6,392 research outputs found

    Sample-Efficient Learning of Mixtures

    Full text link
    We consider PAC learning of probability distributions (a.k.a. density estimation), where we are given an i.i.d. sample generated from an unknown target distribution, and want to output a distribution that is close to the target in total variation distance. Let F\mathcal F be an arbitrary class of probability distributions, and let Fk\mathcal{F}^k denote the class of kk-mixtures of elements of F\mathcal F. Assuming the existence of a method for learning F\mathcal F with sample complexity mF(ϵ)m_{\mathcal{F}}(\epsilon), we provide a method for learning Fk\mathcal F^k with sample complexity O(klogkmF(ϵ)/ϵ2)O({k\log k \cdot m_{\mathcal F}(\epsilon) }/{\epsilon^{2}}). Our mixture learning algorithm has the property that, if the F\mathcal F-learner is proper/agnostic, then the Fk\mathcal F^k-learner would be proper/agnostic as well. This general result enables us to improve the best known sample complexity upper bounds for a variety of important mixture classes. First, we show that the class of mixtures of kk axis-aligned Gaussians in Rd\mathbb{R}^d is PAC-learnable in the agnostic setting with O~(kd/ϵ4)\widetilde{O}({kd}/{\epsilon ^ 4}) samples, which is tight in kk and dd up to logarithmic factors. Second, we show that the class of mixtures of kk Gaussians in Rd\mathbb{R}^d is PAC-learnable in the agnostic setting with sample complexity O~(kd2/ϵ4)\widetilde{O}({kd^2}/{\epsilon ^ 4}), which improves the previous known bounds of O~(k3d2/ϵ4)\widetilde{O}({k^3d^2}/{\epsilon ^ 4}) and O~(k4d4/ϵ2)\widetilde{O}(k^4d^4/\epsilon ^ 2) in its dependence on kk and dd. Finally, we show that the class of mixtures of kk log-concave distributions over Rd\mathbb{R}^d is PAC-learnable using O~(d(d+5)/2ϵ(d+9)/2k)\widetilde{O}(d^{(d+5)/2}\epsilon^{-(d+9)/2}k) samples.Comment: A bug from the previous version, which appeared in AAAI 2018 proceedings, is fixed. 18 page

    Learning Geometric Concepts with Nasty Noise

    Full text link
    We study the efficient learnability of geometric concept classes - specifically, low-degree polynomial threshold functions (PTFs) and intersections of halfspaces - when a fraction of the data is adversarially corrupted. We give the first polynomial-time PAC learning algorithms for these concept classes with dimension-independent error guarantees in the presence of nasty noise under the Gaussian distribution. In the nasty noise model, an omniscient adversary can arbitrarily corrupt a small fraction of both the unlabeled data points and their labels. This model generalizes well-studied noise models, including the malicious noise model and the agnostic (adversarial label noise) model. Prior to our work, the only concept class for which efficient malicious learning algorithms were known was the class of origin-centered halfspaces. Specifically, our robust learning algorithm for low-degree PTFs succeeds under a number of tame distributions -- including the Gaussian distribution and, more generally, any log-concave distribution with (approximately) known low-degree moments. For LTFs under the Gaussian distribution, we give a polynomial-time algorithm that achieves error O(ϵ)O(\epsilon), where ϵ\epsilon is the noise rate. At the core of our PAC learning results is an efficient algorithm to approximate the low-degree Chow-parameters of any bounded function in the presence of nasty noise. To achieve this, we employ an iterative spectral method for outlier detection and removal, inspired by recent work in robust unsupervised learning. Our aforementioned algorithm succeeds for a range of distributions satisfying mild concentration bounds and moment assumptions. The correctness of our robust learning algorithm for intersections of halfspaces makes essential use of a novel robust inverse independence lemma that may be of broader interest

    Theory and Applications of Proper Scoring Rules

    Full text link
    We give an overview of some uses of proper scoring rules in statistical inference, including frequentist estimation theory and Bayesian model selection with improper priors.Comment: 13 page
    corecore