428 research outputs found

    CCACK: Efficient Network Coding Based Opportunistic Routing Through Cumulative Coded Acknowledgments

    Get PDF
    The use of random linear network coding (NC) has significantly simplified the design of opportunistic routing (OR) protocols by removing the need of coordination among forwarding nodes for avoiding duplicate transmissions. However, NC-based OR protocols face a new challenge: How many coded packets should each forwarder transmit? To avoid the overhead of feedback exchange, most practical existing NC-based OR protocols compute offline the expected number of transmissions for each forwarder using heuristics based on periodic measurements of the average link loss rates and the ETX metric. Although attractive due to their minimal coordination overhead, these approaches may suffer significant performance degradation in dynamic wireless environments with continuously changing levels of channel gains, interference, and background traffic. In this paper, we propose CCACK, a new efficient NC-based OR protocol. CCACK exploits a novel Cumulative Coded ACKnowledgment scheme that allows nodes to acknowledge network coded traffic to their upstream nodes in a simple way, oblivious to loss rates, and with practically zero overhead. In addition, the cumulative coded acknowledgment scheme in CCACK enables an efficient credit-based, rate control algorithm. Our experiments on a 22-node 802.11 WMN testbed show that compared to MORE, a state-of-the-art NC based OR protocol, CCACK improves both throughput and fairness, by up to 3.2x and 83%, respectively, with average improvements of 11- 36% and 5.7-8.3%, respectively, for different numbers of concurrent flows. Our extensive simulations show that the gains are actually much higher in large networks, with longer routing paths between sources and destinations

    Expander Chunked Codes

    Full text link
    Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks, and derive some basic properties of the model to facilitate the performance analysis. We then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint subsets of input packets, which are of special interest since they can be encoded with negligible computational cost and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that have an analyzable performance,where the construction of the chunks makes use of regular graphs. Numerical and simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 percent of the optimum and outperform the state-of-the-art overlapped chunked codes significantly.Comment: 26 pages, 3 figures, submitted for journal publicatio

    In-Network Processing For Mission-Criticalwireless Networked Sensing And Control: A Real-Time, Efficiency, And Resiliency Perspective

    Get PDF
    As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while satisfying application QoS requirements. We find that not only can these two techniques increase the energy efficiency, reliability, and throughput of WCPS while satisfying QoS requirements of applications in a relatively static environment, but also they can provide low cost proactive protection against transient node failures in a more dynamic wireless environment. We first study the problem of jointly optimizing packet packing and the timeliness of data delivery. We identify the conditions under which the problem is strong NP-hard, and we find that the problem complexity heavily depends on aggregation constraints instead of network and traffic properties. For cases when the problem is NP-hard, we show that there is no polynomial-time approximation scheme (PTAS); for cases when the problem can be solved in polynomial time, we design polynomial time, offline algorithms for finding the optimal packet packing schemes. We design a distributed, online protocol tPack that schedules packet transmissions to maximize the local utility of packet packing at each node. We evaluate the properties of tPack in NetEye testbed. We find that jointly optimizing data delivery timeliness and packet packing and considering real-world aggregation constraints significantly improve network performance. We then work on the problem of minimizing the transmission cost of network coding based routing in sensor networks. We propose the first mathematical framework so far as we know on how to theoretically compute the expected transmission cost of NC-based routing in terms of expected number of transmission. Based on this framework, we design a polynomial-time greedy algorithm for forwarder set selection and prove its optimality on transmission cost minimization. We designed EENCR, an energy-efficient NC-based routing protocol that implement our forwarder set selection algorithm to minimize the overall transmission cost. Through comparative study on EENCR and other state-of-the-art routing protocols, we show that EENCR significantly outperforms CTP, MORE and CodeOR in delivery reliability, delivery cost and network goodput. Furthermore, we study the 1+1 proactive protection problem using network coding. We show that even under a simplified setting, finding two node-disjoint routing braids with minimal total cost is NP-hard. We then design a heuristic algorithm to construct two node-disjoint braids with a transmission cost upper bounded by two shortest node-disjoint paths. And we design ProNCP, a proactive NC-based protection protocol using similar design philosophy as in EENCR. We evaluate the performance of ProNCP under various transient network failure scenarios. Experiment results show that ProNCP is resilient to various network failure scenarios and provides a state performance in terms of reliability, delivery cost and goodput. Our findings in this dissertation explore the challenges, benefits and solutions in designing real-time, efficient, resilient and QoS-guaranteed wireless cyber-physical systems, and our solutions shed lights for future research on related topics

    POSSIBLE PATH FOR UNICAST OF GLOBAL WEB CODING

    Get PDF
    An efficient means of managing of losses within wireless multihop networks is to make use of diversity between the links. Opportunistic routing is the initial trial to carry out this exploitation. We propose the thought of performing network coding on feedback messages and explain that when the intermediate node waits until receiving just one feedback message from each of the next-hop node, best possible level of network coding redundancy is computed within a distributed manner. Most of the methods on network coding-based opportunistic routing within the literature assume that links are independent, and this assumption was invalidated by modern studies that showed that correlation between links can be random.  The coded feedback messages need a minute amount of overhead, as they are integrated with packets. Our system is moreover oblivious for losses as well as correlations between the links, while it optimizes performance devoid of explicit information of these two factors
    corecore