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Abstract—Despite the successful applications of probabilistic 

collaborative representation classification (PCRC) in pattern 

classification, it still suffers from two challenges when being 

applied on hyperspectral images (HSIs) classification: (1) 

ineffective feature extraction in HSIs under noisy situation; (2) 

lack of prior information for HSIs classification. To tackle the 

first problem existed in PCRC, we impose the sparse 

representation to PCRC, i.e. to replace the 2-norm with 1-norm 

for effective feature extraction under noisy condition. In order to 

utilize the prior information in HSIs, we firstly introduce the 

Euclidean distance (ED) between the training samples and the 

testing samples for the PCRC to improve the performance of 

PCRC. Then we bring the coordinate information (CI) of the HSIs 

into the proposed model, which finally leads to the proposed 

locality regularized robust PCRC (LRR-PCRC). Experimental 

results show the proposed LRR-PCRC outperformed PCRC and 

other state-of-the-art pattern recognition and machine learning 

algorithms.  

 
Index Terms—Coordinate information, Euclidean distance, 

hyperspectral image (HSIs), probabilistic collaborative 

representation classification (PCRC), sparse representation  

I. INTRODUCTION 

yperspectral images (HSIs) data has high spectral 

resolution due to the large spectral range and thus 

facilitate the discriminative performance on different land 

cover types [1]. The supervised classification [2] is one of the 

main topics in HSIs processing. In the supervised classification 

scenario, the output of testing samples is determined by the 

given training samples labelled for each class [1]. The great 

challenges, however, posed by adopting supervised 
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classification on HSIs are due to various causes. Firstly, the 

ratio of the large number of spectral bands in respect to the 

limited samples of training pixels is high, i.e. the well-known 

Hughes phenomenon [3]. Secondly, the materials of the same 

category may appear different spectral features and the 

different classes of samples may share the same spectral 

characteristic due to the sensory or environmental noises [4-5]. 

In order to address the Hughes phenomenon in hyperspectral 

images or remote sensing images, many advanced supervised 

classification methods have been proposed and achieved good 

performance, such as the support vector machine (SVM) [5], 

extreme learning machine (ELM) [6-7], sparse multinomial 

logistic regression (SMLR) [8-9] etc. In additions, some recent 

literatures have also been proposed for solving the Hughes 

Phenomenon. For examples, in [10] and [11], the band 

selection techniques have been proposed for reducing the 

spectral bands via adaptive subspace partition strategy and 

optimal clustering framework, respectively ; in [12] and [13], a 

subpixel component analysis and recurrent attention technique 

have been proposed for hyperspectral image and scene 

classification, respectively; in [14] and [15], the performance of 

HSIs classification has been improved by multilabel sample 

augmentation-based and superpixel-based semi-supervised 

active learning, respectively. The above references have 

acquired relative good performances. On the other hand, 

methods such as sparse representation classification (SRC) 

[16-17] and collaborative representation classification (CRC) 

[1] also achieved good performance in HSIs classifications. 

Different from SVM, ELM or SMLR, the SRC and CRC don’t 

need the training process because they aim to represent a testing 

sample directly by the linear combination of all the training 

samples from all classes with 1-norm and 2-norm on the 

representation coefficient, respectively [18-19]. Both methods 

finally assign the class labels to the corresponding testing 

samples directly via evaluating the minimum redundancy 

representation among all the classes [1]. This advantage of SRC 

and CRC has drawn vast research attentions. However, the SRC 

has its drawback in HSIs processing. The SRC is 

time-consuming as the computation of the sparsity 1-norm is a 

complicated procedure [1]. Meanwhile, Zhang et al. [19] 

pointed out that it is unnecessary to regularize the 1-norm 

coefficients if the feature dimension of samples is high enough 

[1]. They argued that the success of SRC can be largely 

attributed to the collaborative representation between the test 

sample and the training samples among all classes [19]. 
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Therefore, CRC has attracted many attentions due to its good 

performance. For example, in [20], a relaxed CRC method has 

been proposed for multiple features fusion and classification 

with good performance. In [21], the good classification 

performance has been produced based on a collaborative 

neighbor representation method. In [22], a probabilistic 

collaborative representation classifier (PCRC) for pattern 

classification based on the viewpoint of probabilities and 

achieved better performance than CRC and some other 

methods [22]. Even for HSIs classification, the CRC also 

produced good performance. For example, a joint within-class 

collaborative representation has been proposed for 

hyperspectral image classification in [23]. In [24], a nonlocal 

joint collaborative representation with locally adaptive 

dictionary has been proposed for HSIs classification. In [25], a 

joint collaborative representation with multitask learning has 

been proposed for hyperspectral image classification. These 

CRC-based methods have achieved good performance to some 

extent, but they ignored a critical issue of CRC that the 2-norm 

is sensitive to noise when HSIs are prone to be corrupted by 

noise as stated in literature [16]. 

Noises may be introduced to HSIs during the process of HSIs 

data acquisition and transmission [26]. Hence, it is important to 

design an algorithm to extract features from noisy HSIs 

efficiently and effectively. For this purpose, many algorithms 

have been proposed, such as, graph-regularized low rank 

destriping (GRLD) [27], principal component analysis and 

wavelet shrinkage (PCA-WS) [28], spectral-spatial adaptive 

hyperspectral total variation (SSAHTV) [29] and singular 

spectrum analysis (SSA) [26] etc. However, these methods 

focused on either feature extraction or denoising independently, 

resulting in the classification results that may not be optimal 

due to the lack of comprehensive consideration for both 

preprocessing and classification tasks.  

To address the above challenges, we propose a locality 

regularized robust probabilistic collaborative representation 

classification (LRR-PCRC) framework to process the feature 

extraction and classification simultaneously for HSIs 

classifications. Firstly, we introduce the sparse representation 

(SR) to the PCRC. That is because it is well-known that the 

1-norm SR [30-31] is robust to characterize the loss function if 

the datasets are corroded by noises. Then, we introduce the rich 

prior information of HSIs to PCRC in order to extract the 

efficient feature from HSIs, including the Euclidean distance 

(ED) between training samples and testing samples, and the 

coordinate information (CI) of the HSIs. The motivations can 

be summarized in two aspects. On one hand, the same category 

shares similar spectral features to some extent even when the 

data points are corrupted, hence, the features can be extracted. 

More importantly, on the other hand, the neighborhood pixels 

within the regions are more likely to be in the same category 

[32]. Therefore, the coordinate information within HSIs can be 

used for extracting the spatial information since the coordinate 

of the pixels in HSIs can’t be changed even the data points in 

HSIs are corrupted. For the ED and CI information, we 

calculate the ED and coordinate distance between each training 

sample and the whole testing samples and add prior information 

we have acquired to impose the constraints to the representation 

coefficient. Finally, the locality regularization will be 

employed for robust HSIs feature extraction and classification 

simultaneously.  

The main contributions of proposed work can be 

summarized as follows. Firstly, we introduce the sparse 

constraint to PCRC to tackle the problem that PCRC is 

sensitive to the noise. Secondly, the prior information in HSIs, 

Euclidean distance information and coordinate information 

between training samples and testing samples have been 

introduced to the PCRC for improving the classification results, 

leading to the proposed LRR-PCRC. Experimental results 

show the good performance of proposed LRR-PCRC in 

comparison with other state-of-the-art algorithms.  

The remains of this work are structured as follows. Section II 

introduces the related works. The details of the proposed 

LRR-PCRC framework are discussed in Section III. Section IV 

shows the experimental results and the comprehensive analysis. 

Section V concludes this paper with insights of future work. 

II. PROBABILISTIC COLLABORATIVE REPRESENTATION 

CLASSIFICATION (PCRC) 

Given 𝑁 training samples from 𝐾 classes of a hyperspectral 

image: 𝑋 = [𝑋𝑁1 , 𝑋𝑁2 , … , 𝑋𝑁𝐾
] ∈ 𝑅𝑑×𝑁 , where d is the 

numbers of band in a hyperspectral image and 𝑋𝑁𝑘
 is the data 

matrix of the 𝑘 -th class training samples (𝑁1 + 𝑁2 +⋯+
𝑁𝐾 = 𝑁). Let 𝑙𝑎𝑋 and 𝑆 denote the label set of all the classes in 

𝑋 and the linear subspace collaboratively spanned by the total 

samples in 𝑋, respectively [22]. Then given a data point 𝑥 ∈

𝑅𝑑×1 in the collaborative subspace 𝑆, it can be represented as 

follows: 𝑥 = 𝑋𝛼, where 𝛼 = [𝛼𝑁1 , 𝛼𝑁2 , … , 𝛼𝑁𝐾
] ∈ 𝑅𝑁×1 is the 

representation vector.  

The PCRC [22] formulated 𝑆 as a probabilistic collaborative 

subspace, as it argued that there should be different 

probabilities of 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋 for a data point 𝑥. Once the 2-norm 

of 𝛼𝑁𝑘
 is small, the probability of 𝑃(𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋𝑁𝑘

) should be 

high [22]. It is intuitive to use a Gaussian function to define the 

probability, that is: 

               𝑃(𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋𝑁𝑘
) ∝ exp(−𝑏 ∥ 𝛼𝑁𝑘

∥2
2)                 (1) 

where 𝑏 is a positive constant. Then the probability of every 

testing sample 𝑦  that has the sample label of 𝑥  can be 

formulated as 𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥). Hence, the probabilities that the 

testing sample 𝑦 lies in the subspace 𝑆 can be expressed as: 

   𝑃(𝑙𝑎𝑦 ∈ 𝑙𝑎𝑋) = 𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ )𝑃(𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋)     (2) 

where 𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ ) ∝ exp(−𝑐 ∥ 𝑦 − 𝑥 ∥2
2), 𝑐 is a 

positive constant. Then Eq. (2) can be rewritten as: 

𝑃(𝑙𝑎𝑦 ∈ 𝑙𝑎𝑋) ∝ exp(−(c ∥ 𝑦 − 𝑋𝛼 ∥2
2+ 𝑑 ∥ 𝛼 ∥2

2)) 

=exp(−(∥ 𝑦 − 𝑋𝛼 ∥2
2+ 𝜆 ∥ 𝛼 ∥2

2))                (3) 

where 𝜆 = 𝑑/𝑐 is a constant. Since 𝑥 = 𝑋𝛼 = ∑ 𝑋𝑁𝑘
𝛼𝑁𝑘

𝐾
𝑘=1 =

∑ 𝑥𝑘
𝐾
𝑘=1 , where 𝑥𝑘  is equal to 𝑋𝑁𝑘

𝛼𝑁𝑘
 and can be seen as a 
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sample that belongs to the 𝑘-th class, then the probability that 

the testing sample y belongs to 𝑘-th class can be formulated as: 

𝑃(𝑙𝑎𝑦 = 𝑘) = 𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 = 𝑘⁄ )𝑃(𝑙𝑎𝑥 = 𝑘) = 

𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 = 𝑘⁄ )𝑃(𝑙𝑎𝑥 = 𝑘 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ )𝑃(𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋) 

(4) 

where 𝑃(𝑙𝑎𝑥 = 𝑘 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ ) can be formulated as: 

𝑃(𝑙𝑎𝑥 = 𝑘 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ ) ∝ exp(−𝛽 ∥ 𝑥 − 𝑥𝑘 ∥2
2)       (5) 

where 𝛽 is a positive constant. 

Since 𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ )  is independent of the 𝑘 -th 

class, once 𝑘  belongs to 𝑙𝑎𝑋 , i.e. 𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ ) =

𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 = 𝑘⁄ ) ∝ exp(−𝑐 ∥ 𝑦 − 𝑥 ∥2
2),  then 𝑃(𝑙𝑎𝑦 =

𝑘) can be expressed as: 

𝑃(𝑙𝑎𝑦 = 𝑘) 

= 𝑃(𝑙𝑎𝑦 ∈ 𝑙𝑎𝑋)𝑃(𝑙𝑎𝑥 = 𝑘 𝑙𝑎𝑥 ∈ 𝑙𝑎𝑋⁄ )𝑃(𝑙𝑎𝑦 = 𝑙𝑎𝑥 𝑙𝑎𝑥 = 𝑘⁄ )  

∝ exp(−(∥ 𝑦 − 𝑥 ∥2
2) + 𝜆 ∥ 𝛼 ∥2

2+ 𝛽 ∥ 𝑥 − 𝑥𝑘 ∥2
2) =

exp(−(∥ 𝑦 − 𝑋𝛼 ∥2
2) + 𝜆 ∥ 𝛼 ∥2

2+ 𝛽 ∥ 𝑋𝛼 − 𝑋𝑁𝑘
𝛼𝑁𝑘

∥2
2)    (6) 

Assuming the probabilities of 𝑃(𝑙𝑎𝑦 = 𝑘) are independent, 

then all kinds of probabilities (𝑘 = 1, 2,… , 𝐾) can be computed 

by: 

max 𝑃(𝑙𝑎𝑦 = 1, 𝑙𝑎𝑦 = 2,… , 𝑙𝑎𝑦 = 𝐾) 

= max∏ 𝑃(𝑙𝑎𝑦 = 𝑘)𝑘  ∝ exp − ( ∥ 𝑦 − 𝑋𝛼 ∥2
2 + 𝜆 ∥ 𝛼 ∥2

2 

+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝛼 − 𝑋𝑁𝑘

𝛼𝑁𝑘
∥2
2𝐾

𝑘=1 )                       (7) 

Then ignoring the constant term after applying the 

logarithmic operator to the above Eq., we can have: 

      �̂� = argmin
𝛼
{∥ 𝑦 − 𝑋𝛼 ∥2

2+ 𝜆 ∥ 𝛼 ∥2
2   

+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝛼 − 𝑋𝑁𝑘

𝛼𝑁𝑘
∥2
2)𝐾

𝑘=1                          (8) 

The solution of Eq. (8) can be expressed as: 

�̂� = (𝑋𝑇𝑋 + 𝜆𝐼 +
𝛽
𝐾⁄ ∑ �̅̅�𝑁𝑘

𝑇
�̅̅�𝑁𝑘

)𝐾
𝑘=1

−1

𝑋𝑇𝑦            (9) 

where �̅̅�𝑁𝑘
= 𝑋 − �̅�𝑁𝑘

, �̅�𝑁𝑘
= [0, 0, … , 𝑋𝑁𝑘

, … 0] ∈ 𝑅𝑑×𝑁.  

Finally, the label of testing sample 𝑦 can be formulated as: 

𝑙𝑎𝑦 = argmax
𝑘

exp(−∥ 𝑋�̂� − 𝑋𝑁𝑘
�̂�𝑁𝑘

∥2
2)         (10) 

III. THE PROPOSED FRAMEWORK  

A. LRR-PCRC Model 

Although the PCRC has achieved good performance, there 

still exist some problems. As mentioned above, PCRC is 

sensitive to noises. The performance of PCRC will degrade if 

HSIs contain much noise. In order to address this drawback, we 

propose the LRR-PCRC for HSIs feature extraction and 

classification simultaneously. For 𝑁 training samples from 𝐾 

classes of a hyperspectral image 𝑋 = [𝑋𝑁1 , 𝑋𝑁2 , … , 𝑋𝑁𝐾
] ∈

𝑅𝑑×𝑁  and 𝑛  testing samples 𝑌 = [𝑌1
∗, 𝑌2

∗, … , 𝑌𝑛
∗] ∈ 𝑅𝑑×𝑛 , we 

need to represent the 𝑛  testing samples 𝑌  using 𝑁  training 

samples and assume both of them are corrupted by noise, that is 

                              𝑌 + 𝐸1 = (𝑋 + 𝐸2)𝐴 = 𝑋𝐴 + 𝐸2𝐴    
∆
→ 𝑌 = 𝑋𝐴 + (𝐸2𝐴 − 𝐸1)

∆
→𝑌 = 𝑋𝐴 + 𝐸        (11) 

where 𝐸1 ∈ 𝑅𝑑×𝑛 , 𝐸2 ∈ 𝑅𝑑×𝑁  and 𝐸 ∈ 𝑅𝑑×𝑁  are noise, 𝐴 ∈
𝑅𝑁×𝑛 is the representation coefficient. From Eq. (11), we can 

see that the coefficient 𝐴  needs to represent the 𝑛  testing 

samples 𝑌  using 𝑁  training samples under the situation that 

both of them are corrupted. In order to address this problem, we 

can formulate the PCRC to the following structure: 

�̂� = argmin
𝐴
{1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹

2+ 𝜆‖𝐴‖1 

+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 − 𝑋𝑁𝑘

𝐴𝑁𝑘,:
∥𝐹
2}𝐾

𝑘=1           (12) 

In Eq. (12), we replace the 2-norm with 1-norm considering 

that the 1-norm is robust to noise [31]. Furthermore, the feature 

extraction performance can be improved if we incorporate the 

rich prior information in HSIs to the model, thus producing 

better classification results. Recall the ED between training 

samples and testing samples, the spectral signal will be similar 

if the training samples and testing samples belong to the same 

class. Hence, we incorporate this information in Eq. (12), and 

then the model can be rewritten as:  

   �̂� = argmin
𝐴
{1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹

2+ 𝜆‖Γ⊙ 𝐴‖1 

+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 − 𝑋𝑁𝑘

𝐴𝑁𝑘,:
∥𝐹
2}𝐾

𝑘=1                (13) 

where ⊙  is Hadamard operator [25], 𝛤 ∈ 𝑅𝑁×𝑛  and 𝛤𝑖,𝑗 =

‖𝑌𝑗
∗ − 𝑋𝑖‖2

2
 ( 𝑖 = 1, 2, … , 𝑁; 𝑗 = 1, 2, … , 𝑛) . Recall the 

coefficient 𝐴, each column of A, 𝐴:,𝑗 ∈ 𝑅𝑁×1 , represents the 

similarity between the testing pixel 𝑌𝑗 and the whole training 

samples 𝑋. The probability of the testing pixel 𝑌𝑗 belonging to 

the 𝑘-th class should be higher when the 2-norm of coefficient 

𝐴𝑁𝑘,𝑗
 (√∑ |𝐴𝑁𝑖,𝑗|

2𝑁𝑘
𝑁𝑖=1 ) is smaller which has been explained in 

Eq. (1). Also, we can deduce that the probability of the testing 

pixel 𝑌𝑗 belonging to the 𝑘-th class should be higher when the 

1-norm of coefficient 𝐴𝑁𝑘,𝑗
 (√∑ |𝐴𝑁𝑖,𝑗|

𝑁𝑘
𝑁𝑖=1 ) is smaller since 

the 1-norm of coefficient 𝐴𝑁𝑘,𝑗
 is similar to the 2-norm of 

coefficient 𝐴𝑁𝑘,𝑗
. On the other hand, the 1-norm sparse 

representation is robust to noise as reported in [31].  

Furthermore, we use the ED between the testing samples and 

training samples 𝛤  to enhance the coefficient 𝐴 , which can 

improve the classification performance both in terms of 

accuracies and robustness. Other than the ED between the 

testing samples and the training samples, the CI of training 

samples and testing samples can also enhance the coefficient 𝐴. 

Firstly, we calculate the coordinate distances between each 

training sample and the whole testing samples, then the 

coordinate information which contains the locality information 

of training samples and testing samples can be used for 

enhancing the performance of HSIs classification. This can be 

explained from two aspects: first, the probabilities that two 

samples belonging to the same class will be larger if they are 
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located closely [4]; second, even the data points in HSIs are 

corrupted by noise, the coordinate information of each pixel in 

HSIs remain the same. Hence, Eq. (13) can be represented as: 

�̂� = argmin
𝐴
{1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹

2 +
𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴𝐾

𝑘=1

− 𝑋𝑁𝑘
𝐴𝑁𝑘,:

∥𝐹
2 + 𝜆‖Γ⊙ 𝐴‖1 + 𝛾‖𝐶 ⊙ 𝐴‖1}                       (14) 

where 𝐶 ∈ 𝑅𝑁×𝑛  and 𝐶𝑖,𝑗 = (𝐶𝐶𝑖,𝑗𝐶𝐶𝑖,𝑗)/(∑ 𝐶𝐶𝑖,𝑗𝐶𝐶𝑖,𝑗
𝑁
𝑖=1 ) ,  

𝐶𝐶𝑖,𝑗 can be expressed as follows: 

𝐶𝐶𝑖,𝑗 = (|ℎ𝑖 − ℎ𝑗| + |𝑤𝑖 − 𝑤𝑗|)
𝑓                (15) 

where ℎ𝑖 and 𝑤𝑖  are the abscissa and ordinate of sample in the 

image, respectively. 𝑓 is the smooth parameter that adjusts the 

distance decay speed. Fig. 1 shows the flowchart of the 

proposed LRR-PCRC. 

B. Solutions for LRR-PCRC 

In this subsection, we will derive the optimization algorithm 

to solve the proposed LRR-PCRC model based on the inexact 

augmented Lagrange Multiplier (IALM）[33]. Recall that the 

proposed LRR-PCR has three contributions compared with the 

PCRC, i.e. SR, ED between the training samples and testing 

sample, CI of the HSIs. Now we derive the solution for the 

proposed LRR-PCRC as follows (The other solutions of the 

PCRC with SR or ED, PCRC with SR and ED will be shown in 

Supplementary).  

First, we introduce two auxiliary variables 𝐻  and 𝐽  to 

convert Eq. (14) by splitting the variable:     

  min
𝐴,𝐻,𝐽

{ 1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹
2+

𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 − 𝑋𝑁𝑘

𝐴𝑁𝑘,:
∥𝐹
2𝐾

𝑘=1   

+𝜆‖Γ⊙ 𝐻‖1 + 𝛾‖𝐶 ⊙ 𝐽‖1} 
                                𝑠. 𝑡. 𝐻 = 𝐴, 𝐽 = 𝐴.                               (16) 

Then, the corresponding augmented Lagrangian function for 

Eq. (16) can be rewritten as: 

min
𝐴,𝐻,𝐽

{ 1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹
2+

𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 − 𝑋𝑁𝑘

𝐴𝑁𝑘,:
∥𝐹
2𝐾

𝑘=1 }  

+𝜆‖Γ⊙𝐻‖1 + 𝛾‖𝐶 ⊙ 𝐽‖1 + 〈𝑌1, 𝐻 − 𝐴〉 + 〈𝑌2, 𝐽 − 𝐴〉 

+𝜏
2⁄ (∥ 𝐻 − 𝐴 ∥𝐹

2 +∥ 𝐽 − 𝐴 ∥𝐹
2)}                         (17) 

where 𝑌1  and 𝑌2  are the Lagrange multipliers. Then the 

alternative optimization algorithm [34] can be applied to solve 

the model of Eq. (17). Details are introduced as follows. 

  Update 𝑯: Fix 𝐴 and 𝐽, then the 𝐻 can be updated as: 

𝐻𝑡+1 = min
𝐻

𝜆
𝜏𝑡⁄ ‖𝛤 ⊙ 𝐻𝑡‖1 +

1
2⁄ ∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1

𝑡/𝜏𝑡 ∥𝐹
2  

(18) 

The solution of Eq. (18) can be solved by the transformation of 

the soft-threshold rule [35]: 

𝐻𝑡+1 = 𝑠𝑜𝑓𝑡 (𝐴𝑡 −
𝑌1

𝑡

𝜏𝑡
, Γ × 𝜆

𝜏𝑡⁄ )  

= max{0, 𝑎𝑏𝑠(𝑒) − (Γ × 𝜆
𝜏𝑡⁄ )} × 𝑠𝑖𝑔𝑛(𝑒)     (19) 

where 𝑒 = 𝐴𝑡 − 𝑌1
𝑡/𝜏𝑡. 

Update 𝑱: Fix 𝐴 and 𝐻, 𝐽 can be updated as: 

 𝐽𝑡+1 = min
𝐽

𝛾
𝜏𝑡⁄ ‖𝐶 ⊙ 𝐽‖1 +

1
2⁄ ∥ 𝐽𝑡 − 𝐴𝑡 + 𝑌2

𝑡/𝜏𝑡 ∥𝐹
2    (20) 

The solution of Eq. (20) can be computed as: 

                𝐽𝑡+1 = 𝑠𝑜𝑓𝑡 (𝐴𝑡 −
𝑌2

𝑡

𝜏𝑡
, Γ × 𝜆

𝜏𝑡⁄ ) 

= max{0, 𝑎𝑏𝑠(𝑒) − (Γ × 𝜆
𝜏𝑡⁄ )} × 𝑠𝑖𝑔𝑛(𝑒)              (21) 

where 𝑒 = 𝐴𝑡 − 𝑌2
𝑘/𝜏𝑡. 

Update 𝑨: Fix 𝐻 and 𝐽, 𝐴 and be updated as: 

𝐴𝑡+1 =min
𝐴

1
2⁄ ∥ 𝑌 − 𝑋𝐴𝑡 ∥𝐹

2   

+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴𝑡 − 𝑋𝑁𝑘

𝐴𝑡𝑁𝑘,:
∥𝐹
2𝐾

𝑘=1   

+𝜏𝑡
2⁄ (∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1

𝑡/𝜏𝑡 ∥𝐹
2 +∥ 𝐽𝑡 − 𝐴𝑡 +

𝑌2
𝑡

𝜏𝑡
∥𝐹
2)         (22) 

Then the solution of Eq. (22) can be achieved by the 

first-order derivation:  

𝐴𝑡+1 = (𝑋𝑇𝑋 +
𝛽
𝐾⁄ ∑ �̅̅�𝑁𝑘

𝑇
�̅̅�𝑁𝑘

)𝐾
𝑘=1 + 2𝜏𝑡𝐼)

−1

(𝑋𝑇𝑌 +

𝜏𝑡(𝐻𝑡 + 𝐽𝑡) + 𝑌1
𝑡 + 𝑌2

𝑡)                                                     (23) 

Finally, the overall optimization problem for solving the 

proposed LRR-PCRC is summarized in Algorithm 1. 
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     Fig. 1 The classification flowchart of proposed LRR-PCRC algorithm. 

 

 

TABLE 1. THE ABBREVIATIONS OF THIS PAPER  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Datasets Description 

(1) Indian Pines dataset 

The Indian Pines [26] dataset has been collected by AVIRIS 

sensors in June 1992 which consists of urban images. The 20 

heavily noise bands have been removed since these bands are 

severely affected by the water absorptions and thus 200 bands 

remained. The spectral range varies from 0.2μm  to 2.4μm 

while the spatial resolution is 20m per pixel with size of 145× 

145 pixels. There are in total 10366 samples within 16 classes 

need to be classified in this dataset. 

(2) Pavia University dataset 

The Pavia University [26] dataset has been collected by 

ROSIS sensors over the area surrounding the University of 

Pavia, Italy in 2001. The 12 heavily noise bands have been 

removed since these bands are severely affected by the water 

absorptions and thus 103 bands remained. There are in total 

42776 labelled samples within 9 classes available for 

classification in this dataset. 

B. Benchmarking Approaches 

To validate our proposed LRR-PCRC, we have compared 

LRR-PCRC with the state-of-the-art methods to benchmark the 

performance of our method, including the SMLR [9], SVM 

[36] and SVM with composite kernel (SVM-CK), SMLR with 

attribute profile (SMLR-AP) [9], PCRC and PCRC-AP. The 

  Algorithm 1: The proposed LRR-PCRC 

Input: For 𝑁 training samples from 𝐾 classes of a hyperspectral image 𝑋 = [𝑋𝑁1 , 𝑋𝑁2 , … , 𝑋𝑁𝐾
] ∈ 𝑅𝑑×𝑁 and 𝑛 testing samples 𝑌 = [𝑌1, 𝑌2, … , 𝑌𝑛] ∈

𝑅𝑑×𝑛, the parameters 𝛽,𝜆, 𝛾,𝑓, 𝜏0 = 10 ∗ 𝜆, 𝑌1 = 0, 𝑌2 = 0. 

1.1 Set t=0 

1.2 Update 𝑯: 

𝐻𝑡+1 = argmin
𝐻

𝜆
𝜏𝑡⁄ ‖𝐻𝑡‖1 +

1
2⁄ ∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1

𝑡/𝜏𝑡 ∥𝐹
2  ⟹𝐻𝑡+1 ← max{0, 𝑎𝑏𝑠 (𝐴𝑡 −

𝑌1
𝑡

𝜏𝑡
) − (Γ × 𝜆

𝜏𝑡⁄ )} × 𝑠𝑖𝑔𝑛(𝐴𝑡 − 𝑌1
𝑘/𝜏𝑡) 

1.3 Update 𝑱:  

𝐽𝑡+1 = min
𝐽

𝛾
𝜏𝑡⁄ ‖𝐶 ⊙ 𝐽‖1 +

1
2⁄ ∥ 𝐽𝑡 − 𝐴𝑡 + 𝑌2

𝑡/𝜏𝑡 ∥𝐹
2 ⟹ 𝐽𝑡+1 = max{0, 𝑎𝑏𝑠 (𝐴𝑡 −

𝑌2
𝑡

𝜏𝑡
) − (Γ ×

𝛾
𝜏𝑡⁄ )} × 𝑠𝑖𝑔𝑛(𝐴𝑡 − 𝑌2

𝑘/𝜏𝑡)   

1.4: Update 𝐀: 

𝐴𝑡+1 = argmin
𝐴

1
2⁄ ∥ 𝑌 − 𝑋𝐴𝑡 ∥𝐹

2+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴𝑡 −𝑋𝑁𝑘

𝐴𝑡𝑁𝑘,:
∥𝐹
2𝐾

𝑘=1 + 𝜏𝑡
2⁄ (∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1

𝑡/𝜏𝑡 ∥𝐹
2 +∥ 𝐽𝑡 − 𝐴𝑡 +

𝑌2
𝑡

𝜏𝑡
∥𝐹
2)   

⟹𝐴𝑡+1 = (𝑋𝑇𝑋 +
𝛽
𝐾⁄ ∑ �̅̅�𝑁𝑘

𝑇
�̅̅�𝑁𝑘

)𝐾
𝑘=1 + 2𝜏𝑡𝐼)

−1

(𝑋𝑇𝑌 + 𝜏𝑡(𝐻𝑡 + 𝐽𝑡) + 𝑌1
𝑡 + 𝑌2

𝑡)  

1.5 Update other parameters: 

𝑌1
𝑡+1=𝑌1

𝑡+𝜏𝑡(𝐻𝑡+1-𝐴𝑡+1); 𝑌2
𝑡+1=𝑌2

𝑡+𝜏𝑡(𝐽𝑡+1-𝐴𝑡+1), 𝜏𝑡+1 = 1.1 × 𝜏𝑡. 
1.6 Quit the algorithm if the stopping criterion is met; otherwise, go back to Step 1.2. 

Output: Predict the testing sample label: 

𝑙𝑎𝑌𝑖
∗ = argmax

𝑘
exp(−∥ 𝑋�̂� − 𝑋𝑁𝑘

�̂�𝑁𝑘
∥2
2)  or 𝑙𝑎𝑌𝑖

∗ = argmin
𝑘
(∥ 𝑋�̂� − 𝑋𝑁𝑘

�̂�𝑁𝑘
∥2
2); 𝑖 = 1,… , n, 𝑘 = 1,… , K  

Abbreviation List 

PCRC 
probabilistic collaborative representation 

classification 
SSA singular spectrum analysis 

HSIs hyperspectral images LRR-PCRC 
locality regularized robust-probabilistic collaborative 

representation classification 

ED Euclidean distance IALM inexact augmented Lagrange multiplier 

CI coordinate information SVM-CK SVM with composite kernel 

LRR locality regularized robust AP attribute profile 

SVM support vector machine KPI key performance indicators 

ELM extreme learning machine OA overall accuracies 

SMLR sparse multinomial logistic regression AA average accuracies 

SRC sparse representation classification k kappa coefficient 

CRC collaborative representation classification CA category accuracies 

GRLD graph-regularized low rank destriping Tr training time 

PCA-WS principal component analysis and wavelet shrinkage Ts testing time 

Val Validation RF Random Forest 

RoF Rotation Forest RoRF-KPCA rotation random forest-kernel principal component analysis 

SSAHTV 
spectral-spatial adaptive  hyperspectral total 

variation 
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Matlab codes of SVM and SVM-CK are downloadable from 

[37], while the code of SMLR and AP are downloadable from 

[38]. The parameters of AP are set according to 

recommendation in [9].  

The experiments are carried out on a computer with 2.9GHz 

i7 7820HQ CPU with 32GB RAM running win10 OS. The 

codes are written in Matlab (R2015a) and all the experimental 

results in this paper are 10 times average. 

The key performance indicators (KPI) include overall 

accuracies (OA), average accuracies (AA), kappa coefficient 

(k), category accuracies (CA), training time (Tr) and testing 

time (Ts). In addition, all the abbreviations in this paper have 

been displayed in Table 1.  

C. Parameter Analysis 

The key parameters for PCRC are the 𝛽 and 𝜆 in Eq. (9) and 

additional parameters for proposed LRR-PCRC are 𝑓 in Eq. 

(15), 𝛾 in Eq. (14). Four experiments are carried out to evaluate 

the parameters of 𝜆, 𝛽, 𝛾 and 𝑓, respectively, using 5 training 

samples per class. Since the proposed LRR-PCRC focuses on 

the feature extraction and classification, we consider two 

different situations of the raw data, i.e. without additional noise 

and with normally distribution noise (i.i.d: zero mean with 𝜎2 

covariance). In this subsection, we set 𝜎 to be 0.02. We fix the 

other parameters when evaluating one parameter. The 

experimental parameters setting for this subsection can be seen 

at Table 2. In order to achieve a reliable result, we have iterated 

each experiment 10 times and averaged the results.  

Experiment 1 (𝝀) : In this experiment, we evaluate the 

parameter 𝜆 = 2𝑎1 which 𝑎1 ranges from [-20, -19,…, 5]. 𝛽 =
2−10  for both PCRC and LRR-PCRC.𝑓 = 3 and 𝛾 = 212  for 

LRR-PCRC. It can be seen from Fig. 2(a) and (b) that 𝜆 has 

some impact in both PCRC and LRR-PCRC. In addition, in 

Indian Pines and Pavia University datasets, the OA of the 

proposed LRR-PCRC is higher than PCRC under the situation 

with or without addition noise. We also can see that the OA of 

PCRC decreased dramatically when add the noise to HSIs data. 

However, the proposed LRR-PCRC is more robust to noise 

than PCRC.  

As shown in the Fig. 2(a) and (b), the PCRC achieved best 

accuracies at about 𝜆 = 2−7  and 𝜆 = 2−2  under the situation 

with and without noise respectively in Indian Pines. And in 

Pavia University dataset, the PCRC achieve good classification 

accuracies at 𝜆 = 2−7 for both no additional noise and noise 

condition. Hence, above parameters have been selected for 

PCRC if not otherwise mentioned. For the proposed 

LRR-PCRC, the classification accuracies are relatively stable 

ranging from 𝜆 = 2−15  to 𝜆 = 2−5  in Indian Pines dataset 

while ranging from 𝜆 = 2−15  to 𝜆 = 23  in Pavia University 

dataset. Hence, the 𝜆 = 2−10  and 𝜆 = 20  have been selected 

for Indian Pines and Pavia University datasets, respectively. 

Experiment 2 (𝛽) : In this experiment, we evaluated the 

parameter 𝛽 = 2𝑎2 which 𝑎2 ranges from [-20, -19, …, 5]. It 

can be seen from Fig. 2 (c) and (d) that the 𝛽 also has a certain 

impact on PCRC in both Indian Pines and Pavia University 

datasets, and on LRR-PCRC in Indian Pines dataset. In 

addition, the proposed LRR-PCRC not only produces higher 

classification accuracies than PCRC, but also demonstrates 

more robustness to noise than PCRC. As also can be seen from 

Fig. 2 (c) and (d) that about at the value of 𝛽 = 2−10, PCRC has 

produced the best classification accuracies in Indian Pines 

dataset. And in Pavia University dataset, PCRC produced the 

best classification accuracies at 𝛽 = 2−7  and 𝛽 = 2−4  under 

the condition with and without additional noise respectively. 

Hence, above parameters have been selected for PCRC if not 

otherwise mentioned. For the proposed LRR-PCRC, it 

performs stably when 𝛽 varies from [-20, …, -5] and [-20, …, 

5] in Indian Pines dataset and Pavia University dataset, 

respectively. Hence, if not specially mentioned in the following 

experiments, 𝛽  is set to 2−8  and 23  for the proposed 

LRR-PCRC in Indian Pines dataset and Pavia University 

dataset, respectively. 

Experiment 3 (𝛾) : In this experiment, we evaluated the 

parameter 𝛾 = 2𝑎3 which 𝑎3 ranges from [1, 2, … , 15]. It can 

be seen from Fig. 2(e) and (f) that the OA of LRR-PCRC 

increased then decreased when γ  increases. In addition, the 

noise has more impact in Indian Pines dataset than in Pavia 

University dataset when 𝛾 is small. However, the impact can be 

mostly eliminated when 𝛾 is set to a higher value. It would be 

good for classification performance when λ and β are set to 

small values while γ is set to a big value. This is because that 

the coordinate information may dominate the important role for 

feature extraction and classification. We can see that 

LRR-PCRC yield best classification accuracies both in Indian 

Pines dataset and Pavia University dataset at 𝛾 = 212 and 𝛾 =
29 , respectively. Hence, 𝛾 = 212  and 𝛾 = 29  have been 

selected for LRR-PCRC. 

Experiment 4 (𝑓) : In this experiment, we evaluated the 

parameter 𝑓 which 𝑓 ranges from [1, 2, … , 10]. It can be seen 

that from Fig.2 (g) and (h) that the OA of LRR-PCRC increases 

then decreases when 𝑓 increased. It can be also seen that the 

best value of 𝑓 for classification accuracies is 3 in both dataset 

and both situations that with and without additional noise. 

Therefore 𝑓 = 3  has been selected in the following 

experiments.  

 
TABLE 2. THE PARAMETERS SETTING OF PCRC AND LRR-PCRC FOR 

PARAMETER ANALYSIS

Dataset  Methods 
Experiment 

1 2 3 4 

Indian 

Pines 

 

No 

additional 

noise 

PCRC 𝛽 = 2−10 𝜆 = 2−7 - - 

LRR-PCRC 𝛽 = 2−10 

𝑓 = 3 

𝛾 = 212 

𝜆 = 2−10 

𝑓 = 3 

𝛾 = 212 

𝜆 = 2−10 

𝛽 = 2−8 

𝑓 = 3 

𝜆 = 2−10 

𝛽 = 2−8 

𝛾 = 212 

Additional 

noise 

PCRC 𝛽 = 2−10 𝜆 = 2−2 - - 

LRR-PCRC 𝛽 = 2−10 

𝑓 = 3 

𝛾 = 212 

𝜆 = 2−10 

𝑓 = 3 

𝛾 = 212 

𝜆 = 2−10 

𝛽 = 2−8 

𝑓 = 3 

𝜆 = 2−10 

𝛽 = 2−8 

𝛾 = 212 

Pavia 
University 

No 
additional 

noise 

PCRC 𝛽 = 2−10 𝜆 = 2−7 - - 

LRR-PCRC 𝛽 = 2−10 

𝑓 = 3 

𝛾 = 212 

𝜆 = 20 

𝑓 = 3 

𝛾 = 212 

𝜆 = 20 

𝛽 = 23 

𝑓 = 3 

𝜆 = 20 

𝛽 = 23 

𝛾 = 29 

Additional 

noise 

PCRC 𝛽 = 2−10 𝜆 = 2−4 - - 

LRR-PCRC 𝛽 = 2−10 

𝑓 = 3 

𝛾 = 212 

𝜆 = 20 

𝑓 = 3 

𝛾 = 212 

𝜆 = 20 

𝛽 = 23 

𝑓 = 3 

𝜆 = 20 

𝛽 = 23 

𝛾 = 29 
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                    （a）                                               (b)                                                (c)                                               (d) 

 

 

 

 

 

 

 

 

 

 

 

 

                       (e)                                                 (f)                                                 (g)                                                (h) 
 

Fig. 2 The impact of PCRC and proposed LRR-PCRC without and with additional noise in Indian Pines and Pavia University.𝜆/𝑎1 (a) and (b), 𝛽/𝑎2 (c) and (d), 

𝛾/𝑎3 (e) and (f), 𝑓 (g) and (h). 

 

D. Contribution Analysis 

In this section, we analyze the three contributions of the 

proposed LRR-PCRC. Compared with PCRC, the proposed 

LRR-PCRC has three main contributions: 1) the LRR-PCRC 

with sparse representation for improving the feature extraction 

performance, 2) LRR-PCRC with SR and ED, and 3) 

LRR-PCRC with SR, ED and CI for extracting the efficient 

features of HSIs in order to further improve the classification 

accuracies. Hence, we will show the impact of each 

contribution of the proposed LRR-PCRC in this subsection. In 

order to show the exact impact of contributions on proposed 

model, we selected the best parameters of these contributions 

which can be seen in Table 3. We used 20 training samples per 

class under the condition with and without additional noise 𝜎 =

0.02 (i.i.d: zero mean with 𝜎2 covariance).  

As can be seen from Table 4, three contributions have its 

improvement of classification accuracies in both Indian Pines 

dataset and Pavia University dataset. We can also see a 

phenomenon, ED information seems to be less important in 

Indian Pines dataset but important in Pavia University dataset. 

This can be explained by the reason that the Indian Pines and 

Pavia University dataset have different spatial structures. In 

more details, the pixels of the same category in Indian Pines 

dataset are located together, and the shapes of the same 

category are more likely to be blocked. While in Pavia 

University dataset, the shapes of some categories are more 

likely to be stripe, hence, the CI has a dominant role in Indian 

Pines dataset. However, in Pavia University dataset, both the 

ED and CI are very important. From above discussion, it can be 

seen that it’s more reasonable to use CI and ED collaboratively. 

E. Effect of varying numbers of training samples and the 

varying level of noise 

In this subsection, we will further evaluate the performance 

in feature extraction and classification of the proposed 

LRR-PCRC via varying the numbers of training sample and 

levels of noise. The training samples vary between 20, 25 and 

30 while the noise levels vary between 0.2, 0.4, 0.6 and 0.8.  

As can be seen from Tables 5 and 6, the classification results 

in Indian Pines dataset and Pavia University dataset by 

LRR-PCRC are more stable and better than PCRC when we 

vary the numbers of training sample and levels of noise. This 

further demonstrates the superior performance of the proposed 

LRR-PCRC. 

 

 

 

 

 

 

 

 

 

 

 

                      (a)                                                  (b) 
Fig. 3. (a) The ground truth for Indian Pines hyperspectral dataset; (b) 

The ground truth for Pavia University hyperspectral dataset.
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TABLE 3. THE PARAMETERS SETTING OF THE CONTRIBUTIONS FOR CONTRIBUTIONS ANALYSIS 
 

 

 

 

 

 

 

 

 
TABLE 4. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH 20 TRAINING SAMPLES PER CLASS FOR INDIAN PINES AND PAVIA UNIVERSITY 

DATASET (BEST RESULTS IN BOLD).  

 
TABLE 5. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION IN INDIAN PINES  

 
 

TABLE 6. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH DIFFERENT TRAINING NUMBERS AND NOISE LEVELS IN PAVIA UNIVERSITY DATASET 

 

 

 Indian Pines Pavia University 

 LRR-PCRC LRR-PCRC 

 SR SR+ED SR+ED+CI SR SR+ED SR+ED+CI 

No noise 𝜆 = 2−6 

𝛽 = 2−15 

𝜆 = 2−9 

𝛽 = 2−13 

𝜏0 = 2−10; 𝛽 = 2−8 

𝛾 = 212;𝑓 = 3 

𝜆 = 2−10 

𝛽 = 2−15 

𝜆 = 2−7 

𝛽 = 2−13 

𝜏0 = 2−10;𝛽 = 2−6 

𝛾 = 25;𝑓 = 3 

Noise 𝜆 = 2−4 

𝛽 = 2−9 

𝜆 = 2−4 

𝛽 = 2−8 

𝜏0 = 2−10;𝛽 = 2−6 

𝛾 = 212;𝑓 = 3 

𝜆 = 2−7 

𝛽 = 2−20 

𝜆 = 2−4 

𝛽 = 2−13 

𝜏0 = 2−10;𝛽 = 2−4 

𝛾 = 213;𝑓 = 3 

 

Index Indian Pines Pavia University 

 
PCRC 

LRR-PCRC 
PCRC 

LRR-PCRC 

 SR SR+ED SR +CI SR+CI+ED SR SR+ED SR +CI SR+CI+ED 

No noise 

OA 61.2±2.8 68.0±2.7 71.5±2.4 91.0±0.7 91.0±0.8 62.0± 2.8 66.1±4.9 77.1± 2.3 86.8±3.2 90.4±1.2 

AA 72.4±1.9 70.8±2.5 83.6±0.9 93.9±0.7 94.1±0.5 68.8± 2.1 64.0± 2.7 83.0±0.8 88.7±1.7 93.5±0.6 

k 56.8±2.9 63.7±3.1 68.1±2.6 89.8± 0.8 89.7±0.9 51.4± 3.0 56.1±5.1 70.7±2.6 83.0±4.0 87.5± 1.5 

Noise 

0.02 

OA 43.7±1.3 51.7±1.4 66.7±2.9 87.5±0.7 87.6±0.8 39.4± 3.4 44.1±6.0 65.1±2.7 84.5±2.1 88.7 ± 1.3 

AA 45.1±0.9 49.6± 1.5 77.6± 1.7 91.0±1.1 91.8±0.7 49.0± 1.0 44.4±1.7 74.1±0.9 83.6± 1.1 89.7 ± 0.7 

k 37.2±1.2 45.2±1.6 62.8±3.0 85.8±0.7 85.9±0.9 28.4 ±2.6 32.4± 5.1 56.4±2.9 80.0± 2.6 85.3 ± 1.6 

 Index 
No noise Noise 0.02 Noise 0.04 Noise 0.06 Noise 0.08 

PRRC LRR-PCRC PRRC LRR-PCRC PRRC LRR-PCRC PRRC LRR-PCRC PRRC LRR-PCRC 

20 

OA 61.2±2.8 91.0±0.8 43.7±1.3 87.6±0.8 30.4±0.9 83.5±1.1 23.6±0.9 80.1± 1.4 19.8± 0.9 77.1± 1.7 

AA 72.4±1.9 94.1±0.5 45.1±0.9 91.8±0.7 32.6±1.3 87.3±1.1 25.8±1.3 82.6± 1.3 21.8±1.0 78.1± 0.9 

k 56.8±2.9 89.7±0.9 37.2±1.2 85.9±0.9 23.2±0.9 81.3±1.3 16.3± 0.8 77.5± 1.6 12.5± 0.7 74.3± 1.8 

25 

OA 63.4±2.5 91.9±1.1 45.4± 1.4 88.8±0.9 31.6± 1.1 84.7±1.0 25.1± 1.0 81.3±1.0 21.6±0.9 78.5±0.8 

AA 73.3±2.3 95.0±0.4 46.0±1.0 92.4±0.9 33.8± 0.8 87.2±1.3 27.0±0.7 81.9±1.7 23.1± 0.5 77.7±1.3 

k 59.2±2.5 90.8±1.2 39.0±1.2 87.2± 1.0 24.4± 0.9 82.6±1.1 17.7±0.7 78.8±1.1 14.2±0.6 75.7±0.9 

30 

OA 63.9±2.4 92.7±0.9 45.5± 0.9 89.59±0.6 31.8 ± 1.1 85.7±0.6 25.4±1.2 82.5±0.8 22.2±1.1 79.6±1.0 

AA 73.2±1.3 95.1± 0.8 45.8± 0.9 92.7±0.6 33.7 ± 0.9 87.4±1.7 27.4±1.1 82.3±1.4 24.0± 0.9 78.7±1.0 

k 59.7±2.4 91.7± 1.0 39.2±0.9 88.1±0.7 24.6 ± 1.0 83.7±0.7 18.0±1.0 80.1±0.9 14.8±0.9 76.9±1.1 

 Index 
No noise Noise 0.02 Noise 0.04 Noise 0.06 Noise 0.08 

PRRC LRR-PCRC PRRC LRR-PCRC PRRC LRR-PCRC PRRC LRR-PCRC PRRC LRR-PCRC 

20 

OA 62.0±2.8 90.4±1.2 39.4± 3.4 88.7 ± 1.3 33.5± 2.7 84.1±1.4 31.4± 2.5 79.4±1.7 30.2± 2.5 73.8±2.1 

AA 68.8±2.1 93.5±0.6 49.0± 1.0 89.7 ± 0.7 42.0± 1.1 80.9±0.4 38.9± 1.1 78.1±0.8 37.2± 1.1 74.7±1.2 

k 51.4±3.0 87.5±1.5 28.4 ±2.6 85.3 ± 1.6 22.3± 2.0 79.5±1.7 20.1± 1.9 73.8±2.0 18.9± 1.8 67.2±2.3 

25 

OA 63.4±1.7 91.6±1.7 44.2± 2.7 90.0± 2.0 37.7± 2.3 85.2±1.9 34.6± 1.9 81.1±1.7 32.8±1.6 76.0± 2.1 

AA 69.9±1.8 94.4±0.5 51.0± 1.2 91.0± 0.8 44.2± 1.0 81.0± 0.8 40.7± 1.0 78.4±0.9 38.7± 0.8 75.0±1.1 

k 53.0±1.7 89.1± 2.1 32.5± 2.3 87.0±2.5 26.0± 1.7 80.9± 2.4 23.0± 1.4 75.7±2.1 21.2± 1.2 69.7±2.4 

30 

OA 64.0±1.2 92.4±1.1 45.0± 3.0 90.4±1.5 39.5± 2.6 85.4±1.9 36.8± 2.4 80.8±2.3 34.9± 2.1 75.2±2.4 

AA 71.2±1.0 94.8±0.5 52.5± 1.0 91.3±0.7 45.4± 0.8 82.2±0.8 41.6± 0.8 79.6±1.4 39.4± 0.8 76.5±1.5 

k 53.8±1.4 90.1± 1.5 33.3± 2.6 87.5±1.9 27.4± 2.1 81.1±2.3 24.7± 2.0 75.5±2.8 22.8± 1.7 68.9± 2.7 
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F. Comparison with other state-of-the-art algorithms 

In this subsection, firstly, we verified the proposed methods 

under 1% training samples, and the corresponding training 

samples and testing samples are reported in Table 7. The 

experiments are conducted in two conditions, i.e. no additional 

noise and noise with level of 𝜎 = 0.2. Tables 8 and 9 display 

the classification accuracies in Indian Pines and Pavia 

University dataset. As can be seen from Tables 8 and 9, the 

classification accuracies of the proposed LRR-PCRC are better 

than PCRC and other methods in the two conditions. This 

verifies the good performance of the proposed LRR-PCRC 

again. Figs. 4 and 5 show the corresponding classification map. 

   Secondly, to further verify the proposed methods, we have 

divided the whole hyperspectral dataset into three subsets 

(subset 1, 2 and 3）randomly with 10 times. In each time, the 

subset 1 and subset 2 are randomly selected 5 samples per class 

which will be used for two-fold cross validations and subset 3 

containing the rest of the samples the is used for testing. We use 

subset 1 for training and the subset 2 for validation and then the 

subset 2 will be used for training and subset 1 will be utilized 

for validation. Finally, all the classification results will be 

averaged. Tables 10 and 11 show the results for training (Tr), 

validation (Val) and testing (Ts). As can be seen from these two 

tables, in general, the proposed method acquired better results 

than PCRC and other methods in both datasets. 

  Thirdly, Table 12 shows the time consumed in training and 

testing with 20 training samples per class without additional 

noise. It should be noted that the time costs of these methods 

would not be changed since the dimensionality of HSIs hasn’t 

changed when noise are added to HSIs. From Table 12, we can 

see that in both Indian Pines and Pavia University dataset, the 

time consumed by our proposed LRR-PCRC is higher than 

SMLR, SVM. SMLR-AP and SVM-AP, but that of the 

proposed LRR-PCRC is less than PCRC and PCRC-AP. The 

proposed LRR-PCRC has higher time cost than SVM-CK in 

Pavia University dataset but lower in Indian Pines and Pavia 

University dataset. Now, let us theoretically analyze the 

computation complexity of the proposed LRR-PCRC to clarify 

the reason that the proposed method has more computational 

time in comparison with other methods. As can be seen from 

Algorithm 1, the proposed LRR-PCRC has four steps (Step 1.2 

to Step1.5) for updating. The major cost is the inverse operation 

in Step 1.4 and this is the main reason that the proposed method 

has high computational time compared with SVM-based and 

SMLR-based methods. The proposed LRR-PCRC needs to 

compute the inverse operation in each iteration. In Step 1.2, 1.3 

and 1.5, the major cost is just matrix multiplication and addition, 

hence, the time consumed by these operations can be ignored 

comparing to the inverse operation. Given a square matrix with 

the size of 𝑔 × 𝑔 , the computation complexity of inverse 

operation for such matrix is 𝑂(𝑔3) and thus the computation 

complexity of our method is 𝑂(𝑁3). Furthermore, we can see 

that the classification accuracies of the proposed LRR-PCRC 

are much higher than the other classifiers. Hence, we can 

conclude that the proposed LRR-PCRC has good performance 

in terms of above analysis. 

 
TABLE 7. THE TRAINING/TESTING SAMPLES IN THE TWO DATASETS 

 

 

 

  

 

 

 

 

 

 

                                   (a)                                    (b)                                     (c)                                (d)  
 

 

 

 

 

 

 

 

 

 

                                       (e)                                    (f)                                     (g)                                  (h) 

Indian Pines Pavia University 

Index/category Train Test Index/Category Train Test 

1 Alfalfa   3 51 1 Asphalt 66 6565 

2 Corn-no till 14 1420 2 Meadows 186 18463 

3 Corn-min till 8 826 3 Gravel 20 2079 

4 Corn 4 230 4 Trees 30 3034 

5 Grass/pasture 5 492 5 Metal sheets 13 1332 

6 Grass/tree 8 739 6 Bare soil 50 4979 

7 Grass/pasture-mowed 3 23 7 Bitumen 13 1317 

8 Hay-windrowed 5 484 8 Bricks 37 3645 

9 Oats 2 18 9 Shadows 10 937 

10 Soybeans-no till 10 958    

11 Soybeans-min till 24 2444    

12 Soybeans-clean till 7 607    

13 Wheat 4 208    

14 Woods 13 1281    

15 Bldg-grass-tree-drives 5 375    

16 Stone-steel towers 4 91    
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                    (i)                                    (j)                                     (k)                                    (l)                                   (m) 
  

Fig. 4 Classification map of different classifiers on Indian Pines dataset。(a)-(h) without additional noise；(i)-(m) with additional noise 

(level of noise: 𝜎 = 0.02)。(a) and (i)SMRL; (b) and (j)SVM; (c) SMLR-AP; (d) SVM-AP; (e) and (k)SVM-CK; (f) and (l)PCRC; (g) 

PCRC-AP; (h) and (m)LRR-PCRC. 

 
TABLE 8. THE CLASSIFICATION RESULTS IN INDIAN PINES DATASET (1% TRAINING SAMPLES) (BEST RESULTS IN BOLD). 

 

 

 

 

 

 

 

 

 

 
 

 

                                               (a)                                  (b)                                     (c)                                     (d) 
 

 

 

 

 

 

 

 

 

  

                                              (e)                                   (f)                                      (g)                                   (h) 

No additional noise Noise level 𝜎 = 0.02 

NO. SMLR SVM SMLR-AP SVM-AP SVM-CK PCRC PCRC-AP LRR-PCRC SMLR SVM SVM-CK PCRC LRR-PCRC 

1 37.2±17.0 67.0± 18.2 92.1±6.6 93.3±4.9 67.0±21.2 21.5±28.5 90.1±3.4 97.8±2.9 13.7±7.5 37.4±22.2 74.3±17.0 0.9± 2.1 94.7±8.9 

2 61.4±7.1 63.3±8.3 70.1±4.5 66.9±5.9 70.4±11.1 63.6±11.4 68.6 ±4.3 80.7±5.0 34.4±5.0 39.5±5.1 64.0±8.8 30.5± 9.6 76.1±6.0 

3 25.3±6.8 45.9±10.7 70.6±6.3 78.9±6.5 64.9±16.2 35.7±15.5 77.3 ±7.1 67.3±5.1 10.3±3.2 20.6±6.4 48.9±10.1 1.1± 1.1 60.8±9.8 

4 20.6±9.7 52.3±12.7 55.1±12.7 59.6±14.4 54.9±21.9 24.5±14.3 53.6 ±10.4 83.9±10.3 2.6±2.8 26.7±12.4 61.5±12.9 0.3± 0.9 79.9±16.8 

5 47.6±13.4 72.8±17.0 75.4±13.0 74.8±13.1 71.5± 8.7 57.4±12.1 64.8 ±15.3 79.2±8.6 9.7±4.8 41.8±13.6 53.6±8.7 0.4± 1.0 76.0±7.4 

6 90.5±3.8 80.0±12.0 91.4±3.8 91.2±4.8 86.8± 8.1 95.3±1.7 84.7 ± 7.6 82.9±9.8 70.1±10.4 80.8± 6.8 85.4± 8.0 64.5± 12.1 80.7±10.9 

7 66.0±11.3 86.0±12.0 91.7±8.0 95.2±3.2 93.9± 5.8 31.7±14.0 99.1 ± 2.7 95.6±3.5 13.0±7.1 76.0±18.9 96.0±5.9 0± 0 93.4±2.2 

8 88.0±9.1 80.4±16.6 99.4±0.3 99.3±0.1 88.2± 8.4 98.7±2.1 99.6 ± 0.1 99.6±0.8 65.7±9.0 75.7±14.7 96.1±1.8 99.1± 0.5 99.9±0.1 

9 33.8±19.8 82.2± 24.9 58.3±19.8 97.2±8.7 86.1± 11.1 32.2±14.0 25.0 ±13.4 96.1± 8.3 0± 0 34.4±29.2 87.7± 5.7 0 ±  0 79.4±22.2 

10 34.5±8.6 57.6±13.7 60.3±15.5 59.9±11.1 60.0± 14.4 36.2±20.1 32.5 ± 12.7 78.3±5.0 15.5±4.6 31.9±12.6 53.1±6.0 3.7± 4.6 75.4±4.2 

11 69.0±5.5 72.7±4.7 86.9±5.8 76.0±7.7 79.3± 7.2 64.0±10.5 92.3 ± 4.2 92.1±2.9 58.9±4.9 74.4±7.8 82.9±5.3 88.5± 3.2 92.1±3.5 

12 28.6±8.4 44.8±7.0 48.5±14.6 48.8±12.0 46.3± 10.2 40.3±11.3 37.4 ± 9.2 77.9± 16.3 9.1±3.6 22.8± 12.4 45.8±8.3 1.5± 2.4 75.6±17.5 

13 93.6±5.7 87.7±10.1 98.8±0.6 98.8±0.4 93.5+ 9.3 99.9± 0.2 99.5 ± 0 99.8± 0.2 46.1±8.9 90.1±6.1 91.2±5.3 40.2± 20.0 100.0±0 

14 89.4±5.5 86.6±8.6 92.4±6.7 87.5±7.8 87.3± 5.1 97.7±1.3 93.9 ± 5.1 99.6±0.4 93.6±3.7 90.3± 8.1 91.8±4.1 99.7± 0.1 99.6±0.4 

15 44.7±11.8 30.2±8.9 73.3±15.5 70.6±13.9 52.8±9.0 31.7±10.5 82.2 ± 6.7 90.1±10.9 16.1±3.8 19.3±7.2 63.9±11.6 4.1± 2.1 90.1±10.9 

16 82.5±7.8 84.3±2.4 87.9±6.1 97.4±2.6 93.9±7.6 96.2±2.1 96.1 ± 2.4 94.9±4.6 76.8±7.6 85.4±3.3 95.3±6.2 92.7± 3.4 95.2±4.8 

OA 61.2±2.1 67.2±1.2 78.6±1.8 75.7±2.0 73.6± 4.8 64.1± 2.2 76.5±1.8 86.4± 1.5 44.3± 1.5 56.2± 1.2 72.1± 1.8 49.5±1.5 84.4±1.3 

AA 57.1±2.3 68.4±2.3 78.3±1.5 81.0±1.2 74.8± 3.1 57.9± 2.5 74.8 ± 1.0 88.5± 1.6 33.5±1.8 52.9± 4.3 74.5 ± 2.1 32.9± 1.9 85.6±2.0 

k 55.2±2.4 62.6± 1.4 75.5±2.1 72.4±2.2 69.9± 5.5 58.8± 2.4 72.8 ± 2.1 84.5± 1.7 35.1± 1.8 49.2±1.6 67.9±2.1 38.9± 1.9 82.2± 1.6 
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                        (f)                                  (g)                               （h）                                (i)                                    (j) 

 
Fig. 5 Classification map of different classifiers on Pavia University dataset。(a)-(h) without additional noise；(i)-(m) with additional noise 

(level of noise: 𝜎 = 0.02)。(a) and (i)SMRL; (b) and (j)SVM; (c) SMLR-AP; (d) SVM-AP; (e) and (k)SVM-CK; (f) and (l)PCRC; (g) 

PCRC-AP; (h) and (m)LRR-PCRC. 

 
TABLE 9. THE CLASSIFICATION RESULTS IN PAVIA UNIVERSITY (1% TRAINING SAMPLES) (BEST RESULTS IN BOLD). 

 

 
TABLE 10. THE TRAINING, VALIDATION AND TESTING RESULTS IN INDIAN PINES DATASET (5 SAMPLES PER CLASS FOR TRAINING, 5 SAMPLES PER CLASS FOR 

VALIDATION, REMAINING FOR TESTING) 
 

 

 

 

 

 

 

 No additional noise Noise level 𝜎 = 0.02 

No. SMLR SVM SMLR-AP SVM-AP SVM-CK PCRC PCRC-AP LRR-PCRC SMLR SVM SVM-CK PCRC LRR-PCRC 

1 81.2±2.8 89.0±1.8 94.2±1.7 94.0±1.4 93.5± 2.1 71.5±4.6 77.2±4.6 88.6±1.9 52.9±4.8 89.5±2.6 90.2± 2.3 28.8±5.2 86.8±2.0 

2 93.1±1.3 97.3±0.6 96.7±0.7 97.6±0.6 98.2±0.7 90.0± 1.6 93.8± 1.8 99.3±0.6 80.8±3.0 95.5±3.0 97.3± 0.7 68.9±7.8 99.1±0.7 

3 51.5±6.5 62.9±7.9 58.0±9.4 81.1±8.8 79.8±4.3 75.2±13.6 36.0±10.3 96.2±4.1 19.3±4.3 19.5±12.7 72.8± 4.2 15.1±6.3 94.8±4.9 

4 81.7±4.8 87.1±3.6 90.7±3.3 93.5±2.2 92.0±2.7 97.7±0.9 98.0±1.2 82.8±2.5 69.9±3.1 76.1±4.7 91.4± 2.7 96.0±3.7 82.1±3.2 

5 98.4±1.2 98.9±0.5 98.1±2.0 99.5±0.3 99.8± 0.1 100.0±0 99.8± 0.1 99.3±0.1 95.7±2.6 97.4±5.0 99.6± 0.6 99.9± 0 99.4±0.2 

6 47.2±2.6 75.3±2.5 83.7±1.8 87.2±3.1 92.8±1.9 23.0±4.6 75.4± 6.3 99.4±0.3 31.2±3.9 30.7±9.6 82.4± 3.4 10.1± 5.0 99.4±0.3 

7 24.1±6.8 75.9±7.3 51.6±6.3 86.3±3.1 86.7± 4.5 5.0±3.2 11.0± 6.8 99.3±0.5 8.7±2.8 14.8±19.8 72.6± 7.5 7.1±2.3 99.1±0.7 

8 65.5±4.8 84.8±3.0 93.6±2.5 93.2±1.4 82.7± 4.2 52.6±17.6 95.7± 2.2 94.2±2.7 33.3± 5.8 84.8±7.0 73.1± 3.0 20.7± 6.0 94.5±2.2 

9 59.6±12.1 99.8±0.1 84.2±7.9 99.8±0.1 93.8± 2.9 16.3±11.8 99.8± 0.1 96.9±4.8 14.6± 4.5 99.7± 0.3 94.0± 2.1 1.4± 1.1 57.3±7.3 

OA 77.9±0.7 89.4±0.4 90.6±0.4 94.1±0.5 93.8± 0.4 71.9± 0.4 84.4±1.1 95.8±0.4 59.5±1.0 78.6± 0.8 90.0± 0.4 48.5±3.7 94.5±0.4 

AA 66.9±1.4 85.7±1.1 83.4±1.4 92.5±0.9 91.0±0.8 59.0±1.8 76.3±1.6 95.1±0.9 45.2±1.2 67.6± 2.3 85.9± 0.8 38.7± 1.8 90.3±1.0 

k 70.0±0.9 85.8±0.6 87.4±0.5 92.2±0.7 91.7± 0.5 61.7± 0.7 79.2± 1.6 94.4± 0.6 45.7±1.3 70.4± 1.1 86.6± 0.6 28.8±5.0 92.6±0.5 

  SMLR SVM SVM-CK PCRC LRR-PCRC 

NO. Tr Val Ts Tr Val Ts Tr Val Ts Tr Val Ts Tr Val Ts 

1 100±0 73.0±12.5 70.0±3.2 100±0 84.0±10.7 81.4±6.6 99.0± 3.1 79.0±15.2 84.0±6.6 97.0±9.4 77.0±18.2 72.7±16.2 100±0 99.0±3.1 98.7±1.2 
2 100±0 53.0±20.5 48.1±9.3 92.0±19.3 50.0±21.0 51.3±13.4 97.0±4.8 61.0±26.4 52.4±4.6 99.0±3.1 44.0±19.5 49.4±9.7 100±0 66.0±23.6 60.6±7.8 

3 100±0 43.0±21.6 33.9±7.6 88.0±14.7 45.0±25.9 41.8±9.6 96.0±5.1 52.0±20.4 51.3±10.5 99.0±3.1 36.0±18.9 33.1±8.1 100± 0 63.0±16.3 65.8±12.4 

4 100±0 34.0±17.7 38.6±6.0 99.0±3.1 63.0±14.9 58.1±8.7 98.0±4.2 65.0±15.8 65.0±8.7 98.0±4.2 42.0±20.4 42.2±9.4 100±0 91.0±8.7 89.9±7.6 
5 100±0 62.0±14.7 61.1±5.4 98.0± 6.3 73.0±19.4 74.8±10.8 100± 0 75.0±19.0 73.4±7.6 97.0± 6.7 56.0±23.1 59.1±10.6 100±0 82.0±15.4 83.3±4.3 

6 100±0 84.0±12.6 85.4±4.6 100±0 80.0±17.6 72.2±9.8 100±0 76.0±21.7 74.6±12.2 100±0 97.0±4.8 94.7±2.2 100± 0 82.0±12.2 79.9±6.7 

7 100±0 93.0±8.2 88.1±5.6 99.0±3.1 94.0±5.1 90.9±5.1 100±0 98.0±4.2 94.3±5.0 100±0 89.0± 8.7 83.4±9.6 100±0 94.0±6.9 93.1±5.2 
8 100±0 87.0±14.1 77.1±9.7 98.0±4.2 86.0±8.4 75.8±8.0 100±0 90.0±8.1  83.7±4.6 100±0 92.0± 9.1 88.9±9.6 100±0 100± 0 99.7±0.2 

9 100±0 91.0±9.9 85.5±13.2 100±0 97.0±4.8 93.5±9.1 100±0 96.0± 5.1 96.0± 6.5 100±0 94.0±5.1 89.5±7.2 100± 0 100± 0 100±0 

10 100±0 41.0±17.2 38.1±11.8 94.0±8.4 53.0 ±19.4 49.5±10.2 98.0±4.2 56.0±17.7 49.4±14.3 100±0 41.0± 26.8 46.5±15.6 100±0 72.0±19.3 72.3±6.4 
11 100±0 35.0±19.5 33.5±4.3 95.0±7.0 60.0±13.3 46.1±10.1 95.0±7.0 54.0±18.3 47.0± 8.6 100±0 30.0±13.3 31.2±7.3 100±0 68.0±16.1 75.2±5.2 

12 100±0 30.0±22.6 39.4±6.1 91.0±18.5 35.0±18.4 39.3±8.5 98.0±4.2 27.0±23.1 37.2±6.6 97.0±4.8 41.0±25.5 43.5±9.3 100± 0 67.0±17.6 72.5±6.5 
13 100±0 92.0±9.1 95.2±5.4 100±0 94.0±5.1 96.0±2.3 100.0±0 96.0±5.1 96.6±2.6 100.0± 0 100±0 100± 0 100±0 98.0±4.2 99.7±0.2 

14 100±0 71.0±22.8 69.3±8.2 99.0±3.1 80.0±10.5 74.0±10.9 97.0±4.8 77.0±12.5 75.9±10.0 100.0±0 94.0±6.9 93.5±3.3 100±0 98.0±4.2 94.8±5.8 

15 100±0 45.0±23.2 46.3±9.5 94.0±8.4 37.0±12.5 34.6±8.7 100±0 53.0±27.1 56.9±8.9 95.0±7.0 34.0±15.7 31.4±5.9 100± 0 96.0±8.4 90.8±10.1 
16 100±0 84.0±10.7 86.9±3.3 99.0±3.1 81.0±11.0 88.6±3.3 100±0 92.0±9.1 95.4±4.2   100± 0 97.0±4.8 96.4±1.9 100±0 96.0±6.9 96.8±3.3 

OA 100±0 63.6± 3.2 50.5±2.9 96.6±4.6 69.5±3.6 56.0± 3.4 98.6±1.4 71.6±5.0 58.8±2.9 98.8±1.2 66.5±3.3 55.0±1.8 100±0 85.7±3.6 78.0±2.1 

AA 100±0 63.6±3.2 62.3±1.9 96.6±4.6 69.5±3.6 66.7±2.7 98.6±1.4 71.6±5.0 70.8±2.2 98.8±1.2 66.5±3.3 66.0±1.4 100±0 85.7±3.6 85.8±1.2 

k 100±0 61.2±3.4 44.9±3.1 96.4±4.9 67.4±3.9 50.6±3.8 98.5±1.5 69.8±5.3 53.9±3.2 98.8±1.2 64.2±3.5 49.8±1.9 100± 0 84.8±3.8 75.2± 2.3 
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TABLE 11. THE TRAINING, VALIDATION AND TESTING RESULTS IN INDIAN PINES DATASET (5 SAMPLES PER CLASS FOR TRAINING, 5 SAMPLES PER CLASS FOR 

VALIDATION, REMAINING FOR TESTING) 

 

 
TABLE 12. THE TIME CONSUMING COMPARISON IN INDIAN PINES AND PAVIA UNIVERSITY DATASET (20 TRAINING SAMPLES PER CLASS) 

 

 

 

 

 

 

 

 

 

 

 

G. Extended Experiments and Analysis  

In this section, in order to show the good performance of the 

proposed LRR-PCRC, we will conduct more experiments by 

comparing with the well-known method random forest (RF) 

[39] and its variations, including rotation forest (RoF) [40] and 

rotation random forest-kernel principal component analysis 

(RoRF-KPCA) [41].  

 
TABLE 13. THE CLASSIFICATION RESULTS IN INDIAN PINES (20 TRAINING 

SAMPLES PER CLASS) (BEST RESULTS IN BOLD). 

 

 

The experiments are conducted under the situation that the 

training samples are 20 per class and remaining is used for 

testing. The kernel function of RoRF-KPCA has three different 

types, including lineal function, radial basis function (RBF) and 

polynominal (Poly) function. The results of RF, RoF and 

RoRF-KPCA are directly taken form [41]. Tables 13 and 14 

show the classification results of the proposed LRRRCR, the 

RF and its variations in Indian Pines and Pavia University, 

respectively. As can be seen from these two tables, in general, 

the proposed method has obtained better classification 

accuracies than RF and its variations. In addition, the confusion 

matrices which are corresponding to the classification results of 

the proposed method in both datasets have been shown in 

Tables 15 and 16. We, hence, can conclude that proposed 

method has good performance again.  
 

TABLE 14. THE CLASSIFICATION RESULTS IN PAVIA UNIVERSITY (20 TRAINING 

SAMPLES PER CLASS) (BEST RESULTS IN BOLD). 

 SMLR SVM SVM-CK PCRC LRR-PCRC 

No. Tr Val Ts Tr Val Ts Tr Val Ts Tr Val Ts Tr Val Ts 

1 96.0±6.9 48.0±21.4 37.7±9.0 82.0±13.9 66.0±18.9 55.1±3.1 94.0±13.4 66.0±20.6 60.5±8.6 76.0±12.6 33.0±20.0 21.7±7.3 99.0±3.1 72.0±15.4 59.0±5.1 

2 99.0±3.1 62.0±26.9 57.9±10.7 83.0±22.6 62.0±19.8 54.8±14.5 97.0±6.7 68.0±19.3 65.8±12.5 90.0±9.4 69.0±26.0 69.4±12.9 100±0 80.0±18.2 75.6±10.6 

3 99.0±3.1 53.0±13.3 61.1±5.4 68.0±27.4 43.0±23.5 48.3±15.5 93.0±15.6 55.0±25.0 64.6±12.0 95.0±5.2 71.0±15.2 78.7±9.2 98.0±4.2 97.0±4.8 94.6±3.9 

4 100± 0 86.0±11.7 88.8±5.9 98.0±4.2 82.0±18.1 82.6±11.0 100± 0 76.0±17.7 79.1±10.9 100±0 94.0±8.4 95.3±3.4 100±0 73.0±8.2 77.9±9.4 

5 100±0 100± 0 98.9±0.1 100±0 98.0±6.3 96.8±4.0 100±0 100±0 98.6±2.7 100±0 100±0 99.9±0.1 100±0 100±0 99.2±0.3 

6 100±0 45.0±19.0 45.6± 5.5 91.0±12.8 43.0±22.1 53.0±12.0 98.0±6.3 49.0±21.8 60.2±9.1 78.0±9.1 24.0±12.6 30.4±9.0 100±0 97.0±4.8 94.0±3.5 

7 99.0±3.1 70.0±13.3 59.6±11.2 99.0±3.1 94.0±10.7 91.3±2.4 99.0±3.1 87.0±12.5 86.6±5.8 95.0±7.0 68.0±15.4 59.7±10.2 100±0 99.0±3.1 99.4±0.4 

8 100±0 40.0±15.6 48.6±6.7 81.0± 17.2 63.0±25.8 64.3±12.2 95.0±8.4 65.0±20.6 68.1±8.4 90.0±10.5 33.0±15.6 38.2±9.9 98.0±4.2 81.0±12.8 77.6±13.7 

9 96.0±5.1 85.0±9.7 85.6±8.1 100±0 99.0±3.1 99.8±0.1 100± 0 91.0±11.0 91.8±6.3 68.0±18.7 49.0±23.3 45.5±17.1 100±0 67.0±22.6 73.8±9.8 

OA 98.7±1.1 65.4±6.6 56.8±4.6 89.1±6.7 72.2±6.0 60.5±6.1 97.3±4.8 73±6.3 67.6±6.4 88.0±2.3 60.1±6.2 57.1 ±5.0 99.4±0.5 85.1±2.7 77.9±3.8 

AA 98.7±1.1 65.4± 6.6 64.9±1.8 89.1±6.7 72.2±6.0 71.8±1.7 97.3±4.8 73±6.3 75.0±2.8 88.0±2.3 60.1±6.2 59.9±1.5 99.4±0.5 85.1±2.7 83.5±2.3 

k 98.6±1.2 61.1±7.4 46.7±4.6 87.7± 7.6 68.7±6.7 51.5±5.9 97±5.4 69.6±7.0 59.4±7.2 86.5±2.6 55.1±7.0 46.0±4.7 99.3±0.6 83.2±3.0 72.3±4.2 

Indian Pines 

20 SMLR SVM SMLR-AP SVM-AP SVM-CK PCRC PCRC-AP LRR-PCRC 

s - - AP:1.6 AP:1.6 - - AP:1.6 - 
Tr (s) 0.14 12.82 0.05 4.02 26.59 27.24 24.82 18.67 

Ts(s) 0.03 0.16 0.01 0.14 0.21 4.25 2.51 0.39 

Pavia 

University 

20 SMLR SVM SMLR-AP SVM-AP SVM-CK PCRC PCRC-AP LRR-PCRC 
s - - AP:4.3 AP:4.3 - - AP: 4.3 - 

Tr (s) 0.06 2.41 0.03 1.37 11.86 40.49 40.75 36.96 

Ts(s) 0.05 0.28 0.03 0.28 0.47 11.51 10.48 0.49 

   RoRF-KPCA  

NO. RF RoF Linear RBF Poly LRRPCRC 

1 84.81 75.29 89.63 92.22 91.30 99.7±0.9 

2 32.57 46.55 58.65 57.03 61.93 86.7±5.8 

3 42.01 50.31 51.97 51.43 51.43 80.5±4.8 

4 53.12 66.96 83.12 85.17 82.82 96.5± 3.2 

5 76.66 76.79 86.38 84.85 85.01 89.6±4.5 

6 67.95 75.25 91.34 92.36 92.01 96.3±2.9 

7 98.08 78.33 99.23 99.23 99.23 96.9±3.9 

8 80.57 78.83 92.70 92.68 93.62 99.8±0.1 

9 90.00 78.00 98.00 99.00 98.00 99.0±3.1 

10 48.61 58.39 76.03 76.17 73.85 84.7±4.4 

11 44.04 37.71 53.16 54.57 52.07 89.2±2.4 

12 42.56 47.86 80.70 79.06 81.95 91.2±6.0 

13 93.73 92.97 99.06 98.87 98.73 99.8±0.2 

14 80.00 81.03 89.10 89.46 91.11 99.5±0.9 

15 46.08 44.08 62.87 62.47 61.40 98.9±1.1 

16 96.42 95.33 97.05 97.05 98.32 97.8±1.9 

OA 54.34 57.02 71.05 71.12 71.30 91.0±0.8 

AA 67.33 67.73 81.81 81.98 82.04 94.1± 0.5 

k 49.06 51.99 67.61 67.65 67.85 89.7±0.9 

   RoRF-KPCA  

NO. RF RoF Linear RBF Poly LRRPCRC 

1 65.56 72.45 79.01 75.72 76.05 75.8±3.7 
2 99.99 99.98 99.97 99.97 99.99 90.9±3.3 

3 99.15 99.56 99.37 99.12 99.33 98.4±1.6 

4 65.81 81.88 78.27 77.69 77.43 88.1±8.2 

5 82.25 90.67 89.88 89.93 91.95 99.5±0.2 

6 56.11 70.80 72.91 72.90 74.75 98.1±2.6 

7 54.02 60.30 58.33 66.88 68.08 99.6±0.3 

8 68.35 68.96 70.55 70.72 71.12 92.9±2.3 

9 84.51 82.83 90.89 88.18 90.72 98.1±3.4 

OA 64.89 74.77 76.16 76.17 77.32 90.4±1.2 

AA 75.08 80.83 82.13 82.35 83.27 93.5±0.6 

k 56.61 68.31 69.79 69.79 71.16 87.5± 1.5 
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TABLE 15. THE CONFUSION MATRIX OF PROPOSED LRR-PCRC IN INDIAN PAVIA (20 TRAINING SAMPLES PER CLASS) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

TABLE 16. THE CONFUSION MATRIX OF PROPOSED LRR-PCRC IN PAVIA UNIVERSITY (20 TRAINING SAMPLES PER CLASS)  
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

V. CONCLUSION 

 

In this paper, a novel framework based on sparse constraint 

and prior information of HSIs, LRR-PCRC, has been proposed 

to extract efficient feature and classify HSIs. By imposing the 

sparse constraint to PCRC, the proposed RPCRC can tolerate 

environmental noise and thus extracts efficient features of HSIs 

and improves the classification accuracies. In addition, by 

adding the prior information of HSIs (ED and CI) to RPCRC, 

the proposed LRR-PCRC can improve the classification 

accuracies significantly. Experiments have been conducted to 

compare our proposed LRR-PCRC with other state-of-the-art 

methods, and the results show our methods have superior 

performances. 

Our further work will be focused on time costs reduction. 

One promising way is to use mathematical models to find 

theoretical solutions; the other approach is seeking 

dimensionality reductions methods or semi-supervised learning 

practically to further improve the classification accuracies and 

in the meantime reduce the computational time costs. With 

respect to the prerequisite of the proposed method, it just can be 

used for supervised learning which means we need to acquire 

some training samples for training the model, hence, it should 

be extended to unsupervised learning furtherly. 

APPENDIX A 

A. The solution of LRR-PCRC without ED nor CI 

First, we introduce the auxiliary variable 𝐻  to split the 

variable to simplify the problem of Eq. (12). Thus Eq. (12) can 

be converted to: 

�̂� = argmin
𝐴
{1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹

2+ 𝜆‖𝐻‖1

+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 − 𝑋𝑁𝑘

𝐴𝑁𝑘,:
∥𝐹
2}

𝐾

𝑘=1

 

𝑠. 𝑡. 𝐻 = 𝐴                                (24) 

Predict Value 

Actual 
Value 

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 33.9 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 

2 10.1 122.61 24.3 3.5 1.8 1.5 0 0 0 64.1 46.3 26.7 0 3.0 5 1.6 

3 0 17.9 655.5 65.8 2.9 0 0 0 5.1 13.8 5.0 46.2 0 0 1.8 0 

4 0 3.4 1.7 206.7 0 1.2 0 0 0 0 0 0.7 0 0 0.3 0 

5 2.4 0 3.6 0 427.4 0 31.9 0 0 0.9 1.4 0.7 2 0 6.7 0 

6 0 0.1 0.1 0 6.3 700.4 0 0 10.0 0 0.2 2.8 0 7.1 0 0 

7 0.2 0 0 0 0.2 0 12.6 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 468.5 0 0 0 0 0 0.5 0 0 

9 0 0 0 0 0 0.0001 0 0 0.0099 0 0 0 0 0 0 0 

10 1.7 41.3 61.9 0 1 0 0 3.0 0 803.3 13.0 22.3 0.2 0.1 0.2 0 

11 0 170.1 6.8 1.3 4.5 12.2 0 11.8 3.5 46.1 2184.5 0.2 0 0 7 0 

12 0 3.8 18.8 10.7 0.6 0 0 0 0 9.3 0 542.2 0 0 0.4 8.2 

13 0 0 0.2 0 0 0 0 0 0 0 0 0 191.8 0 0 0 

14 0 0 0 0 0 1.6 0 2.9 0 0 0.3 0 0 1268.8 0.4 0 

15 0 0.4 0 0 0 0 0 0 0 0 0.1 2.7 0 0 356.3 0.5 

16 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0 0 73.4 

Predict Value 

Actual  
Value 

Category 1 2 3 4 5 6 7 8 9 

1 5011.4 78.1 171.9 0.1 36.7 55.9 649.2 607.7 0 

2 1.9 16941 1.5 1154.3 0 130 0 400.7 0 

3 2 0.2 2046.4 0.6 0 0.8 1.5 27.5 0 

4 0.6 319.7 0.2 2683.8 6 33.1 0.1 0.5 0 

5 0.4 0.9 0 0 1318.4 0.4 0 4.9 0 

6 1.3 0.4 0 4.4 45.3 4915.7 6.1 35.8 0 

7 1.9 0 0.4 0 0 1.6 1305.6 0.5 0 

8 46.8 44.3 137.6 0 0 1.1 26.6 3405.6 0 

9 17.2 0 0 0 0.2 0 0.1 0 909.5 
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Then, the corresponding augmented Lagrangian function for 

Eq. (24) can be rewritten as: 

min
𝐴,𝐻,𝐽

{ 1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹
2+

𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 −𝐾

𝑘=1

𝑋𝑁𝑘
𝐴𝑁𝑘,:

∥𝐹
2 + 𝜆‖𝐻‖1 + 〈𝑌1, 𝐻 − 𝐴〉 + 𝜏

2⁄ ∥ 𝐻 − 𝐴 ∥𝐹
2}   (25) 

where 〈𝑌1, 𝐻 − 𝐴〉 = 𝑡𝑟𝑎𝑐𝑒(𝑌1
𝑇(𝐻 − 𝐴)) , 𝜏 > 0  is a penalty 

parameter. 𝑌1 is the Lagrange multipliers. Then the alternative 

optimization algorithm [27] can be applied to solve the model 

of Eq. (25). The details can be seen as follows. 

Update 𝑯: fix 𝐴, then the 𝐻 can be updated as: 

  𝐻𝑡+1 = argmin
𝐻

𝜆
𝜏𝑡⁄ ‖𝐻𝑡‖1 +

1
2⁄ ∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1

𝑡/𝜏𝑡 ∥𝐹
2   

  (26) 

The solution of Eq. (26) can be solved by the simple 

soft-threshold [34]: 

𝐻𝑡+1 = 𝑠𝑜𝑓𝑡(𝐴𝑡 − 𝑌1
𝑡/𝜏𝑡 , 𝜆 𝜏𝑡⁄ )  

=max{0, 𝑎𝑏𝑠(𝑒) − 𝜆
𝜏𝑡⁄ } × 𝑠𝑖𝑔𝑛(𝑒)            (27) 

where 𝑎𝑏𝑠(𝑒) is the absolute value of 𝑒, 𝑒 = 𝐴𝑡 − 𝑌1
𝑘/𝜏𝑡 and 

sign is the sign function [35].  

Update 𝐀: fix H, then the 𝐴 can be updated as: 

𝐴𝑡+1 = min
𝐴

1
2⁄ ∥ 𝑌 − 𝑋𝐴𝑡 ∥𝐹

2+
𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴𝑡 −𝐾

𝑘=1

𝑋𝑁𝑘
𝐴𝑡𝑁𝑘,:

∥𝐹
2 + 𝜏𝑡

2⁄ ∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1
𝑡/𝜏𝑡 ∥𝐹

2                          (28) 

Then the solution of Eq. (28) can be achieved by the 

first-order derivation:  

𝐴𝑡+1 = (𝑋𝑇𝑋 + +
𝛽
𝐾⁄ ∑ �̅̅�𝑁𝑘

𝑇
�̅̅�𝑁𝑘

)𝐾
𝑘=1 + 𝜏𝑡𝐼)

−1

(𝑋𝑇𝑌 +

𝜏𝑡𝐻𝑡 + 𝑌1
𝑡)                                                                          (29) 

B. The solution of LRR-PCRC without ED or CI 

The corresponding augmented Lagrangian function for 

LRR-PCRC without ED or CI can be written as follows. 

(1) LRR-PCRC without CI: 

min
𝐴,𝐻,𝐽

{ 1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹
2+

𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 − 𝑋𝑁𝑘

𝐴𝑁𝑘,:
∥𝐹
2

𝐾

𝑘=1

} 

+𝜆‖Γ⊙ 𝐻‖1 + 〈𝑌1, 𝐻 − 𝐴〉 + 𝜏
2⁄ ∥ 𝐻 − 𝐴 ∥𝐹

2                     (30) 

Update 𝑯: fix 𝐴, then the 𝐻 can be updated as: 

𝐻𝑡+1 =argmin
𝐻

𝜆
𝜏𝑡⁄ ‖Γ⊙𝐻𝑡‖1 +    

1
2⁄ ∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1

𝑡/𝜏𝑡 ∥𝐹
2                   (31) 

The solution of Eq. (31) can be solved by the transformation 

of the soft-threshold rule: 

𝐻𝑡+1 = 𝑠𝑜𝑓𝑡 (𝐴𝑡 −
𝑌1

𝑡

𝜏𝑡
, Γ × 𝜆

𝜏𝑡⁄ )    

= max{0, 𝑎𝑏𝑠(𝑒) − Γ × 𝜆
𝜏𝑡⁄ } × 𝑠𝑖𝑔𝑛(𝑒)           (32) 

where 𝑒 = 𝐴𝑡 − 𝑌1
𝑡/𝜏𝑡. 

Update 𝐀: fix H, then the 𝐴 can be updated as: 

            𝐴𝑡+1 = argmin
𝐴

1
2⁄ ∥ 𝑌 − 𝑋𝐴𝑡 ∥𝐹

2+
𝛽
𝐾⁄ ∑ ∥𝐾

𝑘=1

𝑋𝐴𝑡 − 𝑋𝑁𝑘
𝐴𝑡𝑁𝑘,:

∥𝐹
2 + 𝜏𝑡

2⁄ ∥ 𝐻𝑡 − 𝐴𝑡 + 𝑌1
𝑡/𝜏𝑡 ∥𝐹

2               (33) 

Then the solution of Eq. (33) can be achieved by the 

first-order derivation:  

𝐴𝑡+1 = (𝑋𝑇𝑋 +
𝛽
𝐾⁄ ∑ �̅̅�𝑁𝑘

𝑇
�̅̅�𝑁𝑘

)𝐾
𝑘=1 + 𝜏𝑡𝐼)

−1

×   

(𝑋𝑇𝑌 + 𝜏𝑡𝐻𝑡 + 𝑌1
𝑡)                                (34) 

(2) LRR-PCRC without ED: 

min
𝐴,𝐻,𝐽

{1 2⁄ ∥ 𝑌 − 𝑋𝐴 ∥𝐹
2+

𝛽
𝐾⁄ ∑ ∥ 𝑋𝐴 − 𝑋𝑁𝑘

𝐴𝑁𝑘,:
∥𝐹
2𝐾

𝑘=1 +  

𝛾‖𝐶 ⊙ 𝐽‖1} + 〈𝑌2, 𝐽 − 𝐴〉 + 𝜏
2⁄ ∥ 𝐽 − 𝐴 ∥𝐹

2             (35) 

where 𝐽  is auxiliary variable to split the variable to let the 

model become more easily solvable, 𝑌2  is the Lagrange 

multipliers. 

Update 𝑱: fix 𝐴, then the 𝐽 can be updated as: 

 𝐽𝑡+1 = argmin
𝐻

𝛾
𝜏𝑡⁄ ‖𝐶 ⊙ 𝐽‖1 +

1
2⁄ ∥ 𝐽𝑡 − 𝐴𝑡 + 𝑌2

𝑡/𝜏𝑡 ∥𝐹
2     

                                                                                              (36) 

The solution of Eq. (36) can be solved by the transformation 

of the soft-threshold rule: 

𝐽𝑡+1 = 𝑠𝑜𝑓𝑡 (𝐴𝑡 −
𝑌2

𝑡

𝜏𝑡
, 𝐶 × 𝜆

𝜏𝑡⁄ )   

= max{0, 𝑎𝑏𝑠(𝑒) − (Γ × 𝜆
𝜏𝑡⁄ )} × 𝑠𝑖𝑔𝑛(𝑒)          (37) 

where 𝑒 = 𝐴𝑡 − 𝑌2
𝑡/𝜏𝑡. 

Update 𝐀: fix 𝐽, then the 𝐴 can be updated as: 

𝐴𝑡+1 = argmin
𝐴

1
2⁄ ∥ 𝑌 − 𝑋𝐴𝑡 ∥𝐹

2+
𝛽
𝐾⁄ ×  

∑ ∥ 𝑋𝐴𝑡 − 𝑋𝑁𝑘
𝐴𝑡𝑁𝑘,:

∥𝐹
2𝐾

𝑘=1 + 𝜏𝑡
2⁄ ∥ 𝐽𝑡 − 𝐴𝑡 + 𝑌2

𝑡/𝜏𝑡 ∥𝐹
2   

(38) 

Then the solution of Eq. (38) can be achieved by the first-order 

derivation:  

𝐴𝑡+1 = (𝑋𝑇𝑋 + +
𝛽
𝐾⁄ ∑ �̅̅�𝑁𝑘

𝑇
�̅̅�𝑁𝑘

)𝐾
𝑘=1 + 𝜏𝑡𝐼)

−1

×  

(𝑋𝑇𝑌 + 𝜏𝑡𝐽𝑡 + 𝑌2
𝑡)                              (39) 
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