614 research outputs found

    Multi-Modal Mean-Fields via Cardinality-Based Clamping

    Get PDF
    Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probability distribution as a product of marginal probabilities, it may fail to properly account for important dependencies between variables. We therefore replace the fully factorized distribution of Mean Field by a weighted mixture of such distributions, that similarly minimizes the KL-Divergence to the true posterior. By introducing two new ideas, namely, conditioning on groups of variables instead of single ones and using a parameter of the conditional random field potentials, that we identify to the temperature in the sense of statistical physics to select such groups, we can perform this minimization efficiently. Our extension of the clamping method proposed in previous works allows us to both produce a more descriptive approximation of the true posterior and, inspired by the diverse MAP paradigms, fit a mixture of Mean Field approximations. We demonstrate that this positively impacts real-world algorithms that initially relied on mean fields.Comment: Submitted for review to CVPR 201

    Relabelling Algorithms for Large Dataset Mixture Models

    Full text link
    Mixture models are flexible tools in density estimation and classification problems. Bayesian estimation of such models typically relies on sampling from the posterior distribution using Markov chain Monte Carlo. Label switching arises because the posterior is invariant to permutations of the component parameters. Methods for dealing with label switching have been studied fairly extensively in the literature, with the most popular approaches being those based on loss functions. However, many of these algorithms turn out to be too slow in practice, and can be infeasible as the size and dimension of the data grow. In this article, we review earlier solutions which can scale up well for large data sets, and compare their performances on simulated and real datasets. In addition, we propose a new, and computationally efficient algorithm based on a loss function interpretation, and show that it can scale up well in larger problems. We conclude with some discussions and recommendations of all the methods studied

    Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference

    Full text link
    This paper presents a general stochastic model developed for a class of cooperative wireless relay networks, in which imperfect knowledge of the channel state information at the destination node is assumed. The framework incorporates multiple relay nodes operating under general known non-linear processing functions. When a non-linear relay function is considered, the likelihood function is generally intractable resulting in the maximum likelihood and the maximum a posteriori detectors not admitting closed form solutions. We illustrate our methodology to overcome this intractability under the example of a popular optimal non-linear relay function choice and demonstrate how our algorithms are capable of solving the previously intractable detection problem. Overcoming this intractability involves development of specialised Bayesian models. We develop three novel algorithms to perform detection for this Bayesian model, these include a Markov chain Monte Carlo Approximate Bayesian Computation (MCMC-ABC) approach; an Auxiliary Variable MCMC (MCMC-AV) approach; and a Suboptimal Exhaustive Search Zero Forcing (SES-ZF) approach. Finally, numerical examples comparing the symbol error rate (SER) performance versus signal to noise ratio (SNR) of the three detection algorithms are studied in simulated examples

    Sophisticated Inference

    Get PDF
    Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolves the exploitation-exploration dilemma in relation to prior preferences, by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about 'what would happen if I did that' to 'what would I believe about what would happen if I did that'. The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states, as opposed to states per se. We illustrate the competence of this scheme, using numerical simulations of deep decision problems

    Variational approximation for mixtures of linear mixed models

    Full text link
    Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the EM algorithm. The conventional approach to determining a suitable number of components is to compare different mixture models using penalized log-likelihood criteria such as BIC.We propose fitting MLMMs with variational methods which can perform parameter estimation and model selection simultaneously. A variational approximation is described where the variational lower bound and parameter updates are in closed form, allowing fast evaluation. A new variational greedy algorithm is developed for model selection and learning of the mixture components. This approach allows an automatic initialization of the algorithm and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparametrize the model and show empirically that there is a gain in efficiency by variational algorithms similar to that in MCMC algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler which suggests that reparametrizations can lead to improved convergence in variational algorithms as well.Comment: 36 pages, 5 figures, 2 tables, submitted to JCG

    Tree-structured graphical models and image analysis

    Get PDF
    • …
    corecore