673 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

    Get PDF
    A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI's) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region at the second step. The algorithm namely sparse representation has applied to get the coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For each test pixel, the class label is determined with the help of obtained coefficients. The performances of MFASR have much better classification results than other classifiers in the terms of quantitative and qualitative percentage of results. This MFASR will make benefit of strong correlations that are obtained from different extracted features and this make use of effective features and effective adaptive sparse representation. Thus, the very high classification performance was achieved through this MFASR technique

    Locality Regularized Robust-PCRC: A Novel Simultaneous Feature Extraction and Classification Framework for Hyperspectral Images

    Get PDF
    Despite the successful applications of probabilistic collaborative representation classification (PCRC) in pattern classification, it still suffers from two challenges when being applied on hyperspectral images (HSIs) classification: 1) ineffective feature extraction in HSIs under noisy situation; and 2) lack of prior information for HSIs classification. To tackle the first problem existed in PCRC, we impose the sparse representation to PCRC, i.e., to replace the 2-norm with 1-norm for effective feature extraction under noisy condition. In order to utilize the prior information in HSIs, we first introduce the Euclidean distance (ED) between the training samples and the testing samples for the PCRC to improve the performance of PCRC. Then, we bring the coordinate information (CI) of the HSIs into the proposed model, which finally leads to the proposed locality regularized robust PCRC (LRR-PCRC). Experimental results show the proposed LRR-PCRC outperformed PCRC and other state-of-the-art pattern recognition and machine learning algorithms
    • …
    corecore