6,409 research outputs found

    Efficient Transductive Online Learning via Randomized Rounding

    Full text link
    Most traditional online learning algorithms are based on variants of mirror descent or follow-the-leader. In this paper, we present an online algorithm based on a completely different approach, tailored for transductive settings, which combines "random playout" and randomized rounding of loss subgradients. As an application of our approach, we present the first computationally efficient online algorithm for collaborative filtering with trace-norm constrained matrices. As a second application, we solve an open question linking batch learning and transductive online learningComment: To appear in a Festschrift in honor of V.N. Vapnik. Preliminary version presented in NIPS 201

    Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints

    Get PDF
    We study online prediction where regret of the algorithm is measured against a benchmark defined via evolving constraints. This framework captures online prediction on graphs, as well as other prediction problems with combinatorial structure. A key aspect here is that finding the optimal benchmark predictor (even in hindsight, given all the data) might be computationally hard due to the combinatorial nature of the constraints. Despite this, we provide polynomial-time \emph{prediction} algorithms that achieve low regret against combinatorial benchmark sets. We do so by building improper learning algorithms based on two ideas that work together. The first is to alleviate part of the computational burden through random playout, and the second is to employ Lasserre semidefinite hierarchies to approximate the resulting integer program. Interestingly, for our prediction algorithms, we only need to compute the values of the semidefinite programs and not the rounded solutions. However, the integrality gap for Lasserre hierarchy \emph{does} enter the generic regret bound in terms of Rademacher complexity of the benchmark set. This establishes a trade-off between the computation time and the regret bound of the algorithm

    Metric Learning for Individual Fairness

    Get PDF
    There has been much discussion concerning how "fairness" should be measured or enforced in classification. Individual Fairness [Dwork et al., 2012], which requires that similar individuals be treated similarly, is a highly appealing definition as it gives strong treatment guarantees for individuals. Unfortunately, the need for a task-specific similarity metric has prevented its use in practice. In this work, we propose a solution to the problem of approximating a metric for Individual Fairness based on human judgments. Our model assumes access to a human fairness arbiter who is free of explicit biases and possesses sufficient domain knowledge to evaluate similarity. Our contributions include definitions for metric approximation relevant for Individual Fairness, constructions for approximations from a limited number of realistic queries to the arbiter on a sample of individuals, and learning procedures to construct hypotheses for metric approximations which generalize to unseen samples under certain assumptions of learnability of distance threshold functions

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also TtTt1| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(logmlogr)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(logm)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant ϵ>0\epsilon>0, there is no O(n1ϵ)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case
    corecore