24 research outputs found

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Computational complexity theory and the philosophy of mathematics

    Get PDF
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the P≠NP problem and why it has proven hard to resolve, and the role of non-classical modes of computation and proof

    Dagstuhl News January - December 2008

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Why Do Humans Reason? Arguments for an Argumentative Theory

    Get PDF
    Reasoning is generally seen as a means to improve knowledge and make better decisions. However, much evidence shows that reasoning often leads to epistemic distortions and poor decisions. This suggests that the function of reasoning should be rethought. Our hypothesis is that the function of reasoning is argumentative. It is to devise and evaluate arguments intended to persuade. Reasoning so conceived is adaptive given the exceptional dependence of humans on communication and their vulnerability to misinformation. A wide range of evidence in the psychology of reasoning and decision making can be reinterpreted and better explained in the light of this hypothesis. Poor performance in standard reasoning tasks is explained by the lack of argumentative context. When the same problems are placed in a proper argumentative setting, people turn out to be skilled arguers. Skilled arguers, however, are not after the truth but after arguments supporting their views. This explains the notorious confirmation bias. This bias is apparent not only when people are actually arguing, but also when they are reasoning proactively from the perspective of having to defend their opinions. Reasoning so motivated can distort evaluations and attitudes and allow erroneous beliefs to persist. Proactively used reasoning also favors decisions that are easy to justify but not necessarily better. In all these instances traditionally described as failures or flaws, reasoning does exactly what can be expected of an argumentative device: Look for arguments that support a given conclusion, and, ceteris paribus, favor conclusions for which arguments can be found

    A study of one-turn quantum refereed games

    Get PDF
    This thesis studies one-turn quantum refereed games, which are abstract zero-sum games with two competing computationally unbounded quantum provers and a computationally bounded quantum referee. The provers send quantum states to the referee, who plugs the two states into his quantum circuit, measures the output of the circuit in the standard basis, and declares one of the two players as the winner depending on the outcome of the measurement. The complexity class QRG(1) comprises of those promise problems for which there exists a one-turn quantum refereed game such that one of the players wins with high probability for the yes-instances, and the other player wins with high probability for the no-instances, irrespective of the opponent’s strategy. QRG(1) is a generalization of QMA (or co-QMA), and can informally be viewed as QMA with a no-prover (or co-QMA with a yes-prover). We have given a full characterization of QRG(1), starting with appropriate definitions and known results, and building on to two new results about this class. Previously, the best known upper bound on QRG(1) was PSPACE. We have proved that if one of the provers is completely classical, sending a classical probability distribution instead of a quantum state, the new class, which we name CQRG(1), is contained in Ǝ · PP (non- deterministic polynomial-time operator applied to the class PP). We have also defined another restricted version of QRG(1) where both provers send quantum states, but the referee measures one of the quantum states first, and plugs the classical outcome into the measurement, along with the other prover’s quantum state, into a quantum circuit, before measuring the output of the quantum circuit in the standard basis. The new class, which we name MQRG(1), is contained in P · PP (the probabilistic polynomial time operator applied to PP). Ǝ · PP is contained in P · PP, which is, in turn, contained in PSPACE. Hence, our results give better containments than PSPACE for restricted versions of QRG(1)

    Platform://Democracy: Perspectives on Platform Power, Public Values and the Potential of Social Media Councils

    Get PDF
    Social media platforms have created private communication orders which they rule through terms of service and algorithmic moderation practices. As their impact on public communication and human rights has grown, different models to increase the role of public interests and values in the design of their rules and their practices has, too. But who should speak for both the users and the public at large? Bodies of experts and/or selected user representatives, usually called Platform Councils of Social Media Councils (SMCs) have gained attention as a potential solution. Examples of Social Media Councils include Meta’s Oversight Board but most platforms companies have so far shied away from installing one. This survey of approaches to increasing the quality of platform decision-making and content governance involving more than 35 researchers from four continents brough to together in regional "research clinics" makes clear that trade-offs have to be carefully balanced. The larger the council, the less effective is its decision-making, even if its legitimacy might be increased. While there is no one-size-fits-all approach, the projects demonstrates that procedures matter, that multistakeholderism is a key concept for effective Social Media Councils, and that incorporating technical expertise and promoting inclusivity are important considerations in their design. As the Digital Services Act becomes effective in 2024, a Social Media Council for Germany’s Digital Services Coordinator (overseeing platforms) can serve as test case and should be closely monitored. Beyond national councils, there is strong case for a commission focused on ensuring human rights online can be modeled after the Venice Commission and can provide expertise and guidelines on policy questions related to platform governance, particularly those that affect public interests like special treatment for public figures, for mass media and algorithmic diversity. The commission can be staffed by a diverse set of experts from selected organizations and institutions established in the platform governance field
    corecore