24 research outputs found

    A new nonlinear time-domain op-amp macromodel using threshold functions and digitally controlled network elements

    Get PDF
    A general-purpose nonlinear macromodel for the time-domain simulation of integrated circuit operational amplifiers (op amps), either bipolar or MOS, is presented. Three main differences exist between the macromodel and those previously reported in the literature for the time domain. First, all the op-amp nonlinearities are simulated using threshold elements and digital components, thus making them well suited for a mixed electrical/logical simulator. Secondly, the macromodel exhibits a superior performance in those cases where the op amp is driven by a large signal. Finally, the macromodel is advantageous in terms of CPU time. Several examples are included illustrating all of these advantages. The main application of this macromodel is for the accurate simulation of the analog part of a combined analog/digital integrated circui

    Qucs workbook

    Get PDF
    This document is intended to be a work book for RF and microwave designers.Our intention is not to provide an RF course, but some touchy RF topics. The goal is to insist on design rules and work flow for RF design using CAD programs. This work flow will be handled through different subjects

    Single Event Transients in Linear Integrated Circuits

    Get PDF
    On November 5, 2001, a processor reset occurred on board the Microwave Anisotropy Probe (MAP), a NASA mission to measure the anisotropy of the microwave radiation left over from the Big Bang. The reset caused the spacecraft to enter a safehold mode from which it took several days to recover. Were that to happen regularly, the entire mission would be compromised, so it was important to find the cause of the reset and, if possible, to mitigate it. NASA assembled a team of engineers that included experts in radiation effects to tackle the problem. The first clue was the observation that the processor reset occurred during a solar event characterized by large increases in the proton and heavy ion fluxes emitted by the sun. To the radiation effects engineers on the team, this strongly suggested that particle radiation might be the culprit, particularly when it was discovered that the reset circuit contained three voltage comparators (LM139). Previous testing revealed that large voltage transients, or glitches appeared at the output of the LM139 when it was exposed to a beam of heavy ions [NI96]. The function of the reset circuit was to monitor the supply voltage and to issue a reset command to the processor should the voltage fall below a reference of 2.5 V [PO02]. Eventually, the team of engineers concluded that ionizing particle radiation from the solar event produced a negative voltage transient on the output of one of the LM139s sufficiently large to reset the processor on MAP. Fortunately, as of the end of 2004, only two such resets have occurred. The reset on MAP was not the first malfunction on a spacecraft attributed to a transient. That occurred shortly after the launch of NASA s TOPEX/Poseidon satellite in 1992. It was suspected, and later confirmed, that an anomaly in the Earth Sensor was caused by a transient in an operational amplifier (OP-15) [KO93]. Over the next few years, problems on TDRS, CASSINI, [PR02] SOHO [HA99,HA01] and TERRA were also attributed to transients. In some cases, such events produced resets by falsely triggering circuits designed to protect against over- voltage or over-current. On at least three occasions, transients caused satellites to switch into "safe mode" in which most of the systems on board the satellites were powered down for an extended period. By the time the satellites were reconfigured and returned to full operational state, much scientific data had been lost. Fortunately, no permanent damage occurred in any of the systems and they were all successfully re-activated

    Design of an Efficient Wall Adapter

    Get PDF
    This report presents a design for an efficient AC adapter that uses 85% less power than conventional adapters when idle, for an additional cost of only 1.21.Thedesignexceedstheteam2˘7sinitialtargetsof751.21. The design exceeds the team\u27s initial targets of 75% increased power efficiency at a cost of 1.30. The team logically derived the final polling design from three initially proposed solutions. This project addresses the inefficiencies of modern AC adapters, whose increased utilization has become an increasing detriment to both economy and environment

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    An Activity Monitor for Diabetic Individuals

    Get PDF
    An activity monitor that diabetic individuals can wear continuously will provide important information on how these individuals should make adjustments to their exercise, diet, and insulin dosage in order to maintain a healthy lifestyle. The device is composed of both heart rate sensing components and components to measure the magnitude of physical movement. The energy expenditure is calculated using an algorithm that continuously adjusts depending on the type of activity. The system display provides the carbohydrates burned in order to be adjunctive to carbohydrate counting, a common technique used for glucose management

    System level performance and yield optimisation for analogue integrated circuits

    No full text
    Advances in silicon technology over the last decade have led to increased integration of analogue and digital functional blocks onto the same single chip. In such a mixed signal environment, the analogue circuits must use the same process technology as their digital neighbours. With reducing transistor sizes, the impact of process variations on analogue design has become prominent and can lead to circuit performance falling below specification and hence reducing the yield.This thesis explores the methodology and algorithms for an analogue integrated circuit automation tool that optimizes performance and yield. The trade-offs between performance and yield are analysed using a combination of an evolutionary algorithm and Monte Carlo simulation. Through the integration of yield parameter into the optimisation process, the trade off between the performance functions can be better treated that able to produce a higher yield. The results obtained from the performance and variation exploration are modelled behaviourally using a Verilog-A language. The model has been verified with transistor level simulation and a silicon prototype.For a large analogue system, the circuit is commonly broken down into its constituent sub-blocks, a process known as hierarchical design. The use of hierarchical-based design and optimisation simplifies the design task and accelerates the design flow by encouraging design reuse.A new approach for system level yield optimisation using a hierarchical-based design is proposed and developed. The approach combines Multi-Objective Bottom Up (MUBU) modelling technique to model the circuit performance and variation and Top Down Constraint Design (TDCD) technique for the complete system level design. The proposed method has been used to design a 7th order low pass filter and a charge pump phase locked loop system. The results have been verified with transistor level simulations and suggest that an accurate system level performance and yield prediction can be achieved with the proposed methodology

    Wearable, low-power CMOS ISFETs and compensation circuits for on-body sweat analysis

    Get PDF
    Complementary metal-oxide-semiconductor (CMOS) technology has been a key driver behind the trend of reduced power consumption and increased integration of electronics in consumer devices and sensors. In the late 1990s, the integration of ion-sensitive field-effect transistors (ISFETs) into unmodified CMOS helped to create advancements in lab-on-chip technology through highly parallelised and low-cost designs. Using CMOS techniques to reduce power and size in chemical sensing applications has already aided the realisation of portable, battery-powered analysis platforms, however the possibility of integrating these sensors into wearable devices has until recently remained unexplored. This thesis investigates the use of CMOS ISFETs as wearable electrochemical sensors, specifically for on-body sweat analysis. The investigation begins by evaluating the ISFET sensor for wearable applications, identifying the key advantages and challenges that arise in this pursuit. A key requirement for wearable devices is a low power consumption, to enable a suitable operational life and small form factor. From this perspective, ISFETs are investigated for low power operation, to determine the limitations when trying to push down the consumption of individual sensors. Batteryless ISFET operation is explored through the design and implementation of a 0.35 \si{\micro\metre} CMOS ISFET sensing array, operating in weak-inversion and consuming 6 \si{\micro\watt}. Using this application-specific integrated circuit (ASIC), the first ISFET array powered by body heat is demonstrated and the feasibility of using near-field communication (NFC) for wireless powering and data transfer is shown. The thesis also presents circuits and systems for combatting three key non-ideal effects experienced by CMOS ISFETs, namely temperature variation, threshold voltage offset and drift. An improvement in temperature sensitivity by a factor of three compared to an uncompensated design is shown through measured results, while adding less than 70 \si{\nano\watt} to the design. A method of automatically biasing the sensors is presented and an approach to using spatial separation of sensors in arrays in applications with flowing fluids is proposed for distinguishing between signal and sensor drift. A wearable device using the ISFET-based system is designed and tested with both artificial and natural sweat, identifying the remaining challenges that exist with both the sensors themselves and accompanying components such as microfluidics and reference electrode. A new ASIC is designed based on the discoveries of this work and aimed at detecting multiple analytes on a single chip. %Removed In the latter half of the thesis, Finally, the future directions of wearable electrochemical sensors is discussed with a look towards embedded machine learning to aid the interpretation of complex fluid with time-domain sensor arrays. The contributions of this thesis aim to form a foundation for the use of ISFETs in wearable devices to enable non-invasive physiological monitoring.Open Acces

    Conformability analysis for the control of quality costs in electronic systems

    Get PDF
    The variations embodied in the production of electronic systems can cause that system to fail to conform to its specification with respect to Critical to Quality features. As a consequence of such failures the system manufacture may incur significant quality costs ranging from simple warranty returns up to legal liabilities. It can be difficult to determine both the probability that a system will fail to meet its specification and estimate the associated cost of failure. This thesis presents the Electronic Conformability Analysis (eCA) technique a novel methodology and supporting tool set for the assessment and control of quality costs associated with electronic systems. The technique addresses the three main elements of production affecting quality costs associated with electronic systems which are functionality, manufacturability and testability. Electronic Conformability Analysis combines statistical performance exploration with process capability indices, a modified form of Failure Modes and Effects Analysis and a cost mapping procedure. The technique allows the quality costs associated with design and manufacture induced failures to be assessed and the effectiveness of test strategies in reducing these costs to be determined. Through this analysis of costs the technique allows the potential trade-offs between these costs and those associated with design and process modifications to be explored. In support of the Electronic Conformability Analysis technique a number of new analysis tools have been developed. These tools enable the methodology to cope with the specific difficulties associated with the analysis of electronic systems. The technique has been applied to a number of analogue and mixed signal, safety critical circuits from automotive systems. These case studies have included several different levels of system complexity ranging from relatively simple transistor circuits to highly complex mechatronic systems. These case studies have shown that the technique is effective in a commercial design and manufacturing environment

    Development of Wireless Sensor Network Technology for Soil Property Monitoring

    Get PDF
    In the first part of this thesis, we designed and developed a soil property monitoring system with two generation evolutions. Soil property parameter data including soil moisture, soil electrical conductivity and near-surface soil temperature were collected from using two kinds of sensors embedded in four different depths as 50.8, 152.4, 304.8 and 609.6mm underground. A hybrid sensor network (HSN) conceptual system module including in-field wireless sensor network, cellular network and the Internet was put forward and realized for transmitting in-field data to the lab infrastructure. Results from the first part of the thesis indicated that wireless sensor network technologies had considerable advantages in field data collection and transmission over the traditional invasive methods. System quality of service testing results as: the average packet delivery rate and in-field data error rate were 95.05% and 0% until day of test while the averaged valid data rate was above 97% in general for each node. In the second part of this thesis, outdoor as well as off-line laboratory statistical experiments were carried out for analyzing impacts of impact factors as plant height, antenna gain, transmitter & receiver height, and separation distance to in-field radio propagation and modeling radio wave path loss to make the communication performance predictable. The experiments were divided into three blocks by two plant heights as 0.05m and 0.4m. Three widely used path loss models as COST-Hata, free space and plane earth models were included for verifying their applicability for in-field scenarios. Multi-variable linear regression was applied for relating the path loss to the impact factors. Results from the second part of the thesis indicated that the blocking criteria selection was proper and the Fresnel clearance dominated the in-field radio wave attenuation while the influence of reflection patterns was non-ignorable. R2 for the four regressed path loss prediction model was 0.822, 0.810, 0.843, and 0.899, respectively. By comparing measured path loss to predicted ones using general and regressed models, COST-Hata model yielded the highest difference, free space model yielded the second highest difference, and specific regressed models generated the least difference in most cases. A threshold of 70m was obtained for reliable communication in the worst cases of our experimental scenarios.Biosystems and Agricultural Engineerin
    corecore