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Abstract
There has been much discussion concerning how “fairness” should be measured or enforced in
classification. Individual Fairness [2], which requires that similar individuals be treated similarly, is
a highly appealing definition as it gives strong treatment guarantees for individuals. Unfortunately,
the need for a task-specific similarity metric has prevented its use in practice. In this work, we
propose a solution to the problem of approximating a metric for Individual Fairness based on human
judgments. Our model assumes access to a human fairness arbiter who is free of explicit biases and
possesses sufficient domain knowledge to evaluate similarity. Our contributions include definitions
for metric approximation relevant for Individual Fairness, constructions for approximations from a
limited number of realistic queries to the arbiter on a sample of individuals, and learning procedures
to construct hypotheses for metric approximations which generalize to unseen samples under certain
assumptions of learnability of distance threshold functions.
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1 Introduction

Determining what it means for an algorithm or classifier to be “fair” and how to enforce
any such determination has become a subject of considerable interest as automated decision-
making increasingly takes the place of direct human judgment. One attractive definition
proposed is Individual Fairness [2], which states that similar individuals should be treated
similarly, where similarity is encoded in a task-specific metric.

I Definition 1 (Individual Fairness [2]). Given a universe U , a metric D : U × U → [0, 1] for
a classification task with outcome set O, and a distance measure d : ∆(O)×∆(O)→ [0, 1],
a randomized classifier C : U → ∆(O) is Individually Fair if and only if for all u, v ∈ U ,
D(u, v) ≥ d(C(u), C(v)).

Individual Fairness is appealing because each person is assured that her treatment is
similar to that of any person similar to her.1 However, the value of this assurance critically
depends on the extent to which the similarity metric (D) faithfully represents society’s best

1 By way of contrast, notions of fairness based on group level statistics can only provide individuals with
the guarantee that if they are treated poorly, either someone in a different group is also treated poorly or
someone in their group is treated well. Furthermore, many popular notions of statistical group fairness
conflict with each other and cannot be satisfied simultaneously [1, 6].
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2:2 Metric Learning for Individual Fairness

understanding of what constitutes similarity for a given task. Thus, the most significant
barrier to implementing Individual Fairness in practice is the need to construct a similarity
metric for each classification setting.

In this work we set out a path for constructing metrics for Individual Fairness based on
judgments made by a qualified, fair-minded “human fairness arbiter.” Our contributions
include: (1) a framework for useful approximations to a metric for Individual Fairness; (2)
a limited, realistic query model for determining the arbiter’s judgments of who is similar
to whom; (3) a method for constructing approximations to the true metric with limited
queries to the arbiter by using distances from a (set of) representative individual(s); (4)
a procedure for generalizing these approximations to unseen samples based on limited
learnability assumptions. Throughout this work we make no assumption on the form of the
metric or the features included in the learning procedure with the clearly stated exception of
Assumption 1 concerning learnability of threshold functions. As our results are built upon
a series of sequential steps including new terminology and machinery, we first present an
extended introduction to highlight the key concepts, logic and results. These results are
expanded and discussed in detail in the full version of the paper [4].

1.1 Model
In this work, we take the viewpoint that fairness is not well described by either accuracy
or group statistics alone. Instead, we view fairness as a highly contextual property one can
identify but not necessarily describe.2 Our goal is to produce a metric which results in
similarity judgments with which fair-minded people would agree, rather than satisfying any
particular statistical properties.3 The core of our model is the human fairness arbiter, a
fair-minded individual who is free from explicit biases or arbitrary preferences, is motivated
to engage ethically and honestly in the query protocol, and has sufficient knowledge and
contextual understanding of who is similar to whom for a particular task. The arbiter is not
expected to provide us a description or specification of the distance metric.

A critical part of learning metrics based on human judgments is determining the type
of queries to ask in order to solicit consistent, fast responses. To that end, we assume that
we cannot ask the arbiter to consider more than a few individuals at a time, e.g., it is not
realistic to ask the arbiter to find the closest pair of elements in the universe.

We ask the arbiter to answer two types of queries in this work: relative distance queries,
(e.g., is a closer to b or c), and real-valued distance queries.

I Definition 2 (Real-valued distance query). OREAL(u, v) := D(u, v).

I Definition 3 (Triplet query). OTRIPLET(a, b, c) := {1 if D(a, b) < D(a, c), 0 if D(a, c) ≤
D(a, b)}.

Producing a consistent set of real-valued distances is not a natural judgment most people
are accustomed to making, so we assume that real-valued queries are very “expensive” for
the arbiter to answer. Furthermore, maintaining internal consistency may increase the query
cost as the number of queries increases. Relative distance queries have been used successfully
for human evaluation in image processing and computer vision, e.g. [8, 9], and we anticipate
they will be significantly easier for the arbiter to evaluate. Demonstrating how to replace
difficult queries with easy queries is a significant part of our contribution.

2 [3] takes a similar approach in which a judge “knows it when she sees it,” but is not required to articulate
why a decision is unfair.

3 We discuss different types of agreement, and the extent to which we fully achieve this goal, in Section 8
of the full paper.
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We make several simplifying assumptions about the nature of the human fairness arbiter in
the main results of this work. (1) There is either one arbiter or all arbiters agree on all
decisions. (2) The arbiter does not change her opinion over the query period. (3) The
arbiter’s responses are consistent, i.e., if she answers that a is closer to b than it is to c, her
responses to real-valued queries will also reflect this relative judgment.4 For the majority of
this work, we focus on the query model specified above, which requires the arbiter to answer
with arbitrary precision. We also present a relaxed model which allows the arbiter to answer
real-valued queries with bounded noise and does not require arbitrarily small distinctions in
relative distances queries. The main results presented are replicated in the relaxed model.
As the results are similar, we focus on the more simple exact model in the main presentation
of our results.5

1.2 Contributions
Approximating the metric by contracting. Our first key observation is that Individual
Fairness only requires that we do not overestimate distances. This motivates our definition
of a submetric, which is a contraction of the original metric and can be substituted for the
original metric and still maintain Individual Fairness.

Constructing submetrics based on distances from representative elements. Taking the
difference in distance to a single reference or “representative” point is one of the simplest
ways to produce an underestimate of the distance between two elements. Submetrics based
on distances from representative elements form the basis of all of our constructions, and
although this may seem simplistic, it has a significant advantage when it comes to deciding
which queries to ask the arbiter: ordering. An ordering of elements by increasing distance
from the representative can be constructed with relative distance (easy) queries used as a
comparator. Once this ordering is established, real-valued distances at a given granularity
can be layered on top in a sublinear number of real-valued (hard) queries.

Choosing representatives. A single representative may not be sufficient to capture all
relevant distance information, but combining the information from multiple representative
elements can produce a more complete picture of the distances between all pairs of individuals.
But which representatives should we choose to maximize distance preservation? We discuss
a general, randomized approach and show that given certain properties of the metric, i.e.
how tightly packed individuals are, a random set of representatives of reasonable size will
have good distance preservation properties.

Generalizing submetrics to unseen samples. Once we have established how to construct
a submetric for a fixed sample of elements, our next step is to generalize to unseen samples.
Our results are based on an assumption that threshold functions, i.e. binary indicators
of whether an element is closer to a representative than a given threshold, are efficiently
learnable. We show how to combine threshold functions to simulate rounding distances to a
representative and then exhibit appropriate parameters to construct an efficient combined
learning procedure.

4 Please see Section 8 in the full paper for additional details.
5 Extended discussion of the exact query model and a more general definition of relative queries is included
in Section 3 of the full paper. The relaxed query model is discussed in detail in Section 7 of the full
paper.

FORC 2020
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Relaxing arbiter requirements. Finally, we present a relaxation of the arbiter query model
in which the arbiter (1) may respond to real-valued queries with arbitrary bounded noise and
(2) is not required to make arbitrarily precise distinctions between distances and may instead
declare relative comparisons to be “too close to call.” This model more closely matches the
reality of human arbiters, and our results extend with improvements in query complexity at
the cost of increased error magnitude.

1.3 Preliminary terminology and definitions
We refer to the universe of individuals as U , a distribution over the universe of individuals
as U , and the size of the universe as |U | = N . We write U∗ for the uniform distribution over
U . We assume D : U × U → [0, 1] for simplicity. Individual Fairness does not require that
distances between individuals be maintained exactly, only that they not be exceeded. This
observation motivates our definition of a submetric which is a contraction of the true metric,
i.e., it does not overestimate any distance beyond a small additive error term.6

I Definition 4 (α−submetric). Given a metric D, D′ : U × U → [0, 1] is an α-submetric of
D if for all u, v ∈ U , D′(u, v) ≤ D(u, v) + α.

Any classifier which satisfies the distance constraints of the submetric D′ will also satisfy
those of D, modulo small additive error.7 Given an α-submetric it is possible to eliminate
the additive error by taking max{0,D′(x, y) − α}. On the other hand, we want to avoid
contracting distances to the point of triviality. We say that a submetric is (β, c)−nontrivial
if a β fraction of distances between pairs preserve at least a c−fraction of their original
distance.8

I Definition 5 ((β, c)−nontrivial). Given a metric D, a submetric D′ of D is (β, c)-nontrivial
for the distribution U if Pru,v∼U×U

[
D′(u,v)
D(u,v) ≥ c

]
≥ β.

1.4 Constructing submetrics from arbiter judgments
A core component of this work is constructing submetrics based on distance information (either
exact or underestimated) from a single representative element. We define the representative
submetric Dr in the following Lemma. (The proof of follows from triangle inequality.)

I Lemma 6. Given a representative r, Dr(x, y) := |D(r, x)−D(r, y)| is a 0-submetric of D.

Given a sample of N individuals, Dr can be constructed from O(N) queries to OREAL.
Although O(N) may seem good compared with the O(N2) queries required to reconstruct
the whole metric, it can be improved to O(log(N)) by supplementing with relative distance
queries. Our general strategy will be to show that (1) an ordering of elements by distance
from a representative can be constructed using OTRIPLET as a comparator, and (2) given
this ordering, the real-valued distances between each element and the representative can be
closely approximated by labeling the ordering with distances at granularity α, which requires
a sublinear number of real-valued queries. Algorithm 1 outlines this process.9

6 This relaxation is very similar to the notion of (d, τ) metric fairness of [5] and approximate metric
fairness of [10].

7 As originally noted in [2], the distance measure need not be a true metric, i.e. it does not strictly need
to obey triangle inequality or distinguish unequal elements.

8 Nontriviality is defined over a product of identical distributions of elements in the universe. There is
no general obstacle to extending our results to more complicated scenarios, but definitions of density
(presented in the full version in Section 6) would need to be adjusted.

9 See Section 4 in the full version for the detailed specifications and analysis.
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Algorithm 1 (Pseudocode).

Inputs: the representative r, a set of elements U , error parameter α, interfaces OTRIPLET
and OREAL.
Output: an α−submetric D′r.

1: Initialize the submetric D′r(x, y)← 0 for all x, y ∈ U × U .
2: Order the elements of U by distance from r using OTRIPLET as a comparator.
3: Designate the entire ordered list as the first continuous range.
4: while there are still ranges left to be labeled do
5: Select a range left to be labeled.
6: Query OREAL(r, first) and OREAL(r, last) for the first and last elements in the range.
7: if the difference in distances is > α then
8: Split into two continuous ranges, each with half of the elements in the current

range.
9: else set D′r(r, x) to OREAL(r, first) for each element x in the range.
10: Set D′r(x, y) = |D′r(r, x)−D′r(r, y)| for all x, y in the ordering.
11: return D′r.

Theorem 7 states that Algorithm 1 produces an α−submetric, which follows from observing
that rounding D(r, x) and D(r, y) down by at most α results in an increase (or decrease) of
at most α in |D(r, x)−D(r, y)|. The bound of O(N log(N)) relative distance queries follows
from a straightforward analysis of sorting. The bound of O(max{ 1

α , log(N)}) real-valued
queries is included in Section 4 in the full paper. Briefly, the analysis considers the maximum
number of continuous ranges that, when split, result in one range with difference greater than
α and one with less. In the worst case, this results in logarithmic dependency on N or 1

α .

I Theorem 7. Algorithm 1 produces an α−submetric of D which preserves D(r, u) for each
u ∈ U (with additive error ≤ α) from O(max{ 1

α , log(N)}) queries to OREAL and O(N log(N))
queries to OTRIPLET.

The submetric produced by Algorithm 1 preserves distances between r and other elements
well, as D′r(r, x) is rounded down by at most α, but we cannot make guarantees on distance
preservation between arbitrary pairs without further information. For example, with only the
information that u and v are equally distant from r, it is impossible to distinguish whether
the distance between u and v is zero or equal to twice their distance from r. (See Figure 1).
Submetrics constructed based on different representatives preserve different information
about the underlying metric, so we can construct more expressive submetrics by aggregating
information from multiple representatives. Taking maxmerge({Di}, x, y) := maxiDi(x, y),
it’s straightforward to show that if all Di are submetrics of D, then the maxmerge of the
set is also a submetric of D, and that the merge preserves the “best” distance known for
each pair.10

1.5 Choosing good representative elements
Although the maxmerge of submetrics based on multiple representatives is an improvement
over a single representative, we still cannot make any guarantees about distances between
pairs which do not include a representative. There are two approaches one might take to give
non-triviality guarantees for arbitrary pairs: (1) develop specialized strategies for combining

10Formal analysis of maxmerge and the proof of Lemma 6 appear in Section 3 of the full paper. The proof
of Theorem 7 as well as a precise description of Algorithm 1 appear in Section 4 of the full paper.

FORC 2020



2:6 Metric Learning for Individual Fairness

(a) a chosen as representative. (b) b chosen as representative.

Figure 1 The impact of representative choice on distance preservation. The distance between
each element and the chosen representative is the radius of the shell containing the element. The
difference in radii of each pair of shells indicates the distance between the pair of elements under Da

or Db. If a is chosen as a representative, notice that d and e are indistinguishable using distance from
a alone. Choosing representative b preserve distances better than a, but still does not distinguish d
and e very well.

representative submetrics which depend on the structure of the metric, e.g., Euclidean
distance, or (2) characterize generic randomized representative selection strategies. In this
extended introduction, we focus on the randomized strategies for full generality.

Distance preservation via γ-nets. The crux of the argument for nontriviality with random
representatives is (1) a random set of representatives is likely to be “close to” a significant
portion of the distribution U , and (2) we can bound the magnitude of underestimates based
on the distance from a representative. Below, we formally define a γ−net to capture the
notion of being “close to” or “covering” a set of elements.

I Definition 8. A set R ⊆ U is said to form a γ−net for a subset V ⊆ U under D if for
all balls of radius γ (determined by D) containing at least one element v ∈ V , the ball also
contains r ∈ R.

Intuitively, the distance between r and x will be nearly identical to the distance between
a close neighbor of r and x, so we can conclude that if a set of representatives forms a γ−net
for a subset of U , then pairs with at least one element in the net will have their original
distance preserved up to a 2γ contraction. (Proofs of Lemmas 9 and 10 follow from triangle
inequality.)

I Lemma 9. For all u, v ∈ U\{r}, D(u, v) − Dr(u, v) ≤ min{2D(r, u), 2D(r, v)}, where
Dr(u, v) := |D(r, u)−D(r, v)|.

I Lemma 10. If a set of representatives R ⊆ U forms a γ−net for V ⊆ U , then for
every pair x, y ∈ V × U there exists r ∈ R such that D(x, y) − Dr(x, y) ≤ 2γ, where
Dr(x, y) := |D(r, x)−D(r, y)|.

Of course, forming a γ−net for an arbitrary γ isn’t enough to give a good nontriviality
guarantee. To understand how representatives which form a γ−net will preserve distances,
we define density and diffusion below to characterize the relevant properties of the metric and
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Figure 2 A visualization of the weight of elements, b, within distance γ = .1 of each element
under U∗ for an example universe of points in [0, 1]2 where D is taken as Euclidean distance. The
color assigned to each point on the left indicates the weight of elements in the universe which are
within distance γ = 0.1 from the element under the uniform distribution U∗. On the right, the points
with at least weight b = 0.04 of U∗ within distance γ = 0.1 are highlighted in blue. This example
is (γ = 0.1, a = .31, b = 0.04)−dense for U∗. That is, 31% of elements in the universe are within
distance 0.1 of 4% of the rest of the universe.

distribution. The notion of (γ, a, b)−dense is intended to capture the weight (a) of elements
that have a significant weight (b) on their close neighbors (distance γ) under U as a way
to characterize how likely it is that a randomly chosen representative will be γ-close to a
significant fraction of elements.

IDefinition 11 ((γ, a, b)−dense). Given a distribution U over U, a metric D is (γ, a, b)−dense
for U if there exists a subset A ⊆ U with weight a under U such that for all u ∈ A

Prv∼U [D(u, v) ≤ γ] ≥ b.

(p, ζ)−diffuse, defined below, captures what fraction of distances can tolerate a contraction
proportional to ζ without becoming trivial.

I Definition 12 ((p, ζ)−diffuse). Given a distribution U , a metric D is (p, ζ)−diffuse if
the fraction of distances between pairs of elements in U × U greater than ζ is p, i.e.
Pru,v∼U×U [D(u, v) ≥ ζ] ≥ p.

A metric can be described by many combinations of density and diffusion parameters,
as illustrated in Figure 2. These parameters are highly related, and we generally consider
the combination of (γ, a, b)−dense and (p, 2γ

1−c )−diffuse. Although 2γ
1−c initially seems an

arbitrary quantity, it indicates that a p−fraction of pairs will have distances preserved by
a factor of c if the maximum contraction for those pairs is no more than 2γ. Thus the
values of γ and c, which in turn dictate p, a, and b, (assuming ζ = 2γ

1−c ) can loosely be seen
as a tradeoff between how many pairs will have distance preservation guarantees and how
significant the guarantees will be.

Nontriviality properties of γ−nets. Next, we relate the magnitude of γ to the non-triviality
properties of the maxmerge of a set of representative submetrics. Lemma 13 states that a
submetric based on a set of representatives which form a γ−net for a subset of U will have
nontriviality properties related to the diffusion properties of D and the weight of the subset
in U .

FORC 2020



2:8 Metric Learning for Individual Fairness

I Lemma 13. If a set of representatives R ⊆ U form a γ−net for weight w of U and D
is (p, 2γ

1−c )−diffuse on U , then the submetric DR(x, y) := maxmerge({Dr|r ∈ R}, x, y) is
(p′, c)−nontrivial for U , where p′ ≥ p− (1− w)2.

The proof follows from a worst-case analysis of the fraction of pairs with at least one
element in the net with distance large enough that a 2γ contraction leaves at least a c-fraction
of the original distance. The nontriviality guarantees of Lemma 13 are conservative, and
we stress that our goal is to show the possibility of positive results, rather than achieving
optimal performance or guarantees.

Representative set size. We now consider how likely it is that a set of random representat-
ives drawn from U will form a γ−net for a significant fraction of U . Lemma 14 characterizes
the necessary representative set size based on the density and diffusion properties of the
metric. The proof follows from characterizing the probability of “hitting” a sufficient weight
of the distribution with a sample of a given size, and arguing that no element in our subset
of interest can be more than 3γ far from any of the “hitting” elements.

I Lemma 14. Given access to unlimited queries to the arbiter, if a metric D is (γ, a, b)−dense
and (p, 6γ

1−c )−diffuse on U , then a random set of representatives R of size at least 1
b ln( 1

bδ )
will produce a (p− (1− a)2, c)-nontrivial submetric for U with probability at least 1− δ.

Random sampling is not the only method to construct a γ−net, and our strategy is
motivated by simplicity as much as generality. In practice it may be more efficient to use
the distance information from previously selected representatives to inform the selection of
the next representative. For example, omitting or down-weighting any candidates that are
already very close to existing representatives, or using a greedy strategy.11

1.6 Generalizing arbiter judgments
Now that we have shown how to construct a nontrivial submetric with ongoing access
to the arbiter, we consider the problem of generalizing the arbiter’s responses to unseen
samples. Our goal is to construct efficient learners for submetrics as in Valiant’s Probably
Approximately Correct (PAC) model of learning [7]. However, we do not want to be too
prescriptive about the submetric concept class, particularly about the representation of
elements. Instead, we will make an assumption about the learnability of threshold functions
and construct learning procedures for submetrics using threshold functions as building blocks
without any additional direct access to labeled or unlabeled samples. More formally, our
goal is to produce an efficient submetric learner, defined below.

I Definition 15 (Efficient submetric learner). A learning procedure is an efficient α−submetric
learner if for all ε, δ ∈ (0, 1], given access to labeled examples, with probability at least 1− δ
over the randomness of the sampling and the learning procedure produces a hypothesis hr
such that Prx,y∼U×U [hr(x, y)−D(x, y) ≥ α] ≤ ε in time O(poly( 1

ε ,
1
δ )).

To show how to construct an efficient submetric learner, we first formalize our assumption
of learnability of threshold functions. Next, we show how to combine the threshold function
hypotheses for each representative to simulate rounding the distance between the represent-
ative and each element down to the nearest threshold. Finally, we specify the appropriate
parameters for each component to achieve the desired bounds.

11Section 6 of the full paper contains proofs for Lemmas 9-14 and extended discussion of specialized
strategies for representative selection, in particular strategies taking advantage of known metric structure.
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Learnability of threshold functions. Assumption 1 (below) states that for every repres-
entative, there exists a set of thresholds and a learner for each threshold which, with high
probability, produces an accurate hypothesis for the threshold function which generalizes
to unseen samples.12 (“With high probability” always refers to the probability over the
randomness of sampling and the learner.) We first formally define a threshold function,
which is a binary indicator of whether a particular element u ∈ U is within distance t ∈ [0, 1]
of a representative r as T rt (u) := {1 if D(r, u) ≤ t, 0 otherwise}.

I Assumption 1. (Informal) Given a metric D and a representative r, there exists a set of
thresholds T such that t ∈ [0, 1] for all t ∈ T , 0 ∈ T , and |T | = O(1), and for every t ∈ T
there exists an efficient learner Lrt (εt, δt) which for all εt, δt ∈ (0, 1], with probability at least
1− δt, produces a hypothesis hrt such that Prx∼U [hrt (x) 6= T rt (x)] ≤ εt in time O(poly( 1

εt
, 1
δt

))
with access to labeled samples of T rt (u ∼ U) for any distribution U .

Constructing submetric learners from threshold learners. Given Assumption 1, our next
step is to determine how to combine the threshold learners into a learner for the representative
submetric. (Notice that training data for the threshold function learners can be produced by
post-processing the outputs of Algorithm 1.) Our strategy is similar to the rounding strategy
used in Algorithm 1, using the threshold functions to identify the largest threshold which
underestimates the distance between the representative and the element under consideration.
The LinearVote mechanism takes in a set of hypotheses for the thresholds and outputs the
threshold with which the most hypotheses agree. When all hypotheses output the correct
value of their corresponding threshold function, LinearVote is equivalent to rounding D(r, x)
down to the nearest threshold.

I Definition 16 (LinearVote). Given an ordered set of thresholds, T = {t1, t2, . . . , t|T |}, and
a set of hypotheses Hr

T = {hrt1 , h
r
t2 , . . . , h

r
t|T |
}, one corresponding to each threshold function,

LinearVote(T , Hr
T , x) := arg maxti

∑
tj<ti

(1− hrtj (x)) +
∑
tj≥ti h

r
tj (x).

Algorithm 2 Pseudocode.

Inputs: error and failure probability parameters ε, δ, density parameter b, a set of threshold
function learners, the threshold set T , and interfaces to the arbiter.

1: Sample a set of representatives R ∼ U of size 1
b ln( 2

bδ ) to produce γ−net with Pr ≥ 1− δ
2 .

2: Generate labeled training data for the threshold learners via Algorithm 1.
3: Run each threshold learner Lrti with error parameters εt ← ε

2|R||T | and δt ←
δ

2|R||T | to
produce threshold function hypotheses hrti for r ∈ R and ti ∈ T .

4: For each representative, produce a hypothesis for distance from the representative by
taking hr(x, y) := |LinearVote(T , {hrti |ti ∈ T }, x)− LinearVote(T , {hrti |ti ∈ T }, y)|.

5: Combine the hypotheses for each representative into hR(x, y) := maxmerge({hr|r ∈
R}, x, y).

6: return hR.

Algorithm 2 combines all of our constructions thus far to create an efficient submetric
learner: it chooses a set of representatives, learns threshold functions for each threshold for
each representative, and combines the resulting hypotheses using LinearVote and maxmerge

12The formal statement of Assumption 1 is included in Section 5.1 of the full paper.

FORC 2020
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to produce a single submetric hypothesis.13 Theorem 17 builds on the result of Lemma
14 and concludes that the parametrization of Algorithm 2 results in an efficient submetric
learner.

I Theorem 17. [Informal] Given a distance metric D, and a distribution U over the universe,
if there exist a set of thresholds T with maximum gap αT and efficient learners {Lrti∈T }
as in Assumption 1, and D is (γ, a, b)−dense and (p, 6γ+αT

1−c )−diffuse on U , then there
exists an efficient αT -submetric learner which produces a hypothesis hR such that hR is
(p− (1− a)2 − ε, c)−nontrivial for U .

The proof of Theorem 17 follows from an analysis of the error parameter propagation.
We briefly give some intuition for the analysis and implications of the theorem. First, the
magnitude αT error follows from the same single direction rounding argument as for Algorithm
1. The error probability follows from noticing that at least one threshold function must be
in error for one of the elements to result in an error in LinearVote. The failure probability
“budget” is split evenly between failure to choose a good set of representatives (Line 1) as
specified in Lemma 14, and failure of the underlying learning procedures (Line 3) derived
by union bound. Compared with Lemma 14, the diffusion and nontriviality parameters are
adjusted to take into account the additional rounding error magnitude of αT introduced by
LinearVote and the combined hypothesis error probability ε. In practice, we expect that the
set of thresholds which are learnable are unlikely to occur at regular intervals. Post-processing
is a valuable tool to reduce the magnitude of αT (by re-mapping the threshold values in step
4 to reduce the maximum gap), but comes at the cost of reduced nontriviality guarantees.

The desired query complexity to the arbiter follows from basic analysis of the parameters.
However, the query complexity bound can be improved significantly by observing that no
independence of errors between threshold functions is assumed, allowing a single call to
Algorithm 1 for each representative (rather than |T | calls). The dependence on |R| can also
be improved to logarithmic by sorting a single merged list of (representative, element) pairs,
but we defer detailed discussion to Sections 5 and 6 of the full paper.

1.7 Relaxing the query model
Our results extend to a relaxed model in which arbiters are not expected to make arbitrarily
small distinctions between distances or individuals and may answer real-valued queries with
bounded noise. The relaxed model assumes that there are two fixed constants, αL, the
minimum precision with which the arbiter can distinguish elements or distances, and αH ,
a bound on the magnitude of the (potentially biased) noise in the arbiter’s real-valued
responses. For any comparisons with difference smaller than αL, the arbiter declares the
elements indistinguishable or the difference “too close to call.” The model allows for a “gray
area” between αL and αH in which the arbiter may either respond with the true answer or
“too close to call.” For any differences larger than αH , the arbiter responds with the true
answer.

For the most part, our results translate to the relaxed model with minimal modification
to the logic of the proofs to handle two-sided error in real-valued queries. Interestingly, the
real-value query complexity improves to constant, as the worst-case behavior in Algorithm
1 is avoided as the arbiter “knows” not to worry about inconsequentially small distances.
However, this does result in additional error magnitude, so the improved query complexity

13 See Sections 5 and 6 in the full version.
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does not come for free. Furthermore, unlike the exact model we won’t necessarily be able
to label a sample with perfect accuracy for every threshold function learner due to the
bi-directional error. To handle this labeling problem, we modify the distribution of samples
presented to each learner, eliminating samples whose labels are ambiguous, again resulting
in increased error. Formal results in the relaxed model are discussed in Section 7 of the
full paper.
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