110 research outputs found

    Impacts of frequent itemset hiding algorithms on privacy preserving data mining

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 54-58)Text in English; Abstract: Turkish and Englishx, 69 leavesThe invincible growing of computer capabilities and collection of large amounts of data in recent years, make data mining a popular analysis tool. Association rules (frequent itemsets), classification and clustering are main methods used in data mining research. The first part of this thesis is implementation and comparison of two frequent itemset mining algorithms that work without candidate itemset generation: Matrix Apriori and FP-Growth. Comparison of these algorithms revealed that Matrix Apriori has higher performance with its faster data structure. One of the great challenges of data mining is finding hidden patterns without violating data owners. privacy. Privacy preserving data mining came into prominence as a solution. In the second study of the thesis, Matrix Apriori algorithm is modified and a frequent itemset hiding framework is developed. Four frequent itemset hiding algorithms are proposed such that: i) all versions work without pre-mining so privacy breech caused by the knowledge obtained by finding frequent itemsets is prevented in advance, ii) efficiency is increased since no pre-mining is required, iii) supports are found during hiding process and at the end sanitized dataset and frequent itemsets of this dataset are given as outputs so no post-mining is required, iv) the heuristics use pattern lengths rather than transaction lengths eliminating the possibility of distorting more valuable data

    A Framework for High-Accuracy Privacy-Preserving Mining

    Full text link
    To preserve client privacy in the data mining process, a variety of techniques based on random perturbation of data records have been proposed recently. In this paper, we present a generalized matrix-theoretic model of random perturbation, which facilitates a systematic approach to the design of perturbation mechanisms for privacy-preserving mining. Specifically, we demonstrate that (a) the prior techniques differ only in their settings for the model parameters, and (b) through appropriate choice of parameter settings, we can derive new perturbation techniques that provide highly accurate mining results even under strict privacy guarantees. We also propose a novel perturbation mechanism wherein the model parameters are themselves characterized as random variables, and demonstrate that this feature provides significant improvements in privacy at a very marginal cost in accuracy. While our model is valid for random-perturbation-based privacy-preserving mining in general, we specifically evaluate its utility here with regard to frequent-itemset mining on a variety of real datasets. The experimental results indicate that our mechanisms incur substantially lower identity and support errors as compared to the prior techniques

    Frequent Pattern mining with closeness Considerations: Current State of the art

    Get PDF
    Due to rising importance in frequent pattern mining in the field of data mining research, tremendous progress has been observed in fields ranging from frequent itemset mining in transaction databases to numerous research frontiers. An elaborative note on current condition in frequent pattern mining and potential research directions is discussed in this article. It2019;s a strong belief that with considerably increasing research in frequent pattern mining in data analysis, it will provide a strong foundation for data mining methodologies and its applications which might prove a milestone in data mining applications in mere future

    Coefficient-based exact approach for frequent itemset hiding

    Get PDF
    Concealing sensitive relationships before sharing a database is of utmost importance in many circumstances. This implies to hide the frequent itemsets corresponding to sensitive association rules by removing some items of the database. Research efforts generally aim at finding out more effectivemethods in terms of convenience, execution time and side-effect. This paper presents a practical approach for hiding sensitive patterns while allowing as much nonsensitive patterns as possible in the sanitized database. We model the itemset hiding problem as integer programming whereas the objective coefficients allow finding out a solution with minimum loss of nonsensitive itemsets. We evaluate our method using three real datasets and compared the results with a previous work. The results show that information loss is dramatically minimized without sacrificing the accuracy

    State of the Art in Privacy Preserving Data Mining

    Get PDF
    Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when Data Mining techniques are used. Such a trend, especially in the context of public databases, or in the context of sensible information related to critical infrastructures, represents, nowadays a not negligible thread. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. This is a very complex task and there exist in the scientific literature some different approaches to the problem. In this work we present a "Survey" of the current PPDM methodologies which seem promising for the future.JRC.G.6-Sensors, radar technologies and cybersecurit
    corecore