23 research outputs found

    Privacy risks in trajectory data publishing: reconstructing private trajectories from continuous properties

    Get PDF
    Location and time information about individuals can be captured through GPS devices, GSM phones, RFID tag readers, and by other similar means. Such data can be pre-processed to obtain trajectories which are sequences of spatio-temporal data points belonging to a moving object. Recently, advanced data mining techniques have been developed for extracting patterns from moving object trajectories to enable applications such as city traffic planning, identification of evacuation routes, trend detection, and many more. However, when special care is not taken, trajectories of individuals may also pose serious privacy risks even after they are de-identified or mapped into other forms. In this paper, we show that an unknown private trajectory can be reconstructed from knowledge of its properties released for data mining, which at first glance may not seem to pose any privacy threats. In particular, we propose a technique to demonstrate how private trajectories can be re-constructed from knowledge of their distances to a bounded set of known trajectories. Experiments performed on real data sets show that the number of known samples is surprisingly smaller than the actual theoretical bounds

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    Agreement among human and annotated transcriptions of global songs

    Get PDF
    Cross-cultural musical analysis requires standardized symbolic representation of sounds such as score notation. However, transcription into notation is usually conducted manually by ear, which is time-consuming and subjective. Our aim is to evaluate the reliability of existing methods for transcribing songs from diverse societies. We had 3 experts independently transcribe a sample of 32 excerpts of traditional monophonic songs from around the world (half a cappella, half with instrumental accompaniment). 16 songs also had pre-existing transcriptions created by 3 different experts. We compared these human transcriptions against one another and against 10 automatic music transcription algorithms. We found that human transcriptions can be sufficiently reliable (~90% agreement, κ ~.7), but current automated methods are not (<60% agreement, κ <.4). No automated method clearly outperformed others, in contrast to our predictions. These results suggest that improving automated methods for cross-cultural music transcription is critical for diversifying MIR

    Sequence Alignment in Molecular Biology

    Get PDF
    corecore