31,822 research outputs found

    Microdata protection through approximate microaggregation

    Get PDF
    Microdata protection is a hot topic in the field of Statistical Disclosure Control, which has gained special interest after the disclosure of 658000 queries by the America Online (AOL) search engine in August 2006. Many algorithms, methods and properties have been proposed to deal with microdata disclosure. One of the emerging concepts in microdata protection is k-anonymity, introduced by Samarati and Sweeney. k-anonymity provides a simple and efficient approach to protect private individual information and is gaining increasing popularity. k-anonymity requires that every record in the microdata table released be indistinguishably related to no fewer than k respondents. In this paper, we apply the concept of entropy to propose a distance metric to evaluate the amount of mutual information among records in microdata, and propose a method of constructing dependency tree to find the key attributes, which we then use to process approximate microaggregation. Further, we adopt this new microaggregation technique to study kk-anonymity problem, and an efficient algorithm is developed. Experimental results show that the proposed microaggregation technique is efficient and effective in the terms of running time and information loss

    Anonymizing cybersecurity data in critical infrastructures: the CIPSEC approach

    Get PDF
    Cybersecurity logs are permanently generated by network devices to describe security incidents. With modern computing technology, such logs can be exploited to counter threats in real time or before they gain a foothold. To improve these capabilities, logs are usually shared with external entities. However, since cybersecurity logs might contain sensitive data, serious privacy concerns arise, even more when critical infrastructures (CI), handling strategic data, are involved. We propose a tool to protect privacy by anonymizing sensitive data included in cybersecurity logs. We implement anonymization mechanisms grouped through the definition of a privacy policy. We adapt said approach to the context of the EU project CIPSEC that builds a unified security framework to orchestrate security products, thus offering better protection to a group of CIs. Since this framework collects and processes security-related data from multiple devices of CIs, our work is devoted to protecting privacy by integrating our anonymization approach.Peer ReviewedPostprint (published version

    Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes

    Full text link
    Cryptographic primitives are essential for constructing privacy-preserving communication mechanisms. There are situations in which two parties that do not know each other need to exchange sensitive information on the Internet. Trust management mechanisms make use of digital credentials and certificates in order to establish trust among these strangers. We address the problem of choosing which credentials are exchanged. During this process, each party should learn no information about the preferences of the other party other than strictly required for trust establishment. We present a method to reach an agreement on the credentials to be exchanged that preserves the privacy of the parties. Our method is based on secure two-party computation protocols for set intersection. Namely, it is constructed from private matching schemes.Comment: The material in this paper will be presented in part at the 8th DPM International Workshop on Data Privacy Management (DPM 2013

    Energy efficient privacy preserved data gathering in wireless sensor networks having multiple sinks

    Get PDF
    Wireless sensor networks (WSNs) generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-tomany structures are evolved due to need for conveying collected event information to multiple sinks at the same time. This study proposes an anonymity method bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify of an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks. Privacy guaranteed event information can be multicasted to all sinks instead of sending to each sink one by one. Since minimization of energy consumption is an important design criteria for WSNs, our method enables us to multicast the same event information to multiple sinks and reduce energy consumption

    Geographically intelligent disclosure control for flexible aggregation of census data

    No full text
    This paper describes a geographically intelligent approach to disclosure control for protecting flexibly aggregated census data. Increased analytical power has stimulated user demand for more detailed information for smaller geographical areas and customized boundaries. Consequently it is vital that improved methods of statistical disclosure control are developed to protect against the increased disclosure risk. Traditionally methods of statistical disclosure control have been aspatial in nature. Here we present a geographically intelligent approach that takes into account the spatial distribution of risk. We describe empirical work illustrating how the flexibility of this new method, called local density swapping, is an improved alternative to random record swapping in terms of risk-utility

    Authentication and authorisation in entrusted unions

    Get PDF
    This paper reports on the status of a project whose aim is to implement and demonstrate in a real-life environment an integrated eAuthentication and eAuthorisation framework to enable trusted collaborations and delivery of services across different organisational/governmental jurisdictions. This aim will be achieved by designing a framework with assurance of claims, trust indicators, policy enforcement mechanisms and processing under encryption to address the security and confidentiality requirements of large distributed infrastructures. The framework supports collaborative secure distributed storage, secure data processing and management in both the cloud and offline scenarios and is intended to be deployed and tested in two pilot studies in two different domains, viz, Bio-security incident management and Ambient Assisted Living (eHealth). Interim results in terms of security requirements, privacy preserving authentication, and authorisation are reported

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    User's Privacy in Recommendation Systems Applying Online Social Network Data, A Survey and Taxonomy

    Full text link
    Recommender systems have become an integral part of many social networks and extract knowledge from a user's personal and sensitive data both explicitly, with the user's knowledge, and implicitly. This trend has created major privacy concerns as users are mostly unaware of what data and how much data is being used and how securely it is used. In this context, several works have been done to address privacy concerns for usage in online social network data and by recommender systems. This paper surveys the main privacy concerns, measurements and privacy-preserving techniques used in large-scale online social networks and recommender systems. It is based on historical works on security, privacy-preserving, statistical modeling, and datasets to provide an overview of the technical difficulties and problems associated with privacy preserving in online social networks.Comment: 26 pages, IET book chapter on big data recommender system
    corecore