13 research outputs found

    An Optimization method for the Configuration of Inter Array Cables for Floating Offshore Wind Farm.

    Get PDF
    International audienceIFP Energies nouvelles (IFPEN) is involved for many years in various projects for the development of floating offshore wind turbines. The commercial deployment of such technologies is planned for 2020. The present paper proposes a methodology for the numerical optimization of the inter array cable configuration. To illustrate the potential of such an optimization, results are presented for a case study with a specific floating foundation concept [1]. The optimization study performed aims to define the least expensive configuration satisfying mechanical constraints under extreme environmental conditions. The parameters to be optimized are the total length, the armoring, the stiffener geometry and the buoyancy modules. The insulated electrical conductors and overall sheath are not concerned by this optimization. The simulations are carried out using DeepLines TM , a Finite Element software dedicated to simulate offshore floating structures in their marine environment. The optimization problem is solved using an IFPEN in-house tool, which integrates a state of the art derivative-free trust region optimization method extended to nonlinear constrained problems. The latter functionality is essential for this type of optimization problem where nonlinear constraints are introduced such as maximum tension, no compression, maximum curvature and elongation, and the aero-hydrodynamic simulation solver does not provide any gradient information. The optimization tool is able to find various local feasible extrema thanks to a multi-start approach, which leads to several solutions of the cable configuration. The sensitivity to the choice of the initial point is demonstrated, illustrating the complexity of the feasible domain and the resulting difficulty in finding the global optimum configuration

    Global Continuous Optimization with Error Bound and Fast Convergence

    Get PDF
    This paper considers global optimization with a black-box unknown objective function that can be non-convex and non-differentiable. Such a difficult optimization problem arises in many real-world applications, such as parameter tuning in machine learning, engineering design problem, and planning with a complex physics simulator. This paper proposes a new global optimization algorithm, called Locally Oriented Global Optimization (LOGO), to aim for both fast convergence in practice and finite-time error bound in theory. The advantage and usage of the new algorithm are illustrated via theoretical analysis and an experiment conducted with 11 benchmark test functions. Further, we modify the LOGO algorithm to specifically solve a planning problem via policy search with continuous state/action space and long time horizon while maintaining its finite-time error bound. We apply the proposed planning method to accident management of a nuclear power plant. The result of the application study demonstrates the practical utility of our method

    BoostingTree: parallel selection of weak learners in boosting, with application to ranking

    Get PDF
    Boosting algorithms have been found successful in many areas of machine learning and, in particular, in ranking. For typical classes of weak learners used in boosting (such as decision stumps or trees), a large feature space can slow down the training, while a long sequence of weak hypotheses combined by boosting can result in a computationally expensive model. In this paper we propose a strategy that builds several sequences of weak hypotheses in parallel, and extends the ones that are likely to yield a good model. The weak hypothesis sequences are arranged in a boosting tree, and new weak hypotheses are added to promising nodes (both leaves and inner nodes) of the tree using some randomized method. Theoretical results show that the proposed algorithm asymptotically achieves the performance of the base boosting algorithm applied. Experiments are provided in ranking web documents and move ordering in chess, and the results indicate that the new strategy yields better performance when the length of the sequence is limited, and converges to similar performance as the original boosting algorithms otherwise. © 2013 The Author(s)

    Optimization methods in problems of the lineаr antenna array synthesis

    Get PDF
    Предмет истраживања ове докторске дисертације је анализа линеарног антенског низа, анализа методе комбинације две претраге за синтезу линеарног антенског низа и примена представљене методе на проблеме синтезе линеарног антенског низа...The primary goals of this dissertation are: analysis of the linear antenna array; analysis of a method combining two searches for the linear antenna array synthesis; and the application of the method presented to the problems of the linear antenna array synthesis..
    corecore