482 research outputs found

    An efficient shooting algorithm for Evans function calculations in large systems

    Full text link
    In Evans function computations of the spectra of asymptotically constant-coefficient linear operators, a basic issue is the efficient and numerically stable computation of subspaces evolving according to the associated eigenvalue ODE. For small systems, a fast, shooting algorithm may be obtained by representing subspaces as single exterior products \cite{AS,Br.1,Br.2,BrZ,BDG}. For large systems, however, the dimension of the exterior-product space quickly becomes prohibitive, growing as (nk)\binom{n}{k}, where nn is the dimension of the system written as a first-order ODE and kk (typically n/2\sim n/2) is the dimension of the subspace. We resolve this difficulty by the introduction of a simple polar coordinate algorithm representing ``pure'' (monomial) products as scalar multiples of orthonormal bases, for which the angular equation is a numerically optimized version of the continuous orthogonalization method of Drury--Davey \cite{Da,Dr} and the radial equation is evaluable by quadrature. Notably, the polar-coordinate method preserves the important property of analyticity with respect to parameters.Comment: 21 pp., two figure

    Bayesian orthogonal component analysis for sparse representation

    Get PDF
    This paper addresses the problem of identifying a lower dimensional space where observed data can be sparsely represented. This under-complete dictionary learning task can be formulated as a blind separation problem of sparse sources linearly mixed with an unknown orthogonal mixing matrix. This issue is formulated in a Bayesian framework. First, the unknown sparse sources are modeled as Bernoulli-Gaussian processes. To promote sparsity, a weighted mixture of an atom at zero and a Gaussian distribution is proposed as prior distribution for the unobserved sources. A non-informative prior distribution defined on an appropriate Stiefel manifold is elected for the mixing matrix. The Bayesian inference on the unknown parameters is conducted using a Markov chain Monte Carlo (MCMC) method. A partially collapsed Gibbs sampler is designed to generate samples asymptotically distributed according to the joint posterior distribution of the unknown model parameters and hyperparameters. These samples are then used to approximate the joint maximum a posteriori estimator of the sources and mixing matrix. Simulations conducted on synthetic data are reported to illustrate the performance of the method for recovering sparse representations. An application to sparse coding on under-complete dictionary is finally investigated.Comment: Revised version. Accepted to IEEE Trans. Signal Processin

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor
    corecore