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Bayesian Orthogonal Component Analysis for
Sparse Representation

Nicolas Dobigeon, Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper addresses the problem of identifying a
lower dimensional space where observed data can be sparsely
represented. This undercomplete dictionary learning task can
be formulated as a blind separation problem of sparse sources
linearly mixed with an unknown orthogonal mixing matrix. This
issue is formulated in a Bayesian framework. First, the unknown
sparse sources are modeled as Bernoulli–Gaussian processes. To
promote sparsity, a weighted mixture of an atom at zero and a
Gaussian distribution is proposed as prior distribution for the
unobserved sources. A noninformative prior distribution defined
on an appropriate Stiefel manifold is elected for the mixing matrix.
The Bayesian inference on the unknown parameters is conducted
using a Markov chain Monte Carlo (MCMC) method. A partially
collapsed Gibbs sampler is designed to generate samples asymp-
totically distributed according to the joint posterior distribution
of the unknown model parameters and hyperparameters. These
samples are then used to approximate the joint maximum a
posteriori estimator of the sources and mixing matrix. Simula-
tions conducted on synthetic data are reported to illustrate the
performance of the method for recovering sparse representations.
An application to sparse coding on undercomplete dictionary is
finally investigated.

Index Terms—Bayesian inference, dictionary learning, Markov
chain Monte Carlo (MCMC) methods, sparse representation.

I. INTRODUCTION

I N recent years, sparse representations have motivated
much research in the signal processing community. This

issue consists of identifying a sparse decomposition of a signal
on a given dictionary. Among the main motivations, such
representations have been demonstrated to be an efficient
alternative for regularizing ill-posed inverse problems [1].
More recently, compressive sensing has extensively benefited
from sparsity to reconstruct a signal from a few projections
[2], [3]. Signal reconstruction under hard sparse constraints
can be mainly formulated as an optimization problem of a

-penalized quadratic criterion, whose numerical resolution
is unfortunately an NP-complete problem. Several greedy
algorithms have been proposed to approximate the signal
reconstruction solutions, such as the well-known matching
pursuit (MP) [4] and orthogonal matching pursuit (OMP) [5]
algorithms. However, under appropriate sufficient conditions,
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replacing the -norm by the -norm in the penalization term
can lead to the same unique solution [6]. Therefore, exploiting
these interesting sparseness properties, extensive works have
been devoted on -constrained estimation problems for sparse
representation (see, for example, [7] and [8]).

In all the above works, the (generally overcomplete) dictio-
nary on which the signal is sparsely decomposed is assumed
to be a priori known. The joint estimation of the atoms of the
dictionary and the corresponding sparse representation is a
much more challenging task. In [9], Aharon et al. introduced
an MP-based iterative method for designing overcomplete dic-
tionaries. Of course, the overcompleteness allows redundancy
in the atom decomposition. We address here the problem of
recovering a sparse data representation in a lower-dimensional
space defined by an undercomplete orthogonal dictionary.
Some up-to-date research activities conducted in the signal
processing and machine learning communities have been fo-
cusing on this still open problem. Specifically, Mishali and
Eldar have introduced in [10] an alternating minimization
procedure to solve a complete sparse representation problem
when the sparsity level is assumed to be known. In [11], [12],
and more recently in [13], the decomposition of a covariance
matrix into sparse factors has been formulated as a regression
problem with sparsity constraints. More generally, these matrix
factorization strategies under some particular constraints, e.g.,
non-negativity, orthogonality and sparsity have demonstrated
great interest for many different applications. These applica-
tions include representation of natural images [14] and gene
expression data analysis [15].

In this paper, the undercomplete dictionary learning task is
formulated as a blind source separation problem with sparsity
constraints. Many applications have encouraged research on
sparse signal and image deconvolution. These applications
include astronomy [16], geophysics [17], audio signal decom-
position [18] and, more recently, molecular imaging [19]. In
the present work, we propose a hierarchical Bayesian model for
blind separation of sparse sources linearly mixed by an orthog-
onal matrix.1 This model is based on the choice of pertinent
prior distributions for unknown parameters and hyperparam-
eters. Following the works of Kormylo and Mendel [20], the
unknown sources are assumed to be Bernoulli–Gaussian (BG)
processes. Therefore, the source prior is composed of a
weighted mixture of a standard Gaussian distribution and
a mass at zero. Note that this distribution has been widely
advocated to solve reconstruction problems in a Bayesian
framework (see [21]–[24], among others). However, estimating

1In the following, the mixing matrix is said orthogonal although it is not a
square matrix. This abuse of language will mean that its columns, i.e., the dic-
tionary atoms, are orthogonal.
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hyperparameters involved in such prior mixture is a critical
issue that drastically impacts the estimation performance. As
an example, the empirical Bayes (EB) and Stein unbiased
risk (SURE) approach proposed in [25] experienced instability
especially at high signal-to-noise ratios (SNRs). In the adopted
Bayesian estimation framework, several strategies are available
to efficiently estimate these hyperparameters in an unsupervised
manner. Lavielle et al. proposed to couple Markov chain Monte
Carlo (MCMC) methods to a (stochastic) expectation-maxi-
mization (EM) algorithm [26], [27]. A popular alternative to
this hybrid strategy consists of introducing a second level of
hierarchy in the Bayesian model by assigning noninformative
prior distributions to the unknown hyperparameters [28, p. 383].
The joint posterior distribution of the unknown model param-
eters and hyperparameter is then approximated from samples
generated by MCMC methods. This fully Bayesian estimation
technique, followed in this paper, has been recently applied to
signal segmentation [29] and hyperspectral imaging [30], [31].

Besides, standard MCMC methods have shown some limita-
tions for deconvolving BG processes. More precisely, as noticed
in [16] and [32], a standard Gibbs sampler can be stuck in a par-
ticular configuration of the BG process to be recovered, leading
to poor mixing properties. Ge and Idier recently demonstrated
that this BG deconvolution can be easily improved by marginal-
izing over the amplitudes of the nonzero components [32]. The
resulting MCMC scheme is a partially collapsed Gibbs sampler
deeply studied by van Dyk et al. in [33] and [34]. Following
this approach, we propose in this paper to take advantage of this
MCMC strategy to estimate the sparse sources efficiently.

To avoid redundant atoms in the dictionary and, more gen-
erally, ensure a full rank mixing matrix, we address the blind
source separation problem under orthogonality constraint on the
mixing matrix. The main motivation for imposing this orthogo-
nality constraint on the mixing matrix is to capture more diver-
sity among the recovered atoms belonging to the undercomplete
dictionary to be estimated. Only a few works in the signal pro-
cessing literature have considered this additional property. Pre-
liminary results on this issue have been reported in [10] that has
addressed the problem of sparse source separation from orthog-
onal mixtures. However, the strategy was based on a strong hy-
pothesis for the source and mixing matrix, i.e., the prior knowl-
edge of the sparsity level shared by all the sources. Hoff re-
cently proposed in [35] a Bayesian formulation of the dimen-
sion reduction operators. More precisely, to estimate the rank
of an unobserved matrix involved in a noisy model, he has
derived a Bayesian description of the singular value decomposi-
tion (SVD). The idea is to decompose the unobserved noise-free
data as , where and are matrices with
orthogonal columns. The Bayesian inference on and has
been finally conducted after assigning uniform prior distribu-
tions for and on their definition space, called the Stiefel
manifold. This choice, coupled with the Gaussian properties of
the noise, leads to von Mises-Fisher conditional posterior dis-
tributions for the columns of the matrices and . In the
Bayesian orthogonal component analysis (BOCA) studied in
this paper, a similar strategy is adopted by assigning a uniform
distribution on the Stiefel manifold to the mixing matrix. The
resulting MCMC algorithm generates mixing matrix samples

distributed according to the posterior distribution following the
efficient scheme developed in [35].

This paper is organized as follows. The BOCA is formu-
lated as a blind source separation problem under constraints in
Section II. Section III derives the statistical quantities required
to define the Bayesian model. The BOCA MCMC algorithm is
described step-by-step in Section IV. This algorithm allows one
to generate samples distributed according to the joint posterior
distribution of the source and mixing matrices. Simulation re-
sults conducted on synthetic data, as well as a performance com-
parison with the K-SVD algorithm, are reported in Section V.
Section VI illustrates the interest of the proposed algorithm by
solving a sparse coding problem with an application to natural
image processing. Conclusions and potential future works are
considered in Section VII.

II. PROBLEM FORMULATION

Let denote measurement vectors
of observed at time instants by sensors.
These observations are assumed to be related to un-
observed sources denoted via the
matrix in the following noisy linear model:

(1)

where stands for an additive measurement noise. Standard
matrix notations yield

(2)

with and
. The noise vectors

are assumed to be independent and distributed according to a
centered multivariate Gaussian distribution .

In this work, the matrix is assumed to be an un-
known orthogonal matrix

(3)

which defines an orthogonal basis associated with a space where
the sources to be recovered can be sparsely represented. Conse-
quently, since only a few sources are assumed to be active at
time index , the unobserved vector of sources is sparse
and contains only a few components that are nonzero.

This paper proposes a Bayesian model as well as an MCMC
sampling strategy to estimate the unknown sources , the or-
thogonal matrix and the noise variance .

III. BAYESIAN MODEL

The unknown parameter vector associated with the mixing
model defined in (1) is . This section gives the
likelihood function of the observations and introduces prior dis-
tributions for the unknown model parameters (assumed to be a
priori independent).

Authorized licensed use limited to: INP TOULOUSE. Downloaded on April 13,2010 at 16:05:30 UTC from IEEE Xplore.  Restrictions apply. 



DOBIGEON AND TOURNERET: BAYESIAN ORTHOGONAL COMPONENT ANALYSIS FOR SPARSE REPRESENTATION 2677

A. Likelihood Function

The Gaussian property of the additive noise yields for each
observed vector

where and stands for the standard -norm. By
assuming the noise vectors to be a priori independent, the
full likelihood function is

(4)

B. Noise Variance Prior

As in numerous works, including [29], [30], [36], a conjugate
inverse-Gamma distribution is chosen as prior distribution for
the noise variance

(5)

where and is an unknown hyperparameter that will
be estimated from the data. The main motivation for choosing
conjugate prior distribution for is to simplify the computation
of the posterior distribution of interest.

C. Prior for the Mixing Matrix

The mixing matrix to be estimated is an matrix with
orthogonal columns whose rank is . The set of such matrices,
denoted , is called the Stiefel manifold2 (see [37, p. 8])
for a general introduction of this space). To reflect the absence
of any additional prior knowledge regarding the mixing matrix,
a uniform distribution on this set is chosen as prior distribution
for [38, p. 279]

(6)

where stands for the indicator function

(7)

In (6), is the volume of the Stiefel manifold
given by [39, p. 70]

(8)

where is the -variate Gamma function

(9)

and is the Gamma function

(10)

2Note that for the special case � � � , the Stiefel manifold � is the
orthogonal group ���� of orthogonal� �� matrices.

with .
Generating samples according to (6) can be easily achieved

by first sampling an matrix of independent
standard normal random variables and then by setting

[37]. However, as highlighted by
Hoff in [35], sampling via its conditional distributions is
frequently required, especially within an MCMC estimation
framework. Therefore, we recall below the procedure proposed
in [35] to sample orthogonal matrices according to the
uniform distribution (6) using the conditional distributions of
its columns.

First, let denote the matrix formed by the
columns of indexed by the label vector ,
where stands for the th column of . Let denote an
orthogonal basis associated with the null space of the orthogonal
matrix . Then, as demonstrated in [35], an orthogonal

matrix can be uniformly drawn on the Stiefel manifold
via the following steps:

1) sample uniformly on the unit -sphere and set
;

2) sample uniformly on the unit -sphere and set
;

3) sample uniformly on the unit -sphere and set
;

...
N) sample uniformly on the unit -sphere
and set .

Uniform sampling on a sphere required in the scheme detailed
above can be easily achieved following the normal-deviate
method described in [40]. Finally, we have to mention that a
similar strategy will be used in Section IV to sample mixing
matrices according to their conditional posterior distribu-
tions.

D. Source Prior

Since the source vectors are sparse, most of the elements
of the matrix are ex-

pected to be equal to zero. Therefore, choosing a “sparse” prior
for is recommended. Coupling a standard probability den-
sity function (pdf) with an atom at zero is a classical strategy
to ensure sparsity. This strategy has been widely used for lo-
cated event detection [20] such as spike train deconvolution
[17], [41], astrophysical frequency detection [16], sparse ap-
proximations of times-series [42] and reconstruction of molec-
ular images [19]. We propose here to take advantage of this ap-
proach by choosing a BG distribution as prior for . The
distribution of this BG prior is defined as the following mix-
ture:

(11)

where is the Dirac delta function and is the
pdf of the centered Gaussian distribution with variance . In
(11), the unknown hyperparameter is the prior probability
of having an active source. Consequently, this hyperparameter
tunes the degree of sparseness of the source vector . Note
that this probability of having an active source, as well as
the nonzero component variance , have been assumed to
be different from one source to another to provide a flexible
model. This strategy have been previously adopted in [24],
[42], and [43]. Another strategy would be to assume that the
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sources have a nonhomogeneous sparsity level over times as
explained in [44]. By assuming that the source amplitudes
are a priori independent, and introducing the index subsets

, the full prior distribution
for the source matrix is

where and
. Note that , where

and denotes the -norm, is
the number of active components in the source , whereas

is the number of components that are
equal to 0 in the source .

E. Hyperparameter Priors

A noninformative Jeffreys’ prior is elected as prior distribu-
tion for the hyperparameter

(12)

An inverse-gamma distribution with fixed hyper-hyperparame-
ters and (in order to obtain vague prior with large vari-
ance) is chosen as prior for the variance of the nonzero com-
ponents in each source

(13)

A uniform distribution is chosen as prior distribution for the
in each source

(14)

Assuming that the individual hyperparameters are independent
the full prior distribution for the hyperparameter vector

can be expressed as

(15)

F. Posterior Distribution

The posterior distribution of can be computed from the
following hierarchical structure

(16)

where means “proportional to”

(17)

Fig. 1. DAG for the parameter priors and hyperpriors (the fixed hyperparame-
ters appear in dashed boxes).

and where and have been defined in (4) and (15).
This hierarchical structure is represented as a graphical model
on the directed acyclic graph (DAG) of Fig. 1. In the joint dis-
tribution (16), the nuisance parameter can be easily integrated
out, leading to

(18)

Inferring the source matrix and the orthogonal matrix
from (18) is not straightforward, mainly due to the combinatory
problem induced by the quantities and . In particular,
closed-form expressions of the Bayesian estimators of and
are difficult to obtain. We propose to use MCMC methods to
generate samples that are asymptotically distributed according
to the target distribution (18). These generated samples are then
used to approximate the Bayesian estimators of and .

IV. PARTIALLY COLLAPSED GIBBS SAMPLER FOR

ORTHOGONAL COMPONENT ANALYSIS OF SPARSE SOURCES

We describe in this section an MCMC method that allows one
to generate a sample collection

asymptotically distributed according to the posterior distribu-
tion (18). The interested reader is invited to consult [28] for
more details about MCMC methods.

The easiest way to sample according to this posterior would
consist of using a standard Gibbs sampler whose main steps are
as follows:

1) sample from ;
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2) sample from ;
3) sample from

;
4) sample from ;
5) sample from .

However, as highlighted in previous works, sampling BG
processes following the crude Gibbs sampler detailed above
[step 1)] often leads to poor mixing properties and weak es-
timation performance [16]. As an alternative a new MCMC
algorithm for BG deconvolution was recently studied [32]. The
approach relies on explicitly introducing binary variables
that indicate the presence of nonzero BG components. Then,
these indicators are sampled after marginalizing over the BG
variable amplitudes. This strategy casts the resulting MCMC
algorithm as a partially collapsed Gibbs (PCG) sampler. Van
Dyk and Park have described in [34] and [33] how PCG sam-
plers can be efficient tools to overcome drawbacks inherent to
standard Gibbs sampler, e.g., slow convergence. As detailed
in the works cited above, PCG samplers consists of replacing
some of the conditional distributions with marginalized condi-
tional distribution. The resulting PCG sampling scheme can be
summarized by the following steps:

1) sample from ;
2) sample from ;
3) sample from ;
4) sample from ;
5) sample from ;
6) sample from .

Note that the source amplitudes have been marginalized to pro-
vide the discrete distribution appearing in step 1). The main
steps of the PCG sampler are detailed in Subsections IV-A–IV-E
(see also the step-by-step Algorithm 1).

Algorithm 1: Gibbs Sampling for Orthogonal Component
Analysis of Sparse Sources

1: % sampling the sources
2: for to do
3: % sampling the indicators recursively following

Algorithm 2
4: for to do
5: sample the indicator following the

probability (21),
6: end for
7: sample the source vector from the pdf’s in (22)

and (23),
8: end for
9: % sampling the orthogonal mixing matrix

10: for to do
11: compute the basis of the null space of ,
12: sample from the von Mises-Fisher distribution

in (26),
13: set ,
14: end for
15: % sampling the noise variance
16: sample parameter from the pdf in (27),
17: % sampling the probability of having active sources
18: for to do
19: sample the hyperparameter from the pdf in (29),
20: % sampling the active source variances
21: sample the hyperparameter from the pdf in (30),
22: end for

A. Sampling the Indicator and Source Matrices

The prior independence assumption of the source vectors al-
lows one to rewrite the joint posterior distribution of the source
matrix as

(19)

Consequently, sampling according to can
be achieved by successively sampling the source vectors
according to for .

It is important to note here that standard derivations similar
to those in [17] allow one to state that the conditional posterior
distribution of the th component of the th source is a
BG distribution. However, as pointed out in [16], sampling ac-
cording to this distribution needs to explore the state space effi-
ciently, which can be difficult mainly due to the difficulty of the
Gibbs sampler to escape from local maxima. Recently, Ge et al.
have introduced a performing MCMC algorithm to overcome
this issue by explicitly introducing an auxiliary binary variable

that indicates the active sources [32]

(20)

Conditionally upon this indicator variable , the prior of the
source component in (11) can be easily rewritten

The probability of having an active component in source is
governed by an unknown hyperparameter such that

In [32], Ge et al. have proposed to sample the source
vectors and the indicators

using the following two steps:
1) sampling according to ;
2) sampling according to .

As mentioned above, these two steps make the resulting Gibbs
sampler a PCG sampler and are detailed below.

1) Sampling According to : Sam-
pling according to can be performed
by updating the components succes-
sively. As noticed in [32], the posterior probability of having the
source component to be active given the other components
denoted is

(21)

with
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The probability in (21) can be efficiently computed following
the recursive scheme initially introduced in [41] (and used in
[32]), and adapted here to take into account the orthogonality
property of . This numerical implementation relies on the
Cholesky decomposition of and the matrix inversion lemma.
This avoids to calculate the compute-intensive inversion of
and the determinant at each step of the Gibbs sampler. We
describe in Algorithm 2 how the component is updated.

Algorithm 2: Recursive Sampling of Indicator Vector

1: for to do
2: set ,
3: set ,
4: set ,
5: set ,
6: set ,
7: set

,
8: sample ,
9: if then

10: set ,
11: end if
12: end for

2) Sampling According to :
Conditionally upon the indicator variable , the distribution
of is defined by

(22)

and

(23)

where stands for vector composed of the
active components in the source vector

is the matrix composed of the columns of
corresponding to the active source components and

and
are diagonal matrices with . Note that this
block sampling strategy, also adopted in [43], avoids to sample
the nonzero source components one-by-one.

B. Sampling the Mixing Matrix

The conditional distribution being in-
tractable, this section describes how Gibbs moves can be used
to generate samples according to the posterior distri-
bution of each column of conditionally upon the others.
Let (respectively, ) denote the matrix

(respectively, vector ) whose th column (respectively,
component) has been removed. By denoting

(24)

straightforward computations yield

(25)

As detailed in [35], conditionally upon can be written
where is uniform on the sphere and is

a basis for the null space of . Therefore, from (25), the
conditional distribution of is

(26)

which is a von Mises-Fisher distribution with parameter
. A standard method to sample according to

this distribution is given in [45]. To summarize, the columns of
can be iteratively sampled conditionally upon the others by

drawing samples from a von Mises-Fisher distribution and
setting .

C. Sampling the Noise Variance

Looking carefully at (18), the conditional distribution of the
noise variance is an inverse-gamma distribution such that

(27)

D. Sampling the Probability of Having an Active Source

The conditional distribution of the hyperparameter (i.e.,
the probability of the source to be active) can be computed
from (18)

(28)

where , has been defined in Section III-D.
Therefore, sampling according to is achieved as fol-
lows:

(29)

where is a Beta distribution with shape parameters
and .

E. Sampling the Variance of the Active Sources

Straightforward computations leads to the following IG dis-
tribution as conditional posterior the variance of nonzero BG
components in the source

(30)

F. Inferring the Sources and the Mixing Matrix

The main objective of the proposed Bayesian algorithm is to
estimate the source matrix and the mixing matrix from
the data, independently from the nuisance parameters
and . The MCMC algorithm detailed in Sections IV-A–IV-E
generates samples asymptotically distributed according to the
posterior distribution (18). Consequently, the MMSE estimators
of and can be approximated by empirical averages over the

drawn samples as follows:

(31)

(32)

where denotes the number of burn-in iterations of the sam-
pler and is the total number of Monte Carlo iterations.
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Another important property of the proposed MCMC algo-
rithm is that the generated pairs

form also a Markov chain whose stationary distribution is the
joint marginal distribution . Therefore, the joint
MAP estimator of can be computed by retaining among
the collection

the sample that maximizes the marginalized distribution
[46, p. 165]

(33)

Note that this joint marginal distribution can be
easily computed from the hierarchical structure (16) that allows
one to integrate out the hyperparameter vector and the noise
variance in the full posterior distribution (18), yielding

(34)

where .

V. SIMULATION RESULTS

A. Performance Analysis

This section first considers a toy example to provide compre-
hensive and extensive results. We generate sources of
length according to the prior distribution in (11) with
the probabilities of having active sources
and the active source variances and . These
two sources, represented in Fig. 2 (red), are mixed to obtain

observation vectors of dimension .
The generated orthogonal mixing matrix is composed

of basis vectors proportional to sinusoidal functions,
with two different

frequencies and . These two vectors are
represented in Fig. 2 (red).

The observation vectors are corrupted by an addi-
tive white Gaussian noise with variance , cor-
responding to a signal-to-noise ratio (SNR) 15 dB,
where

(35)

The proposed Gibbs algorithm is applied on these noisy obser-
vations with iterations including
burn-in iterations. Note that these numbers of iterations have
been chosen to ensure convergence of the Markov chains. More

Fig. 2. Actual sources (circles, red) and corresponding MAP estimates (stars,
blue).

precisely, as a first convergence assessment, the outputs of the
Markov chains have been monitored for different parameters of
interest. As examples, the source parameters and

generated by the proposed BOCA algorithm have been de-
picted as functions of the iteration number in Fig. 4 (top and
middle, respectively). Note that the generated values converge
towards the actual values of the corresponding parameters after
very few iterations. As an additional convergence criterion, the
reconstruction error

(36)

has been evaluated as a function of the iteration number
where and are the MMSE esti-

mates of and computed following (31) after iterations,
respectively. The results depicted in Fig. 4 (bottom) show that

iterations are sufficient to ensure a small recon-
struction error. The computation time required by 1000 MCMC
iterations is 17 s for an unoptimized MATLAB 2007b 32-bit
implementation on a 2.2-GHz Intel Core 2. Of course, for more
challenging problems, more MCMC iterations may be required.

The obtained joint MAP estimates of the sources and mixing
matrices are represented in Fig. 2 (stars, blue) and Fig. 3 (blue),
respectively. These results show that the proposed BOCA algo-
rithm allows one to estimate the sources and basis vectors for
this simple example. Note that the first active component in the
second source signal has not been detected due to its very low
amplitude.

The proposed algorithm implicitly generates binary variables
that indicate the presence/absence of nonzero source

components (see Section IV-A). Thus, these indicators can be
used to compute interesting statistics regarding the probability
of having active components. As an example, the number

of active components in a given source
can be estimated by

(37)
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Fig. 3. Actual basis vectors (red) and corresponding MAP estimates (blue).

Fig. 4. Top (respectively, middle): Source parameters � (respectively, � )
generated by the proposed Gibbs sampler for the first (blue) and second (green)
sources. Bottom: Error reconstruction as a function of iteration number.

Fig. 5. Estimated histograms of numbers of active components in the sources.
The actual numbers appear in red dotted line.

The posterior probabilities of and estimated by the pro-
posed method for the considered synthetic example are repre-
sented as histograms in Fig. 5. The actual numbers of active

Fig. 6. Posterior probabilities of having active components. The actual active
nonzero components appear in red dotted line.

components and are represented by red dotted
lines in these figures.

The binary variables have Bernoulli distributions.
Therefore, the MMSE estimator of provides the posterior
probability of to be active. Following (31), the MMSE
estimates of the indicators are computed and represented
in Fig. 6. These posterior probabilities are in good agreement
with the actual positions of the active components, represented
by red dotted lines in these figures. Note that these probabilities
allow one to locate the first active component in the second
source signal that has been previously omitted by the MAP
estimator.

B. Performance Comparison

We propose here to compare the proposed algorithm with an
up-to-date dictionary learning technique referred to as K-SVD
algorithm [9]. This algorithm has been widely applied for var-
ious signal and image processing problems and has demon-
strated promising results (see, for example, [47], [48], and [49]).
For fixed signal dimensions and , an
sparse matrix is randomly drawn according to the prior in (11)
with and .
Then, an random orthogonal matrix is selected as
the first columns of the left orthogonal matrix provided by
the singular value decomposition (SVD) of an matrix
whose elements have been drawn according to a distri-
bution. The number of dictionary atoms is set to three dif-
ferent values: 4, 8, and 16. The observations, computed
following (2), are corrupted by an additive Gaussian noise with
SNR ranging from 0 to 20 dB. The proposed Bayesian algo-
rithm is applied on the generated data with 300 Monte
Carlo iterations and 50 burn-in iterations. The accu-
racy of the MAP estimates of the source and mixing matrices

and are compared with the results provided by
the K-SVD algorithm with a total number of 80 iterations (as
in [9]). The performance of these algorithms are expressed in
terms of reconstruction error and sparsity. More precisely, the
root mean-square error (RMSE) between the actual noise-free
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Fig. 7. RMSEs as functions of the noise level SNR for different values of the
number of sources � .

data and the estimated reconstructed data is computed
as

(38)

The sparsity of the estimated source vectors is measured using
the following score function :

(39)

Note that where means that is the
matrix of zeros whereas means that is a matrix con-
taining nonzero elements. The RMSEs and score functions

, computed over 100 Monte Carlo trials, are depicted in Figs. 7
and 8 as functions of the noise level SNR and for different values
of the number of sources .

Fig. 7 indicates that the Bayesian orthogonal component
analysis (BOCA) generally outperforms the K-SVD algorithm
in term of reconstruction RMSE. In other words, the proposed
strategy provides a combination of source and mixing matrices

and that better fit the observed data than the solution
provided by K-SVD, especially at low SNR. Moreover, Fig. 8
shows that when the number of sources and the SNR are low,
the sources estimated by BOCA are much sparser than the
sources identified by K-SVD. Note that the sparsity level of the
solutions provided by K-SVD is implicitly fixed by the number
of nonzero entries in the orthogonal-matching-pursuit (OMP)
subprocedure, whereas the introduced BOCA estimates this
sparsity degree via an unsupervised framework.

VI. APPLICATION TO SPARSE CODING WITH UNDERCOMPLETE

ORTHOGONAL DICTIONARIES

In this section, we present the ability of the proposed pro-
cedure to perform sparse coding with undercomplete orthog-
onal dictionaries. A fraction of the well-known Barbara natural
image is analyzed by BOCA. This 256 256-pixel image, de-
picted in Fig. 9 (column 1), is decomposed into block

Fig. 8. Sparsity as function of the noise level SNR for different values of the
number of sources � .

patches of size pixels. The proposed Bayesian
strategy and the K-SVD algorithm are applied on these obser-
vations for different values of the number of sources (i.e., dif-
ferent numbers of dictionary atoms). The images reconstructed
by the algorithms after estimating the source and mixing ma-
trices are depicted in Fig. 9 (columns 2–5) for different values
of ranging from to . As in Section V-B,
the estimation performances of both algorithms are evaluated
in terms of reconstruction error (RMSE) and sparsity level (
expressed as a percentage). The RMSEs are reported for each
reconstructed image and the sparsity measures appear between
brackets. These results clearly indicate the reliability of BOCA
for fitting the observed data and its ability of identifying a sparse
representation.

The Bayesian algorithm generates a collection of mixing ma-
trices that can be used to approximate the
MAP estimator of following (33). The MAP estimate of the
dictionary atoms (i.e., the mixing matrix), formatted as block
patches of size 16 16, are represented in Fig. 10 (left) for the
corresponding values of the number of sources . As an illustra-
tion, the dictionary atoms estimated by K-SVD have been also
depicted in Fig. 10 (right).

VII. CONCLUSIONS AND FUTURE WORK

We introduced in this paper a new Bayesian algorithm for
sparse representation with undercomplete orthogonal dic-
tionary. This problem was formulated as a blind separation
problem of sparse sources mixed by an orthogonal matrix. The
proposed approach relied on appropriate prior distributions
for the unknown model parameters. The sparse sources to be
estimated were modeled as Bernoulli–Gaussian processes. A
uniform distribution on the Stiefel manifold was elected as prior
distribution for the mixing matrix. The hyperparameters asso-
ciated with this prior model were estimated from the data in an
unsupervised fully Bayesian framework. A partially collapsed
Gibbs sampler was studied to generate samples distributed
according to the joint posterior distribution of the mixing
matrix, source matrix, the noise variance and the model hyper-
parameters. The Bayesian estimators of the unknown model
parameters were then approximated by using the generated
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Fig. 9. Sparse coding of the Barbara image obtained by BOCA (first row) and K-SVD (second row) with different values of � . Corresponding RMSEs and
sparsity levels (expressed as percentage) are indicated above each image.

Fig. 10. Estimated dictionary atoms by BOCA (left) and K-SVD (right) for
different values of the number of dictionary atoms � .

samples. The estimation performance of the proposed algo-
rithm was evaluated from simulations conducted on synthetic
data. A comparison with the K-SVD algorithm showed very
promising results in favor of the proposed Bayesian method.
An application of the proposed sparse coding technique for
natural image processing was also investigated.

Future works include the unsupervised estimation of the
number of sources (i.e., dimension of the subspace) using a
reversible-jump MCMC algorithm as in [35]. Extension of the
proposed linear decomposition model to union of orthogonal
dictionaries as in [8] is currently under investigation. Finally,
it would be interesting to apply BOCA to sparse coding in
transformed domains for compression problems.
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