
Ii 9 8 5 6 12-

..E!.. 2 4 5 5 0
pa'
~

19 12 8 9 13

localized sort
1

-
~ 3 3 2 2 I

~ 17 9 8 6 5
Pry
~

0 2 .. 5 5

~ 8 9 12 13 19

r--
3 3 2 2 1 ~
Ii 9 8 6 5 ~

5 5 I P2 0 2 ..
8 9 12 13 19 ~

I
compare and exchange PI and P2

1
r--

PO
I--

3 3 2 2 1

~ 0 2 4 5 5

I P2 17 9 8 6 5

~ 8 9 12 13 19

localized sort
1

r--
3 3 2 2 1 ~

~ 0 2 4 5 5
PI)

~
17 9 8 6 5

~ 8 9 12 13 19

-
PO a a 2 2 1 -

..EL 0 2 4 5 5

~ 17 9 8 6 5
P3 8 9 12 13 19

'----

I
compare and exchange (PO, PI) and (P2, P3)

1
r---

~ 0 2 2 2 I

PI a 3 4 5 5
I---
P2 8 9 8 6 5

I---

~ 17 9 12 13 19

1·
localized sort

1
r--

0 I 2 2 I)

~ ..
.f.!.. 5 5 4 3 a
P2 5 6 8 8 9

I---
P3 9 12 13 17 19
'--

r--
PO 0 I Z 2 2

I---
PI 5 5 4 3 3

I---
P2 5 6 8 8 9

I---
P3 9 12 13 17 19
'--

compare and exchange PI and P2

1
,...---.

PO 0 1 2 I) 2 w
~
PI 5 5 4 3 3
~ PI)
~

5 6 8 8 9

P3
I.....--

9 12 13 17 19

localized sort
1

r--

~ 0 1 2 2 2

~ 3 3 4 5 5
P2 5 6

I---
8 8 9

P3 9 12
I.....--

13 Ii 19

FIGURE 13: BLOCK ODD-EVEN SORT (~O records)

c:J Seeoadary Memo.,.

o i-tb Proeeuor

® Coatrol1er

Coatrol LiD.

- Oae-wa, Proeeuor-to
Proeeuor Liak

FIGURE 14: PROCESSORS' INTERCONNECTION FOR BLOCK-BITONIC SORT

(P=4 AND P=16)

2G

memory of the reverse shuffie processor. Figure 15 illustrates this algorithm for p=4 and M=5.

8. EXTERNAL PARALLEL SORTING

In this section, we address the problem of sorting a large file in parallel. Serial file sorting

algorithms are often referred to as "external sorting algorithms", as opposed to array sorting algo­

rithms that are "internal". For a conventional computer system, the need for an external sorting

algorithm arises when the file to be sorted is too large to fit in main memory.

Thus, for a single processor, the distinction between internal sorting and external sorting

methods is well-known, and there are well accepted criteria for measuring their respective perfor­

mance. However, the topic of external parallel sorting has not yet received adequate considera­

tion.

In Section 5, we presented a number of parallel algorithms that can sort an array initially

distributed across the processors' memories. The size of the array was limited only by the total

memory of the system (considered as the concatenation of the processors' local memories). By

analogy with the definition of serial internal sorting, these algorithms may be called "parallel

internal sorting algorithms".

A parallel sorting algorithm is defined as a parallel external Borting algorithm if it can sort a

collection of elements that is too large to fit in the total memory available in the multiprocessor.

This definition is general enough to apply to both categories of parallel architectures: the Bhared

memory multiprocessors and the looBely coupled multiprocessors (also called "multicomputers").

For shared memory multiprocessors, an external sorting algorithm is required when the

shared memory is not large enough to hold all the elements (and some work space to execute the

sort program). On the other hand, for loosely coupled multiprocessors, the 'assumption is that the

source records cannot be distributed across the processors' local memories. That is, the multicom­

puter has p identical processors, and each processor's memory is large enough to hold k records,

but the source file has more than p.k records. In both cases, the processor can access a mass

storage device on which the file resides. At termination of the algorithm, the file must be written

Steil 1

3 9 8 2 17
6 2 135
8 12 0 19 5
5 9 13 4 2

I
A Perfect Shuffle

1

3 9 8 2 17
8 12 0 19 5
6 2 135
5 9 13 4 2

Steil e
3 9 8 2 17
8 ~ 0 19 5
6 2 1 3 5
5 9 13 4 2

t
A Perfect Shu1f1e

1
3 9 8 2 17
6 2 135
8 12 0 19 5
5 9 13 4 2

I
EXCHANGE [0, 11
EXCHANGE [3, 21

1

23321 1
6 5 8 I 9 17

19 12 8 9 13
P3 2 4 5 5 0

Steil 1

2 3 3 2 1
6 5 8 9 17

19 12 8 9 13
2 455 0

I
A Perfect Shuffle

1

2 3 132 1
19 12 8 9 13
6 5 8 9 17
2 455 0

·1
EXCHA..~GE [0, 11
EXCHANGE [2, 31

1
., I 3

12 I 9

3

8

8 I 9 I 17

STAGE 2

STAGE 3 (parallelloc:31ized sort)

o 122 2
3 3 455
5 6 889
9 12 13 17 19

A Perfect Shuffle

1

I
EXCHANGE [0, 11
E..,,{CHANGE [2, 31

1

o
17

., I 0

3 I 3
6 I 5

13 11)

FIGURE 15: BLOCK BITONIC SORT

30

back to the mass storage device in sorted order.3

An early result on tape parallel sorting appeared in IEven 19741. Recently in IBitton 1981]'

several parallel sorting algorithms have been proposed ror files residing on a modified moving-head

G.1. Parallel tape sorting

The sorting problem addressed in IEven 19741 is to sort a file or n records with p processors

(where n is much larger than p) and 4p magnetic tapes. The only internal memory requirement is

that three records could fit simultaneously in each processor's local memory. Under those

assumptions, Even proposes 2 methods ror parallelizing the serial 2-way external merge sort algo-

rithm. In the first method, all the processors start together and work independently or each other

on separate partitions or the file. In the second, processors are added one at a time to perrorm

sorting in a pipelined-like algorithm. Both methods can be described briefly:

Method 1: each processor is assigned nIp records and 4 tapes, and perrorms a (serial) external
merge sort on this subset. Arter p sorted runs have been produced by this parallel phase, during a
second phase a single processor merge sorts these runs serially.

Method f: the basic idea is that each processor perrorms a.~fferent phase or the .serial merge pro­
cedure. The ith processor merges pairs or runs or size tj- into runs or size 21. Ideally, n is a
power or 2 and logn processors are available. A high degree or parallelism is achieved by using
the output tapes or a processor as input tapes ror the next processor, so that, as soon as a proces­
sor has written 2 runs, these runs can be read and merged by another processor. In order to over­
lap the output time or a processor with the input time or its successor, each processor writes alter­
nately on 4 tapes (one output run on each tape).

These methods show that, rrom the algorithmic point or view, it is possible to introduce a

high degree or parallelism in the conventional 2-way external merge-sort. However, the assump-

tions about the mass storage device do not take into consideration constraints imposed by tech-

nology. Like the shared memory model ror array sorting, a parallel fHe sorting model that

assumes a shared mass storage device with unlimited I/O bandwidth (e.g. a model with p proces-

sors and 4p magnetic tape drives) provides very limited insight into implementation aspects.

3 Physia.1 order, on the ml.l!S storage device, must be defined, according to the physia.1 characteristics o(the
storage device. For example, (or a magnetic disk, & track numbering convention must be agreed upon.

31

8.2. Pal'allel disk 8ol'tlng

The notion of sorted file stored on a magnetic disk requires that physical order be defined,

since disks are not sequential storage media. Within a disk track, records are stored sequentially,

but then a convention is needed for numbering tracks. For example, adjacent tracks could be

defined as consecutive tracks on one disk surface. This convention is very adequate if a separate

processor is associated with each disk surface. Another way to model the mass storage device is

to consider a modified moving-head disk, that provides for parallel read/write of tracks on the

same cylinder (Figure 17). Disks that provide this capability have been proposed [Banerjee and

Hsiao 19781, and in some cases, already built. The idea was pioneered by database machine

designers, and prototypes were built in the framework of database research projects (see for exam­

ple [Leilich et al. 19781). Recently, commercial parallel readout disk are also made available for

high-performance computers (for example, a 600-Mbyte drive with a 4-track parallel readout

capability and a data transfer rate of 4.84 Mbytes/second is now available for the Cray-l com­

puter). Thus, parallel readout disks appear to constitute a viable compromise between the cost­

effective, conventional moving-head disk and the obsolete fixed-head disk.

In order to minimize seek time, two disk drives can be concurrently used. During execution

of a single phase ot a sorting algorithm, one drive can be utilized tor reading and the other tor

writing.

In IBitton 19811 a number ot parallel external sorting algorithms and architectures are exam­

ined and analyzed. The mass storage device is modelled as a parallel read/write disk. The algo­

rithm that displays the best pertormance is a parallel 2-way external merge-sort, termed the

parallel binary merge algorithm. It is an improved variation or Method 1 in Section 6.1, achieved

by parallelizing the second phase or this method.

When the number or output runs is zk, and k>l, 2k- l processors can be used to pertorm

concurrently the next step or the merge sort. Thus, execution or the parallel binary merge algo­

rithm can be divided into three stages as shown in Figure 16. The algorithm begins execution in

a suboptimal stage (similar to phase 1 in Method 1), in which sorting is done by successively

GJ []J [!!]
[!iJ U] GJ
~ ~ OJ
~ ~ ~

FIGURE 16: PARALLEL BINARY MERGE SORT

~
[2J
[]
Q]

SUBOPTIMAL
STAGE

OPTIMAL
STAGE

input
drive

output
drive

I

I
I
I
I ,
\
\
\

, ,
I

I
I
I
I ,
I , ,
\ ,

\

"

FIGURE 17: ARCmTECTURE FOR THE PARALLEL BINARY MERGE SORT

l' :, r

32

merging pairs of longer runs until the number of runs is equal to twice the number of processors.

During the suboptimal stage, the processors operate in parallel, but on separate data. Parallel

I/O is made possible by associating each processor with a surface of the read disk and a surface of

the write disk.

When the number of runs equals 2.p, each processor will merge exactly 2 runs of length

N/2p. We term this stage the optimal stage. During the postoptimal stage, parallelism is

employed in two ways. First, Z'-I processors are utilized to concurrently merge 2k-I pairs of runs

(this occurs after log(m/k) merge steps). Second, pipelining is used between merge steps. That is,

the ith merge step starts as soon as step (i-I) has produced one unit or each or two output runs

(where a unit can be a single record or an entire disk page).

The ideal architecture ror the execution or this algorithm is a binary tree or processors, as

shown in Figure 17. The mass storage device consists or two drives, and each leaf processor is

associated with a surface on both drives. In addition to the leal processors, the disk is also

accessed by the root processor, to write the output file. This organization permits leaf processors

to do I/O in parallel, while reducing almost by haIr the number or processors that must actually

do input/output.

&.3. Analysis ot parallel extel'Dal SOl'tln. alsol'tthm

For serial external sorting, numerous empirical studies have been done on real computers

and real data in order to evaluate the perrormance or external sorting algorithms. The results or

these studies have complemented analytical results, when modelling analytically the effect or

access time and the impact of data distribution was too complex. In a parallel environment, the

analytical performance evaluation of an external sorting scheme is made even more difficult

because or the complexity or the I/O device.

Some indication or the parallel speedup that can be achieved by performing an external sort

in parallel may be derived by assuming that the available I/O bandwidth is limited only by the

number of processors. However, a more satisfactory analysis or parallel external sorting algo­

rithms must take into consideration the constraints imposed by mass-storage technology. For

33

example, ror the parallel binary merge algorithm ir the modified disk described in Section 6.2 is

used ror storage, the suboptimal stage can either be highly parallel, or almost sequential, depend­

ing whether or not the processors request data rrom several tracks on the same cylinder.

7. HARDWARE SORTERS

The high cost or sorting and the rrequent need ror it are motivating the design or "sort

engines", that could eventually off-load the sorting runction rrom general purpose CPU's. By

implementing in hardware the sequence or comparison and move steps required by an efficient

sorting algorithm, one could realize a low-cost, rast hardware device that would significantly

lighten the burden on the CPU. Several alternative designs or hardware sorters have recently been

proposed IChen et al. 1978, Chung et al. 1980, Lee et al. 1981, Dohi et al. 1982, Yasuura et al.

1982, Thompson 19831, and preliminary evaluations seem to indicate that a VLSI implementation

of sorting circuits could soon become reasible. The relatively simple logic required ror sorting con­

stitutes a strong argument in ravor of this approach. In addition, the advent or new and inexpen­

sive shift-register technologies, such as charge-coupled devices and bubble memories, is stimulat­

ing new designs of hardware sorters based on these technologies ILee et aI. 1981, Chung et al.

19801·

Another outcome or technology improvement might be that in the ruture, bubble chips will

provide storage ror large files, with on-chip sorting capabilities. In this case, the sorting runction

will be provided by the mass-storage devices, without requiring the transrer or files to a dedicated

sorting machine or the main memory of a general purpose computer. However, at this point, it is

premature to determine whether or not advances in technology will be able to provide ror intelli­

gent mass-storage devices with sorting capabilities.

Hardware sorters, and in particular VLSI sorting circuits, are presently the focus of active

research. Theoretical problems related to are. time complexity are also drawing considerable

attention to VLSI sorting IThompson'198O, Leiserson 1981, Thompson 19831. It is beyond the

scope of this paper to present a proper surveyor the theoretical bounds obtained ror chip area

and time complexity or VLSI sorters. These results pertain to a new research area in complexity

34

theory that is being defined, and they cannot be presented without properly defining VLSI circuit

areas and introducing the theoretical area*time2 tradeoff.4

In the remainder or this section, we present an overview or alternative designs that have

been proposed ror hardware sorters. We have chosen to concentrate on sorters that were origi-

nally conceived ror the magnetic bubble technology, because they illustrate well how technology

constraints define tradeoffs between sorting speed and parameters related to I/O bandwidth,

memory, and number or control lines required by on-chip sorters. In particular, we will describe

the rebound Borter and the up-down Borter, that are clever pipeline versions or the odd-even tran-

sposition sort (Section 2.1), and a number or magnetic bubble sorters that integrate a sorting

capability in bubble memory.

7.1. The rebound Borter

The uniform ladder \Chen761 is an N-loop shirt-register structure, capable or storing N

records, one record to a loop. Since records stored in adjacent loops can be exchanged, this

storage structure is very suitable ror a hardware implementation or the odd-even transposition

sort (see Section 2.1). If the time ror a bit to circulate within a loop is called a period, then N

records (that have been previously stored in the ladder) can be Sorted in (N+ 1}/2 periods, using

(N-l) comparators.

Further investigation or the ladder structure led to the design or a new sorting scheme,

where input/output or the records can be completely overlapped with the sorting time. This

scheme is the Rebound Sort \Chen781. The basic building block or the rebound sorter is the steer­

ing unit (Figure 18-a), which has an upper-Iert cell L and a lower-right cell R. A sorter ror N

records is assembled by stacking (N-l) steering units, plus a bottom cell and a top cell (Figure
I

18-b). Associated with the two cells in a steering unit is a comparator K, which can compare the

two values stored in the upper-Iert and lower-right cells. A record may be stored across adjacent

.. In a recent work (published after this paper wu written), Thompson has surveyed thirteen diirerent VLSI circuits,
that implement a range of sorting schemel: heap sort, pipelined merge-sort, bitonic .ort, bubble sort and sort by enumera.­
tion. For each of these schemes one or several circuit topologies (linear array, mesh, binary tree, shulle-exchange an~
cube-connected cycles, mesh of trees) are considered, and the resulting sorter is evaluated with respect to its areaetime
complexity.

Output
Input

(0) The Steering Unit

(b) Stocking Steering Units

FIGURE 18: THE REBOUND SORTER [Chen et al. 1978]

A
o
8
C2
CI

--.

to

to+8

A
o
8
C2

-v
CI

I -.,.

to+1

AI

to+9

A
o
82
81

to+2

A

to+IO

A
o
82

to+3

A
8 1

to+II'

A
O2
01

to+4

'A
8

02

to+12

A
02

to+5

A
8
CI

to+13

A2
AI

to+6

A
8
C

nr.
eli

to+14

FIGURE 19: THE REBOUND SORT FOR 4: RECORDS [Chen et al. 1978]

A2

to+7
A
8
C
01

r-To;

to+15

35

cells in two steering units, but the sorting key (assumed to be at the head or the record) must fit

entirely in one cell, so that 2 keys can be compared in a single steering unit. Sorting is performed

by pipelining input records through the stack or steering units. Records enter the sorter through

the upper-left cell or the top steering unit, and emerge in sorted order rrom the top cell (at the

upper-right corner or the stack), after 2N steps. The sorting scheme is illustrated in Figure 19 ror

N==4. The sorter alternates between a decision state and a continuing state. In the decision

state, each steering unit compares the keys stored in its upper-lert and lower-right celIs, and emits

the keys either horizontally (upper-lert key to the right, lower-right key to the lert) or vertically

(upper-left key to the upper unit, lower-right key to the lower unit), depending on the outcome or

the comparison. In the continuing state, each steering unit continues to emit its contents in the

direction determined in the previous decision step. The continuing steps are required to append

the body or the records to their key. It is readily seen that the first key emerges rrom the sorter

arter N steps (to+ 8 in Figure 9), and that the complete sorted sequence is produced in the next N

steps.

7.J. The up-down Borter

A significant improvement or the ladder sorter can be achieved by incorporating the com-

parison runction in the basic steering unit, and using an "up-down" sorting scheme instead or the

rebound sort. To sort 2N keys, the "compare-steer bubble sorter" ILee et al. 1981) requires N

compare/steer units, stacked on the top or each other. It is assumed that the entire record fits in

a cell (thUS 2 records are stored in a compare/steer unit). The up-down sort is illustrated in Fig-

ure 20 ror N=3 (3 compare/steer units sorting 6 records). The up-down sorter operates in two

phases. During the downward input phase, 2N keys are loaded in 2N periods. During each period
,

or the input phase, a key enters the sorter and all units push down the larger or their 2 keys (to

the unit beneath them). During the upward output phase, each unit pops up the smaller or its 2

keys (to the unit above it), and a key is output in every period.

The up-down sorter eliminates the large number or control lines required by the rebound

sorter. While the rebound sorter needs multiple control lines to individually activate switches or

5
2
6
I
3
4
I

•
CO

t

CO
T

CO
t

•
5

•
4

•
CO

CO
"

CO
"

cp
'.-

•
2

•
3

•
6

•

5
2
6
I
3
I

•

CO
T

CO
T

<l)

t

•
5

•
6

•
CO

4
'T

CO
"

CO
T

I
2
•
3

•
4

•
CO

•
I

CO
ta

5
2
6
I
I ..
4
t

<l)

t

<l)

t

•
5

•
CO

•
<l)

3
t

<l)

't

<l)

•

I
2
3
•
4

•
6

•
CO

•
I

<l)

t9

5
2
6
I ..

3
..

CO
t

<l)

t

•
6

•
CO

•
CO

I
't

4

•
CO

t

I
2
3
4
•
5

•
CO

•
<l)

•

5
2
1

6
t

4
•

<l) -.

•
CO

•
CO

•
CO

I
•
3
't

<l)

•

I
2
3
4
5
•
6

•
<l)

•
<l)

•

5
I

•

2
T

6
..

<l)

--.

CO

CO

CO

I
..

3
T

4
't

I
2
3
4
5
6

<l)

CO

CO

•
I •

5 •
2 ..

3 •
• 4
,
6 •

FIGURE 20: OPERATION OF THE UP-DOWN SORTER FOR 6 RECORDS

(only the keys are shown) [Lee et ale 1981]

38

the bubble ladder, the up-down sorter can be implemented with a single control line for resetting

all the compare/steer units at the beginning of each phase. Thus, on-chip compare-steer units

have a better chance to provide a chip implementation or large files sorters.

Both the rebound sorter and the up-down sorter have the very desirable property or com-

pletely overlapping input/output time with sorting time. Thus, assuming that only serial

input/output or data records is available, they provide an optimal hardware implementation or

file sorting.

7.3. Sorting within bubble memory

The sorter described in the previous section incorporates the comparison function in the

design or the bubble chip. Thus, this type or chip constitutes an intelligent memory, capable or

performing the logical operations required by sorting. The sorters proposed in IChung et al. 19801

also attach comparators to the bubble memory. However, in addition, they eliminate the I/O

runction that is an intrinsic part or the previous sorting algorithms. The motivation ror designing

bubble elements that sort in-situ steJIl8 rrom the assumption that magnetic bubble memory may

soon provide ror cost-effective mass-storage systeJIl8. Ir technology advances make this assump-

tion realistic, then sorting a file will only require rearranging records in mass-storage, according to

the result or comparisons perrormed within the memory, without I/O operations or CPU interven-

tion.

Four models or intelligent bubbles are considered in IChung et al. 19801, and for each model

an alternative sorting scheme is proposed. The models differ by the size or the bubble loops and

the number or switches required between the loops (to perrorm comparisons). The first two

models implement a bubble sort and an odd-even transposition sort, respectively, while the other
I

two implement a bitonic sort. The first model has two loops, one or size (n-l) and the other or

size 1, and a single switch between them (Figure 21.a) is used to perform the bubble sort. The

second model is a linear array or loops, all or size 1, with a switch between every pair or adjacent

loops (Figure 21.b). The (n-l) switches perrorm comparisons in parallel, according to the odd-

even transposition scheme (Section 2.1). For the other two models (Figure 21.c, 21.d), the basic

:
(n-I)
Modell

•••

Model 2

D~D~E3~D~ ...
I I I I

Model :3

• • •

Model 4

FIGURE 21: BUBBLE LOOP STRUCTURES FOR SORTING [Chung et ale 1980]

37

idea is to have the option to open a switch between adjacent loops (that are of the same size in

Model 3, but of different sizes in Model 4), so that the 2 loops are collapsed into a larger loop. At

every step of the bitonic sort, larger loops are formed that contain bitonic sequences. Because

they implement a faster algorithm, these sorters are faster than the first sorter. However, the tra-

deoff is a higher hardware complexity (more switches, and more control states per switch), which

may be beyond the present limits of chip density. For example, the bubble-sort sorter sorts in

0(n2) comparison steps, but it requires only one simple switch (with 3 control states). On the

other hand, a bitonic sorter sorts in time 0(nlog2n), but requires logn complex switches (each with

310gn control states). Thus, these detailed designs of bubble sorters provide an excellent iIIustra-

tion of cost--performance tradeoffs in sorting.

7.4. Summary and I'ecent I'esults

Several alternative designs of hardware sorters have recently been proposed, and preliminary

evaluations of their feasibility are being performed. One of the most promising approaches

appears to be the implementation of a simple pipelined sorting scheme on bubble chips.

However, a number of alternative designed are being investigated. More recently, two

detailed layouts of VLSI sorters have been proposed. A high capacity cellular array that sorts by

enumeration is investigated in !Yasuura et al. 19821. In !Dohi et a1. 19821, celis that are able to

sort-merge data in compressed form are connected in a binary tree topology to constitute a power-

ful sorter. In both cases, the design of the basic cell is simple enough to allow very high density

packaging with current or near-future technology.

The parallel sorting algorithms used by currently proposed hardware sorters are simple and

slow (as compared to either the sorting networks or the shared memory model algorithms).
I

Although theoretical complexity bounds are being investigated for potentially faster VLSI sorters

and important results have been achieved !Thompson 1983, Bilardi and Preparata 19831, the feasi-

bility of fast, high-capacity VLSI sorters is still an open problem. However, this direction of

research on parallel sorting appears to be very promising. A well defined VLSI complexity model

that combines some measures of hardware complexity with time efficiency provides a systematic

38

approach to the analysis or parallel sorting algorithms. For bubble memory devices, assuming

that records are read and written serially, it has been shown that input/output time can be

effectively overlapped with sorting time. Thus, advances in technology may soon make a well­

designed, dedicated sorting device a cost effective addition to many computer systems.

8. CONCLUSIONS AND OPEN PROBLEMS

Over the last decade, parallel sorting has been the roc us or active research. A large number

or parallel sorting algorithms are presently known, and new algorithms are still being developed -

ranging rrom network sorting algorithms to algorithms ror hypothetical shared memory parallel

computers or VLSI chips. Research on parallel sorting has offered many challenges to both

theoreticians and systems designers. From a theoretical point or view, the main research problem

has been to design algorithms which by systematically exploiting the intrinsic parallelism in sort­

ing and merging, would reach the time theoretical lower bound. That is , algorithms that would

sort n numbers in time O(logn), on a hypothetical O(n)-processor parallel machine. Systems

designers, on the other hand, have investigated aspects such as reasibility with current or near­

term technology, and integration or input/output time in the cost or parallel sorting.

Despite the apparent disparity among the numerous parallel sorting algorithms that have

been proposed, we have shown that these algorithms may be broadly classified into three

categories: network sorting algorithms, shared memory sorting algorithms and parallel file sorting

algorithms. The first category includes algorithms that are based on non-adaptive, iterative merg­

ing rules. Although first proposed in the context or sorting networks, the two rundamental paral­

lel merging algorithms (the odd-even merge and the bitonic merge described in Sections 3.1), were

subsequently embedded in a more general model or parallel computation, where processors

exchange data synchronously along the lines or a sparse interconnection network. In particular,

the bitonic sort has been adapted ror mesh-connected processors (Section 3.2.1), and ror a number

or networks such as the Shuffle, the Cube and the Cube-Connected Cycles.

aG

Algorithms in the second category require a more flexible pattern or memory accesses than

the network sorting algorithms. They assume shared memory models or computation, where pro-

cessors share read and write access to a very large memory pool, with various degrees or conten-

tion and different conflict resolution policies. For the most part, shared memory parallel sorting

algorithms are raster than the network sorting algorithms, but they are rar less reasible rrom a

hardware point or view. In Table I, we have briefly summarized the asymptotic bounds or the

main algorithms in both the network and the shared memory categories, in terms or processors

utilized and execution time (the latter being essentially estimated as the number or parallel com-

parison steps required by the algorithms).

In the third category or parallel sorting algorithms, we include both internal and external

parallel sorting algorithms that utilize limited parallelism to solve a large size problem. First, we

have dealt with block-sorting algorithms, that can sort a number or elements proportional to the

number or available processors (the proportionality constant being dependent on the size or the

processors' memory). Then we have introduced parallel external sorting algorithms, that address

the problem or sorting in parallel an arbitrarily large mass-storage file.

Table I
Number or Processors and Execution Time

Required by Parallel Sorting Algorithms

Algorithm Processors Time
Odd-Even Transposition n O(nJ

Batcher's Bitonic O(nlog2n) O(log n)
Stone's Bitonic n/2 O(log2n)
Mesh-Bitonic

n~
O(Vii)

Muller-Preparata O(logn)
Hirschberg (1)

nl+nl/k
O(logn)

Hirschberg (2) O(klogn)
Preparata (1) rlo~'k O(logn)
Preparata (2) n + O(klogn)

Ajtai et aI. nlogn O"(Iogn)'

40

Besides these three classes of parallel sorting algorithms, we have described (in Section 7) a

number of hardware sorter designs. Hardware sorters that have been proposed assume a fixed,

sparse interconnection scheme between the processing elements. The parallel sorting algorithms

utilized by these sorters are highly synchronous, and, for the most part, are derived from algo­

rithms that we have classified as network sorting algorithms (in particular, the bitonic sort algo­

rithm). Although the hardware sorters did not introduce innovative parallel sorting algorithms,

new and important directions of research on parallel sorting are being explored in their design

process. One is the exploration of algorithms that exploit the characteristics of new storage tech­

nologies such as magnetic bubbles. The other, is the integration of VLSI hardware complexity in

cost models by which parallel sorting algorithms are being evaluated.

One conclusion emerges clearly from this survey. Most research in the area of parallel sort­

ing has concentrated on finding new ways to speed up sorting algorithms' theoretical computation

time, while other aspects (such as technology constraints or data dependency) have received little

consideration. Typically, algorithms have been developed for hypothetical computers, that utilize

unlimited parallelism and space to solve the sorting problem in asymptotically minimal time.

Today, it seems that the complexity of sorting either on networks or on shared memory parallel

processors is well understood. Remaining open problems on the complexity of parallel sorting are

mostly related to newer models of VLSI complexity, that combine chip area with time IThompson

19831.

It might be the case that after a decade of research mainly devoted to the theoretical com­

plexity or parallel sorting, aspects related to the feasibility or parallel sorting will now be more

systematically explored, in the context of current or near-term technology. To appreciate the

practical importance of parallel sorting, one should remember that the first parallel sorting algo­

rithms were intended to solve a hardware problem: building a switching network that could pro­

vide all permutations of n input lines, with a delay shorter that the time required by serial sort­

ing. It would be interesting, now that many fast parallel sorting algorithms are known, to investi­

gate whether these algorithms can be adapted to realistic models of parallel computation. In par­

ticular, further research is needed to address issues related to limited parallelism (to remove the

41

constraint relating the number or processors to the problem size), partial broadcast (to replace

simultaneous reads .to the same memory location), or resolution or memory contention. Another

important problem is related to the validity or the perrormance criteria by which parallel sorting

algorithms have been previously evaluated. Clearly, communication, I/O costs and hardware

complexity must be integrated in a comprehensive cost model, general enough to include a wide

range or parallel processors architectures. In particular, an issue that has been largely ignored by

previous research on parallel sorting is the initial cost or reading the source data into the proces-

sors' memories. While it is justified to ignore this issue when considering a serial, internal sorting

algorithm, the situation is quite different with parallel processing. On a single processor, the

-
source data is read sequentially into memory. For a parallel processor, there is the possibility

that several processors can simultaneously read or write. On the Illiac-IV computer, ror example,

a fixed-head disk was used ror concurrent I/O by all 64 processors. However, when a significantly

larger number or processors is involved, only part or them will be able to perform I/O operations

concurrently. Thus, ror parallel internal sorting, the cost or reading and writing the data should

be incorporated when an algorithm is evaluated. In particular, there would be no point in using a

parallel sorting algorithm that requires only O(logn) time, ir the startup cost to get the data in

memory were O(n). Modelling the cost of I/O is even more crucial when the problem or sorting a

large data file in parallel is addressed. The importance or file sorting in database systems will

un doubt ably motivate rurther research in this direction.

42

G. REFERENCES

IAjtai et al. 19831 Ajtai M., J. Koml08 and E. Szemeredi, "An O(nlogn) Sorting Network,"
Proceedings 15th Annual ACM Symp. Theory Comput., April 1983.

IAlekseyev 19691 Alekseyev V.E., Kibernetica, 5, 5, 1969, pp. 99-103.

IBanerjee and Hsiao 19781 Banerjee J. and D.K. Hsiao, "Concepts and capabilities of a database
computer," ACM Trans. Database Systems, 3, 4, December 1978. .

IBatcher 19681 Batcher K.E., "Sorting networks and their applications," 1968 Spring Joint Com­
puter Conference, AFIPS Proceedings, Vol. 32.

IBaudet and Stevenson 19781 Baudet G., and D. Stevenson, "Optimal sorting algorithms for paral­
lel computers," IEEE Trans. Comput., C-27, 1, January 1978.

IBentley and Kung 19791 Bentley J.L. and H.T. Kung, "A tree machine for searching problems,"
~roceedings 1979 International Conference on Parallel Processing, pp. 257-266, August 1979.

IBilardi and Preparata 19831 Bilardi G. and F.P. Preparata, "A minimum area VLSI architecture
for O(logn) time sorting," TR-I006, University of Illinois at Urbana-Champaign, November 1983.

IBitton 19811 Bitton-Friedland D., "Design, analysis and implementation of parallel external sort­
ing algorithms," Ph.D. Dissertation, December 1981, University of Wisconsin, Madison.

IBitton and DeWitt 19831 Bitton D. and D.J. DeWitt, "Duplicate record elimination in large data
files," ACM Trans. Database Systems, June 1983.

IBorodin and Hopcroft 19821 Borodin A. and J.E. Hopcroft, "Routing, merging and sorting on
parallel models of computation," Proc. 14th Annual ACM Symp. on Theory of Computation,
1982.

IBryant 19801 Bryant Ray, "External Sorting in a Layered Storage Architecture," mM Research
Center, Yorktown Heights, N.Y., 1980.

IChen et al. 19781 Chen T.C., V.Y. Lum, and C.Tung, "The rebound sorter: an efficient sort
engine for large files," Proc. 4th VLDB, September 1978.

IChung et al. 19801 Chung K., F. Luccio and C.K. Wong, "On the complexity of sorting in mag­
netic bubble memory systems," IEEE Trans. Comput., C-29, July 1980.

IDohi et al 19821 Dohi Y., A. Suzuki and N. Matsui, "Hardware sorter and its application to data­
base machine," 9th Computer Architecture Conference, April 1982.

IEven 19741 Even S., "Parallelism in tape sorting," Commun. ACM, 17, 4, April 1974.

IFeng 19811 Feng Tse-yun, "A survey of interconnection networks," Computer, 14, 12, December
1981.

IFishburn and Finkel 19821 Fishburn J.P and R.A: Finkel, "Quotient networks," IEEE Trans.
Comput., C-31, 4, April 1982.

IGavril 19751 Gavril F., "Merging with parallel processors," Commun. ACM, 18, 10, October
1975.

43

IHirschberg 19781 Hirschberg, D.S., "Fast parallel sorting algorithms," Commun. ACM, 21, 8,
August 1978.

IHsiao et at 19801 Hsiao D.C. and Menon M.J., "Parallel record-sorting methods for hardware real­
ization," TR OSU-CISRC-TR-80-7, The Ohio State University, Columbus, Ohio, July 1980.

IKnuth 19731 Knuth D.E., The Art of Computer Programming, Vol. 9, Sorting and Searching.
Addison-Wesley, 1972.

IKumar and Hirschberg 19831 Kumar M. and D.S. Hirschberg D.S., "An efficient implementation
of Batcher's odd-even merge algorithm and its application in parallel sorting schemes," IEEE
Trans. Comput., C-32, March 1983.

ILee et al. 19811 Lee D.T., H. Chang and K. Wong, "An on-chip compare/steer bubble sorter,"
IEEE Trans. Comput., C-30, June 1981.

ILeilich 19781 Leilich H.O., G. Stiege and H.C. Zeidler, "A search processor for database manage­
m,ent systems," Proceedings 4th Conference on Very Large Database (1978).

ILeiserson 19811 Leiserson C. E., "Area-efficient VLSI computation," Ph.D. Dissertation, TR
CMU-CS-82-108, October 1981.

IMuller and Preparata 19751 Muller D.E. and Preparata F.P., "Bounds for complexity of networks
for sorting and switching," JACM, April 1975.

INassimi and Sahni 19791 Nassimi D. and S. Sahni, "Bitonic sort on a mesh connected parallel
computer," IEEE Trans. Comput., C-27, 1, January 1979.

INassimi and Sahni 19821 Nassimi D. and S. Sahni, "Parallel algorithms to set up the Benes per­
mutation network," IEEE Trans. Comput., C-31, 2, February 1982.

IPease 19771 Pease M.C., "The indirect binary n-cube microprocessor array," ~E Trans. Com­
put., C-26, 5, May 1977.

IPreparata 19781 Preparata F.P., "New parallel sorting schemes," IEEE Trans. Comput., C-27, 7,
July 1978.

IPreparata and Vuillemin 19791 Preparata F.P. and J. Vuillemin, "The cube-connected-cycles,"
Proc. 20th Symp. on Foundations or Computer Science, 1979.

IShiloach and Vishkin 1981] Shiloach Y. and U. Vishkin, "Finding the maximum, merging and
sorting in a parallel computation model," J. Algorithms, 2, 1, March 1981.

ISiegel 1977] Siegel H.J., "The universality of various types of SIMD machine interconnection net­
works," Proceedings of the Fourth Annual Symposium on Computer Architecture, March 1977.

I

ISiegel 19791 Siegel H.J, "Interconnection networks ror SIMD machines," IEEE Computer, 12, 6,
June 1979.

IStone 1971] Stone H.S., "Parallel processing with the perfect shuffle," IEEE Trans. Comput., C-
20, 2, February 1971.

IStone 1978] Stone H.S., "Sorting on Star," IEEE Trans. Sortware Eng., 4, 2, March 1978.

IThompson and Kung 19771 Thompson C.D. and Kung H.T., "Sorting on a mesh-connected

44

parallel computer," Commun. ACM, 20, 4, April 1977.

[Thompson 19801 Thompson C.D., "A complexity theory Cor VLSI," Ph.D. Dissertation, CMU­
CS-80-140, August 1980.

[Thompson 19831 Thompson C.D., "The VLSI complexity oC sorting," IEEE Trans. Comput., C-
32, 12, December 1983.

[Valiant 19751 Valiant L.G., "Parallelism in comparison problems," SIAM J. Computing, Vol. 3,
No.4, September 1975.

IVishkin 19811 Vishkin U., "Synchronized parallel computation," Ph.D. thesis, Technion Institute
- Israel, 1981.

[Van Voorhis 19711 Van Voorhis D.C., Ph.D. Dissertation, Stan Cord Univ. , 1971.

[Yasuura H., N. Takagi and S. Yajima, "The parallel enumeration sorting scheme Cor VLSI,"
~EE Trans. Comput., C-31,12, December 1982.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif

