13,858 research outputs found

    A non-destructive analytic tool for nanostructured materials : Raman and photoluminescence spectroscopy

    Full text link
    Modern materials science requires efficient processing and characterization techniques for low dimensional systems. Raman spectroscopy is an important non-destructive tool, which provides enormous information on these materials. This understanding is not only interesting in its own right from a physicist's point of view, but can also be of considerable importance in optoelectronics and device applications of these materials in nanotechnology. The commercial Raman spectrometers are quite expensive. In this article, we have presented a relatively less expensive set-up with home-built collection optics attachment. The details of the instrumentation have been described. Studies on four classes of nanostructures - Ge nanoparticles, porous silicon (nanowire), carbon nanotubes and 2D InGaAs quantum layers, demonstrate that this unit can be of use in teaching and research on nanomaterials.Comment: 32 pages, 13 figure

    Optical modulators with 2D layered materials

    Get PDF
    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation

    Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors

    Get PDF
    Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights of latest researches on these two types of 2D halide perovskites for developing photodetectors, with an emphasis on synthesis methods, structural characterization, optoelectronic properties, and theoretical analysis and simulations. We also discuss the current challenging issues and future perspective. We hope this chapter would add new elements for understanding halide perovskite-based 2D materials and for developing their more efficient optoelectronic devices

    Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook

    Get PDF
    Two-dimensional (2D) semiconductors provide a unique opportunity for optoelectronics due to their layered atomic structure, electronic and optical properties. To date, a majority of the application-oriented research in this field has been focused on field-effect electronics as well as photodetectors and light emitting diodes. Here we present a perspective on the use of 2D semiconductors for photovoltaic applications. We discuss photonic device designs that enable light trapping in nanometer-thickness absorber layers, and we also outline schemes for efficient carrier transport and collection. We further provide theoretical estimates of efficiency indicating that 2D semiconductors can indeed be competitive with and complementary to conventional photovoltaics, based on favorable energy bandgap, absorption, external radiative efficiency, along with recent experimental demonstrations. Photonic and electronic design of 2D semiconductor photovoltaics represents a new direction for realizing ultrathin, efficient solar cells with applications ranging from conventional power generation to portable and ultralight solar power.Comment: 4 figure
    • …
    corecore